
From Weaving Schemes to Weaving Patterns ∗

JÁN KOLLÁR

Technical University of Košice
Department of Computers and Informatics

Letná 9, 042 00 Košice, Slovakia
Jan.Kollar@tuke.sk

Abstract. Coming out from the process functional paradigm and usingPFL – a process functional
language, a generalized approach to weaving at the micro-structural level is presented. Exploiting the
application of processes andPFL reflection property, we develop a generalized weaving scheme and we
express it in the form of weaving pattern. Different specializations and extensions of weaving patterns
occurring in aspect oriented languages are discussed. Weaving patterns expressed in terms of weaving
chains provide us with the flexibility inevitable for the aspect oriented evolution of software systems
instead of aspect oriented programming. Presented abstraction in the form of patterns comes out from
integrating imperative, purely functional and object paradigms in the process functional paradigm and
it may contribute to the application of aspect oriented approach to the area of automatic evolution of
software systems.

Keywords: Aspect oriented programming, weaving strategies, software architectures, systems evolution,
implementation paradigms.

(Received March 06, 2005 / Accepted April 20, 2005)

1 Introduction

The separation-of-concerns principle is one of the es-
sential principles in software engineering. It says that
software should be decomposed in such a way that dif-
ferent concerns or aspects of the problem at hand are
solved in well-separated modules or parts of the soft-
ware [3, 20].

Aspect oriented programming [8, 14] offers a new
paradigm for software development, which complements
conventional programming paradigms with a higher de-
gree of separation of concerns. The development of
an aspect oriented application is commonly supported
by an aspect language, such as AspectJ [8] to modu-
larize crosscutting concerns as aspects; and the aspect
weaver that instruments the component program with
aspect programs to produce the final system.

AspectJ defines a set of new language constructs

∗This work was supported by VEGA Grant No. 1/1065/04 – Spec-
ification and implementation of aspects in programming

to modularize crosscutting concerns. An aspect mod-
ule in AspectJ contains pointcuts and the associated ad-
vices. A pointcut construct denotes a collection of join
points. AspectJ code can be executed before, after or
in place of the program execution when a join point is
reached. These actions are defined using AspectJ spe-
cific constructsbefore, after, andaround. These con-
structs are called advices [8, 19], since they comprise
advised code.

The aspect oriented approach is a software program-
ming methodology, which makes programs more reli-
able, because mutual interconnections between original
program modules and the aspect module are performed
automatically, by weaving [8, 14, 21]. The reasons are
in the application of specification principles, that are ex-
ploited using logical formulae for the selection (picking
out) a set o join points, in which advises are applied.

Out motivation for the development of more abstract
form of weaving patterns for weaving schemes comes
from the following questions that are arising:

Jan.Kollar@tuke.sk


1. Can the methodology itself ensure non-existence
of bugs in programs?

2. Is the set of pointcut designators in current aspect
languages complete and/or is it extensible in a flex-
ible manner?

3. Is it appropriate to use the names in pointcut des-
ignators, considering that then a programmer still
must have a very detailed notion about the original
modules, otherwise one mistake in advice module
may yield unwanted woven programs?

4. Is the current aspect oriented approach applicable
to all levels of granularity of systems, in the uni-
form way, with the same reliability? Or is it re-
stricted, being just a coarse-grained extension of
object approach?

5. Even, is aspect oriented approach applicable just
to systems programming in a life-cycle? Or, would
it not be possible to separate the specification and
the implementation systematically, to provide an
opportunity for systems evolution, such that makes
them live at any time?

Especially with respect of the last question, we are
interested in the uniform weaving mechanism, as a gen-
eral systems evolution principle.

Since weaving transformations yield semantic chan-
ges [19], they must be inspected far more systemati-
cally, first from the structural point of view, as it was
done up to now. That is why, we are focusing on the
structural essence of one category of weaving transfor-
mations, and their semantic effects are mentioned just
marginally, in discussion.

In the past, we have found that imperative, func-
tional and object paradigms can be integrated in a pro-
cess functional paradigm [9, 10], in which processes are
defined in terms of expressions, as it is done in Haskell
[17], but with memory cells visible, being all shifted to
type definitions (type signatures) of processes. In this
way, higher-order functions, parametric polymorphism
and overloading are preserved.

