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Abstract. Next-generation wireless networks (NGWN) are designed to support a very high data rate,
minimal delay, jitter, seamless movement across operators and geographical regions with a much faster
speed and more quality of services (QoS). More frequency spectrum in the medium to high band range
has been allotted to meet the desired QoS in the 5G wireless networks. These high-frequency signals
have smaller lengths and penetration, causing dense deployment of smaller cells for comprehensive cov-
erage in NGWN. Smaller cells mean a more frequent handover of users between cells. This change of
connecting cells, i.e. mobility of mobile users, is a matter of great concern to the service providers for re-
source management and maintaining desired QoS. In this article, a stochastic model based on connected
mobile population in a base station for mobility prediction has been proposed to impart machine intelli-
gence. The random motion of mobile devices and their connection status with an access point (AP) or
base station (BS), also known as a cell, is studied at a different time interval of operation. The transition
probabilities of a BS required to accommodate the handoff request of a mobile device at an interval is
estimated from the BS records, and a Markov model-based mobility prediction method is proposed. The
proposed prediction method does not add any traffic overhead for collecting data. It predicts the number
of handoffs and fresh connection requests to serve at an interval and can facilitate resource reservation,
congestion control and smooth handoff. Some practical application scenarios of mobility prediction are
also discussed. The article also highlights the present open challenges and potential future research issues
in this domain.
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1 Introduction

The convenience of use anywhere anytime for almost
any service made the wireless mobile system very pop-
ular throughout the globe [?, ?, ?, ?, ?]. Because of this
popularity, there is sharp growth in the number of mo-
bile portable devices (like smart-phone, Laptops, Tabs,
wearables etc.) connected to the network systems and
the location-based tailored services offered through the
next generation wireless networks [1]. This rapid in-
crease in network customer population and the mag-
nitude of multiple services, proposed quality of ser-
vices (QoS), data rate, level of customer satisfaction,
etc., have posed great challenges in NGWN [2]. To
accommodate the large number of customers, more ra-
dio spectrum in the medium to the high range has been
allocated to the networks operators, and the cell size
has been reduced [3]. This reduction in cell size will
definitely increase the handover of connected mobile
devices to one of the neighbouring cells to get unin-
terrupted network services. Moreover, the permissible
vehicular speed of the mobile customer is expected to
be the common acceptable parameter for accessing un-