Our approach is based on more abstract and still im-
plementation level ofPFL – a process functional lan-
guage than provided by current imperative languages.

The application of processes is a single execution
mechanism inPFL. Control values are explicitly visi-
ble, opposite to imperative languages. The concerns of
variable environment and code are well-separated [11,
12]. The source form of allPFL expressions is purely
functional, and environments are associated with type

expressions.PFL reflection means reflecting the prop-
erties of a system in the form of values computed during
execution at the level of type expressions.

The essence of process functional paradigm is intro-
duced in section 2, in which both outer and innerPFL
reflection property is illustrated, as an assumption for
the systematic approach to weaving.

In section 3, we will simply suppose, that a joint
point in the form of the application is selected. Then
we will be interested, how an advice (which is again in
the form the application) can be woven into the original
code, developing a weaving scheme.

In particular, we are interested in weaving scheme,
which does not affect the function of original code, pro-
vided that advice is purely functional. As a result, we
answer the question about the possibility of finding the
original application after weaving.

Formal remarks and comments to this scheme are
introduced in section 4. We also present more abstract
form for weaving schemes, considering the structure of
applications separately from semantics, in the form of
chains. Weaving patterns are weaving schemes defined
in terms of weaving chains.

We discuss the flexibility of weaving patterns as the
abstraction of weaving schemes in section 5.

Related works are introduced in section 6.
In conclusion, we summarize our results.
In this paper, we omit the question, how to find a

collection of join points. We are concentrated to weav-
ing and its generalization, as the proposition for a sys-
tematic approach to the evolution of software architec-
tures based on the specification of goals in terms of
types and values, rather than names, introduced by a
programmer. The names of functions, processes, lambda
variables, etc., in this paper are introduced just for the
purpose of explanation.

We use mathematical notation forPFL programs,
since it is more appropriate for our purposes. For exam-
ple, instead of concrete types, such asInt or Float
we use types in general form, such asT1, S2, etc. All
PFL function and/or process definitions, introduced in
this paper are not numbered.

2 Reflection in PFL
PFL reflection property enables to access and update
the values in environment variables outside the defini-
tion of a function, whenever the function is applied to
its arguments. Such functions are called processes –
hence the nameprocess functionalparadigm. APFL
(pure) function is defined in terms of the type defini-
tion (see the equation comprising::) and the definition
(the equation comprising=). For example, functionf



of two arguments, which sums them, is defined as fol-
lows:

f :: T1 → T2 → T
f x y = x + y

The definition of function above is illustrated in Fig.1.
Provided that environment variables occur in the type

definition as the attributes of the argument types, such
function is called the process.

Since of two arguments, functionf may be rewritten
or transformed easily, obtaining four possible kinds of
processes, see Fig.1 a), b), c), and d), corresponding to
the following cases of definitions.

Case a):

f :: u T1 → T2 → T
f x y = x + y

Case b):

f :: T1 → v T2 → T
f x y = x + y

Case c):

f :: u T1 → v T2 → T
f x y = x + y

Case d):

f :: u T1 → u T2 → T
f x y = x + y

Figure 1: Function and processes

Binding the environment variablesu andv in pro-
cesses is transparent, since it is static – exclusively via
type definitions. Notice, process bodyx + y remains
unchanged.

The same environment variable (such asu in case
d) may be shared by multiple arguments of a process.
Environment variables may be even shared by different
processes; but this case is not illustrated in this section.

2.1 Outer Reflection

Outer reflection property enables to update the envi-
ronment cells by data values of arguments, and to ac-
cess them by the unit value arguments. Both effects are
reached by the applications of processes.

Let us consider case b) of processf in Fig.1.
The application(f 3 2) is evaluated by subsequent

parameter passing, and the evaluation off body, ac-
cording to Fig.2.

Figure 2: Application to data values - example of the update

Starting with the undefined value in environment
variablev, the crucial is the second parameter value
passing, since of assigning (or reflecting) this value to
v by the side effect. The value of the application is 5,
and it will be the same, even for pure function (case a),
or processes in cases b) or d). However, the reflected
value in case b) would beu = 3 and in case d)u = 2.

Provided that the value ofv is 2, for example as a
side effect of application(f 3 2), the other application,
see Fig.3, may access the value stored inv, using the
unit value as the second argument.

The unit value and its (unit) type, are designated in
PFL by (), as in Haskell. In Fig.3, a small ball marks
it, while big balls mark data values.



Figure 3: Application to data and control values - example of the
access

The application operation@, represented by the space
in a program, is left associative operation, i.e. it holds
(f 5 ()) = ((f@5)@()). As can be seen, the operation
@ is marked by boxes in all figures.

For the purpose of explanation, we have used just
constant arguments of the process. Of course, the argu-
ments of processes may be any complex expressions in
general.

It would be possible to designate the environment
variablesu andv by the same names as lambda vari-
ables, i.e. byx andy, because of different positions of
lambda variables and environment variables in a mem-
ory. In process functional paradigm, lambda variables
are not just holes, that represents values used in function
(lambda abstraction) body, as it is in lambda calculus,
but they designate stack memory cells, containing (as a
result of application) actual parameter values, similarly
as it is in imperative languages.

Environment variables may reside on the stack, in
global memory, or in object record, corresponding to
imperative and object paradigm.

On the other hand, the values of processes are de-
fined by expressions, in terms of lambda variables, not
using environment variables, corresponding to purely
functional paradigm.

2.2 Inner Reflection

Suppose a function/processh and its local processg.
The inner reflection enables to access and to update

one or more environment variables of processg, that are
matched with lambda variables of a function/processh.

LetPFL functionh with a local processg be defined
as follows:

h :: T1 → T2 → T
h x y = g x y ∗ g () 4

where
g :: x T1 → z T2 → T
g x y = x + y

Since of the same namex (in the box) used for the
environment variable of local processg and for lambda
variable of pure functionh, the same stack cell (allo-
cated for the first parameter ofh) is used for both of
them.

The environment variablez is the environment vari-
able of g, local to h. The definition of functionh is
shown in Fig.4.

The result of application(h 3 2) is 35. The substan-
tial is the fact, that after passing 3 by(h 3) to lambda
variablex of h, this value is accessible as the value of
environment variablex of g in application(g () 4).

Figure 4: Inner reflection as a result of sharingx variable

We introduce local environment variablez to show
that it is updated two times. Because multiplication(∗)
is left associative operation,z is updated by the value 2,
and after that by the value 4.

Now, let us discuss the effect of different modifica-
tions of the body of functionh. Replacing the expres-
siong x y∗g () 4 by expressiong x y∗g () (), the result
of (h 3 2) is 25.

Provided that the body isg () y ∗ g () (), the result
is again 25.



The result ofg y x∗g () () body is 16. After passing
the value 2 by(g y), this value is stored in environment
variablex of g, i.e. it replaces the argument valuex
of h. It means that(g y x) evaluates to(g 2 2), not
to (g 2 3), as one might think. This case illustrates the
ability for substitution of the value of argumentx of h
by the value of argumenty. Mathematically, computing
(h 2 2) instead of(h 3 2) is a nonsense. Computation-
ally, in aspect programming, changing(h 3 2) to (h 2 2)
may be useful.

The variations on different bodies above illustrate
the flexibility and simplicity of transformations based
on process functional paradigm inPFL, yielding dif-
ferent semantic effects.

Exploiting process functional paradigm inPFL, full
imperative semantics is reached considering just appli-
cations and application dependencies, what clearly yields
the significant simplification of source-to-source trans-
formations, as required for weaving.

3 Weaving Requirements

In this section we define our particular task and the re-
sult, which will be obtained by the weaving of original
and advice – both in the form of applications.

We suppose that a join point in the form of origi-
nal application has been picked out inPFL functionp,
which is defined as follows:

p :: T1 → . . . → Tp → T
p x1 . . . xp = σ (e1 e2 . . . en) ω

It means, thatp is defined by expression

σ (e1 e2 . . . en) ω

of the typeT , which comprises the original applica-
tion

(e1 e2 . . . en)

i.e. join point. Prefix and postfix partsσ andω are
out of our interest, since they do not contain the appli-
cation(e1 e2 . . . en).

For the purposes of more transparent description,
we will use the abbreviated form for argument variables
and types below, and we designateT1 → . . . → Tp by
Tp, andx1 . . . xp by Xp. Using this shortcuts, the ab-
breviated form ofp definition above is as follows:

p :: Tp → T
p Xp = σ (e1 e2 . . . en) ω

Designating the types of expressions used in the orig-
inal application, the application rule is defined by (1).

e1 :: Q1 → Q2 → . . . → Qn−1 → Qn

e2 :: Q1 e3 :: Q1 . . . en :: Qn−1

e1 e2 . . . en :: Qn
(1)

Considering the application order given by currying
– a mechanism that guarantees a subsequent application
of arguments – it holds

e1 e2 . . . en = (. . . ((e1) e2) . . .) en (2)

Supposing eager evaluation of expressions, the ap-
plication order given by (2) yields the precedence (time
order) for expressions in the original application, as fol-
lows:

e1 ≺ e2 ≺ . . . ≺ en (3)

Now, we will define the advice, again in the form of
an application.

This advised application evaluates corresponding to
the application rule (4), with evaluation order (5).

a0 :: S0 → S1 → . . . → Sn−1 → Sn

a1 :: S0 a2 :: S1 . . . an :: Sn−1

a0 a1 . . . an :: Sn
(4)

a0 a1 a2 . . . an = (. . . (((a0) a1) a2) . . .) an (5)

The application order (5) yields the precedence of
advice expressions, as follows:

a0 ≺ a1 ≺ a2 ≺ . . . ≺ an (6)

Since the advised application may contain free vari-
ables, which we want to be bound by parameters of
original functionp in woven form, it is reasonable to
express the advice in the form of the definition of func-
tion, as follows:

advice :: R0 → . . . → Rm → Sn

advice x1 . . . xm = a0 a1 . . . an

in which all, originally free variables can be seen now
as lambda variablesx1, . . . ,xm.

The abbreviated form foradvice is as follows:

advice :: Rm → Sn

advice Xm = a0 a1 . . . an

The original processp and the functionadvice are
illustrated in Fig.5.

The task of weaving is as follows:



Figure 5: Original functionp and advice defined by functionadvice

Figure 6: Requirements to woven form

1. Advised code defined byadvice must be woven
into functionp, using the values of arguments ofp
of the same type.

2. By weaving, it is necessary obtain evaluation prece-
dence, as follows:

a0 ≺ e1 ≺ a1 ≺ e2 ≺ a2 ≺ . . . ≺ en ≺ an

3. The value of functionp must not be affected by
weaving. As we will see later, since of flexibility
of the developed scheme, it is easy to substitute
this requirement by other.

The execution of original application and advised
application in time, as well as sharing parameter values
of p by advised application are illustrated in Fig.6. The
irrelevantσ andω parts ofp body are omitted.

Instead of concrete input arcs that represent the flow
of values, the "buses of arcs" are used, since of general
form of weaving scheme.

4 Weaving Scheme and Weaving Pattern

The woven form of functionp is the value of weaving
schemeW, which is introduced in Fig.7.

In woven form, both original and advised applica-
tions are step-by-step synchronized.

In Fig.7, the shortcut()sk stands forsk unit values
used as arguments, i.e. for() () . . . ()︸ ︷︷ ︸

sk

.

Local processesadk and local functionsad′k are gen-
erated using original names for variables in expressions
ek andak.

The shortcut(Sk→n) stands for type expression(Sk →
. . . Sn) and the form(Qk→n) stands for type expression
(Qk → . . . Qn). In both cases, the parentheses are rel-
evant, since parametersxa andxe are functions.

The shortcutXsk is used forsk lambda variables,
identical to free variables used inak on the right hand
side ofadk definition. By other words, lambda vari-
ables can be generated from the set of free variables
used inak.

Sharing the subset of parametersXp of p is given by
attributed typesXTsk of a local processadk, in which
the expressionak is evaluated. The shortcutXTsk is
used instead ofxu1 T1 → . . . → xusk

Tsk
, such that

{xu1 , . . . xusk
} ⊆ Xp.

Except that original and advised application are syn-
chronized, we may conclude, that the functionp is not
changed, provided that the advice does not affect envi-
ronment variable which is used by the original applica-
tion. If this is true (and it may be detected based on the
application dependence analysis), then, for example, we
are sure, that a potential bug in advice does not infect
the original program and vice versa, since both are ex-
ecuted using disjunctive computational spaces. On the
other hand, if this is not the case, it is possible to de-
tect statically where and when the original function is
affected by the side effect caused by advice, and vice
versa.

The variablesxu1 , . . . , xusk
from Xp may be gen-

erated based on matching types, by no means by match-
ing parameter names. This, however, is over the scope
of this paper. But careful reader may notice, that the ac-
curate, deterministic and non-redundant solution is not
so trivial, as might seem at the first sight.

It may be also noticed, that the definition of an ad-
vice by the constant application would simplify the weav-
ing scheme significantly, but it is still possible to share



W
[[

p :: Tp → T
p Xp = σ (e1 e2 . . . en) ω

]]
advice =

p :: Tp → T
p Xp = σ (ad0 ()s0) ω

where
ad0 :: XTs0 → Qn

ad0 Xs0 = ad′0 a0

ad′0 :: (S0→n) → Qn

ad′0 xa = ad1 xa e1 ()s1

ad1 :: (S0→n) → (Q1→n) →
XTs1 → Qn

ad1 xa xe Xs1 = ad′1 (xa a1) xe

ad′1 :: (S1→n) → (Q1→n) → Qn

ad′1 xa xe = ad2 xa (xe e2) ()s2

ad2 :: (S1→n) → (Q2→n) →
XTs2 → Qn

ad2 xa xe Xs2 = ad′2 (xa a2) xe

ad′2 :: (S2→n) → (Q2→n) → Qn

ad′2 xa xe = ad3 (xe e3) xa ()s3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
adn−1 :: (S(n−2)→n) → (Q(n−1)→n) →

XTsn−1 → Qn

adn−1 xa xe Xsn−1 = ad′n−1 (xa an−1) xe

ad′n−1 :: (S(n−1)→n) → (Q(n−1)→n) → Qn

ad′n−1 xa xe = adn−1 xa (xe en) ()sn−1

adn :: (S(n−1)→n) → Qn →
XTsn → Qn

adn xa xe Xsn = ad′n (xa an) xe

ad′n :: Sn → Qn → Qn

ad′n xa xe = xe

Figure 7: General Weaving Scheme

common space of environment variables and hence to
affect the original function.

The required time order is guaranteed by the appli-
cation order of generated local processesadk and local
functionsad′k. However, the variables in bothek and
ak remain unchanged, after weaving.

Provided that we designate the original application
e1 e2 . . . en by the chain• • . . . • and the advised appli-

cationa0 a1 a2 . . . an by the chain◦◦◦ . . . ◦, the weav-
ing pattern, which corresponds to weaving schemeW
in Fig.7, can be expressed as follows.

W[[ • • . . . • ]] ◦ ◦ ◦ . . . ◦ = ◦
•
◦
•
◦ . . . •

◦ (7)

The value of weaving pattern above expresses that
two independent applications are evaluated (in horizon-
tal direction) while the precedence of evaluation in time
of all expressions is determined in vertical direction.

Considering just the chains in weaving patterns, we
may abstract from function of computation, but it is still
possible to reason about the types. We may conclude,
that types in circle chain are independent from types in
bullet chain, but such that application rules (4) and (1)
hold.

Let us discuss now the specialization and possible
extensions of weaving patterns.

5 Discussion

It is possible to specialize weaving pattern (7), to obtain
beforeadvice byW1 andafter advice byW2

W1[[ • ]] ◦ = ◦
• W2[[ • ]] ◦ = •

◦ (8)

In weaving patterns, (7) and (8), it is supposed the
value for original is produced by bullet chain, since of
its bottom position in pattern. We may notice the flexi-
bility of the schemeW.

Changing the definition of the last function inW
to ad′n xa xe = xa, and its type toSn → Qn → Sn,
the advised application value is used instead of original,
which vice-versa will be computed by the side effect.
Then the value of functionp will be changed, even if
the advice is purely functional.

This corresponds to the weaving schemesW ′, W ′
1,

andW ′
2, according to (9) and (10).

W ′[[ • • . . . • ]] ◦ ◦ ◦ . . . ◦ = ◦
•
◦
•
◦ . . . • ◦ (9)

W ′
1[[ • ]] ◦ = ◦

• W ′
2[[ • ]] ◦ = •

◦ (10)

In addition, the conditionSn = Qn must be sat-
isfied, otherwise the advice could not be used instead
of the original. It means thatW ′ is valid, provided
that type checking rule (11) holds, andW ′

1 andW ′
2 are



valid, provided that type checking rule (12) hold, as fol-
lows.

• • . . . • : T ⇒ ◦ ◦ ◦ . . . ◦ : T (11)

• : T ⇒ ◦ : T (12)

The insteadadvices defined by weaving schemes
W ′, W ′

1, andW ′
2 are associated with the evaluation of

original expressions by the side-effect. An alternative
is the weaving scheme that replaces original application
by advised application, according to (13).

W3[[ • • . . . • ]] ◦ ◦ ◦ . . . ◦ = ◦ ◦ ◦ . . . ◦ (13)

In this way, the chain• • . . . • is forgotten forever.
For such advising,• • . . . • : T ⇒ ◦ ◦ ◦ . . . ◦ : T must
hold.

The weaving above is trivial for a constant in the
role of advised application, because constants do not
exploit lambda variables of original function or process,
in which they are woven. Otherwise it is impossible
simply to substitute an original represented by bullet
chain by the advice represented by circle chain in func-
tion/process body. Instead of that, it is necessary to use
the similar approach as for the schemeW defined in
Fig.7. However, this weaving belongs to the different
category, which is not the subject of this paper.

The same holds for weaving pattern (14), in which
� designates the (empty) position in which◦ ◦ ◦ will be
substituted.

W3[[ � •]] ◦ ◦◦ = ◦ ◦ ◦ • (14)

Provided that it holds

• = e1 and ◦ ◦ ◦ = if a1 a2 (15)

we obtain

◦ ◦ ◦ • = if a1 a2 e1 (16)

which means, that instead original evaluation of ex-
pressione1, the application of operationif to arguments
evaluates, yielding eithera2 ore1, depending on boolean
value of expressiona1. In this way, the evaluation may
depend on values in external variable environment ac-
cessible via processes applied ina1. In this way, dy-
namic weaving is enabled, while static weaving defined
by (14) is just inevitable preliminary step.

Finally, we discuss the simplest form ofinsteadand
aroundweaving. The Wand’s [19]insteadadvising can

be expressed in terms of weaving pattern, defined by
(17).

I[[ • ]] ◦ = ◦ (17)

The simplest and correctaroundweaving is defined
by the patternA1 orA2 in (18).

A1[[ • ]] ◦ ◦ = ◦
•
◦ A2[[ • ]] ◦ ◦ = ◦

•
◦ (18)

On the other hand, the patterns defined by (19) are
wrong.

A′1[[ • ]] ◦ = ◦
•
◦ A′2[[ • ]] ◦ = ◦

•
◦ (19)

This is so because applying the weaving pattern to
single◦, it holds◦ : T . But, at the same time,◦ : T is
used in pattern twice in application◦◦, first occurrence
being of typeT1 → T2, and the second occurrence of
the typeT1. Formalizing this, we obtain the condition
(20).

(◦ : T ) ∧ (◦ : T1 → T2) ∧ (◦ : T1) (20)

But this is a contradiction, since the unification of
types fails on equationT1 → T2 = T1 (or T → T2 =
T ).

6 Related Work

In practice, the principle of separation of concerns is
not always that easy to achieve. As it turns out, no mat-
ter how well an application is decomposed into modular
entities, some functionality always crosscuts this modu-
larization. This phenomenon is known as the tyranny of
the dominant decomposition. As a consequence, such
crosscutting functionality (often called a concern) can-
not be evolved separately, as it affects all other entities
in the application [5].

Many security experts feel uneasy about trying to
isolate security-related concerns, because security is such
a pervasive property of a piece of software. The imple-
mentation convolution problem refers to the phenomenon
that, for a large number of non-trivial functionalities, al-
though their semantics are distinctive, their implemen-
tations do not have clear modular boundaries within the
(middleware) code space and, more seriously, often tan-
gle with one another. This prohibits these functionali-
ties from being pluggable [20]. For example, the prin-
ciples of orthogonal and weakly orthogonal aspects in-
struct in the design of aspects that are included in some
system configurations, but not in others [3].



Aspect mining and static refactoring techniques are
proposed in [5], to detect and separate the cross-cutting
concerns respectively. In a second step, the well-modula-
rized application should be controlled at the metalevel
by a monitor with full reflective capabilities.

On the other hand, to achieve new semantics of wo-
ven programs, novel-programming constructs can be
found in aspect languages, that are the subject of for-
mal analysis. This analysis is complicated, since the
restrictions are given by the complexity of implementa-
tion language, such as Java.

Simplifying the structure of language, better results
are achieved, and the analysis is more complex and valu-
able. For example, taking as a basis MiniMAO [2],
practically all constructs of AspectJ analyzed, in con-
trast to previous works.

Strategies that are used to aid in the rapid construc-
tion of new domain-specific weavers and an adoption
of generative programming approaches with respect to
constructing a weaver [7] require non-trivial source-to-
source program transformations.

The design of a generic framework to express as-
pects as syntactic transformations as well as a generic
weaver requires the semantic properties for the defini-
tion of aspects be used [6]. However, an approach to
generic weaving based on repeated program transfor-
mations might fail using imperative assignments and
statement sequence.

There is strong need for formalizing aspects [18] as
well as for manipulating them using more formal lan-
guages as implementation languages, see for example
µabc [1].

To be able to provide models describing goals and
strategies for reaching the properties of software sys-
tems, not just models or meta-models for software ar-
chitectures, such as in [13], we must think about incre-
mental evolution instead of incremental programming
[15], and formalize not just design patterns [16] but also
implementation patterns.

Inferring the grammar for the language, from frag-
ments of programs written in different languages is pos-
sible [4]. Our task is different. We want to determine
an abstracted general weaving pattern, and then to use it
as a parameter, while software architecture is inferred,
i.e. automatically generated from the model, which de-
scribes the substantial properties of the system.

7 Conclusions

Presented abstraction in the form of weaving patterns
may contribute to the theory of aspects [1, 18], as well
as to the application of aspect oriented approach to the
automatic evolution of software systems in the future.

Introducing the essence of process functional paradigm
including the reflection property, we have developed the
scheme for weaving two applications. The functionality
of transformed functionp, as a result of weaving given
by the value ofW in Fig.7 remains unchanged, except
that its computational time has increased, as a result of
advice computation by the side effect. Although the
transformedp is an executablePFL function with gen-
erated names, it may be noticed, that our approach is
not oriented to considering the names by a user.

Moreover, the form of original application is trans-
formed to the form such that cannot be supposed to be
found as a join point anymore. This follows us to con-
clude, that repeated weaving decreases the transparency
of woven programs, hence there is no benefit from the
fact that it is source-to-source transformation.

Of course, it is not critical for a very coarse aspect
oriented programming at the level of classes, using a
very simple advising patterns in aspect oriented pro-
gramming languages. Some of them we have analyzed
in discussion.

At the same time, expressionsek (marked by•), and
ak (marked by◦) (and of courseσ andω parts) may be
the subject of collecting new join points in the form of
applications.

To be able to apply weaving as a general composi-
tion method for generating software architectures by the
specification of goals of evolution, we have introduced
the abstracted representation of weaving schemes in the
form of weaving patterns, using chains. It could be
impossible without a single execution engine – the ap-
plication of processes, as a result of process functional
paradigm.

The main contribution of this paper is the separation
of structural and semantic aspects of weaving, provid-
ing a new idea of generalized approach to weaving on
more abstract level. Our general weaving scheme in
Fig.7 and its pattern (7) are still general just with re-
spect of one category of patterns.

How to generate, to mutate and to combine weav-
ing patterns, that are some kind of genetic information
affecting the systems generation (or evolution) by as-
pect manner, is the future, and the systematic study of
categories of weaving chains, associated with semantic
rules is the subject of our current research.

References

[1] Bruns, G., Jagadeesan, R., Jeffrey, A. and Riely, J.
µabc: A minimal aspect calculus. In Proceedings
of the 2004 International Conference on Concur-
rency Theory, Springer-Verlag, p.209–224, 2004.



[2] Clifton, C. and Leavens, G. T.MiniMAO: Investi-
gating the semantics of proceed. FOAL 2005 Pro-
ceedings, Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD 2005, p.51–61, 2005.

[3] Colyer, A., Rashid, A. and Blair, G.On the Sep-
aration of Concerns in Program Families.Tech-
nical Report, Computing Department, Lancaster
University, 11 p., 2004.

[4] Črepinšek, M., Mernik, M., Bryant, B. R., Javed,
F. and Sprague A.Inferring context-free gram-
mars for domain-specific language.Electronic
notes in theoretical computer science, No.141,
p.99–116, 2005.

[5] Ebraert, P. and Tourwe, T.A Reflective Approach
to Dynamic Software Evolution.In the proceed-
ings of the Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04),
p.37–43, 2004.

[6] Fradet, P. and Sudholt, M.Towards a Generic
Framework for Aspect-Oriented Programming.
Third AOP Workshop, ECOOP’98 Workshop
Reader, LNCS, v.1543, p.394-397, 1998.

[7] Gray, J., Bapty, T., Neema, S. and Tuck, J.Han-
dling crosscutting constraints in domain-specific
modeling. Communications of the ACM, v.44,
No.10, p.87–93, 2001.

[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J. and Griswold, W.An Overview of
AspectJ.ECOOP’01, LNCS, v.2072, p.327–355,
2001.

[9] Kollár, J.PFL Expressions for Imperative Control
Structures.Proc. Scient. Conf. CEI’99, October
14-15, Herl’any, Slovakia, p.23–28, 1999.

[10] Kollár, J. Object Modelling using Process Func-
tional Paradigm.Proc. ISM’2000, Rožnov pod
Radhošťem, Czech Republic, May 2-4, p.203–
208, 2000.

[11] Kollár, J. Unified Approach to Environments in
a Process Functional Programming Language.
Computing and Informatics, 22, 5, p.439–456,
2003.

[12] Kollár, J., Porubän, J. and Václavík, P.Separat-
ing Concerns in Programming: Data, Control
and Actions.Computing and Informatics, 24, 5,
p.441–462, 2005.

[13] Ledeczi, Á., Maroti, M., Bakay, A., Karsai, G.,
Garrett, J., Thomason, C., Nordstrom, G., Sprin-
kle, J. and Volgyesi, P.The Generic Modeling En-
vironment.Proc. of WISP’2001, May, Budapest,
p.34–42, 2001.

[14] Lieberherr, K., Lorenz, D. H. and Ovlinger, J.As-
pectual Collaborations: Combining Modules and
Aspects.The Computer Journal, v.46(5), p.542–
565, 2003.

[15] Mernik, M. and Zumer, V. Incremental pro-
gramming language development.Computer lan-
guages, Systems and Structures, v.31, p.1–16,
2005.

[16] Mikkonen, T. Formalizing Design Patterns.In
Proc. ICSE’98, p.115–124, 1998.

[17] Peyton Jones, S. L. and Hughes, J. [editors]Re-
port on the Programming Language Haskell 98
– A Non-strict, Purely Functional Language.,
163 p., 1999.

[18] Walker, D., Zdancewic, S. and Ligatti, J.A the-
ory of aspects.In Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, Uppsala, Sweden, ACM Press,
p.127–139, 2003.

[19] Wand, M.A Semantics for Advice and Dynamic
Join Points in Aspect–Oriented Programming.
LNCS, 2196, p.45–57, 2001.

[20] De Win, B., Piessens, F., Joosen, W. and Verhan-
neman, T.On the importance of the separation-
of-concerns principle in secure software engineer-
ing. Workshop on the Application of Engineer-
ing Principles to System Security Design, Boston,
MA, USA, November 6–8, p.62–76, 2002.

[21] Wu, H., Gray, J. G., Roychoudhury, S. and
Mernik, M. Weaving a debugging aspect into
domain-specific language grammars.Proceedings
of the 2005 ACM symposium on applied comput-
ing, p.1370–1374, 2005.


	Introduction
	Reflection in PFL
	Outer Reflection
	Inner Reflection

	Weaving Requirements
	Weaving Scheme and Weaving Pattern
	Discussion
	Related Work
	Conclusions

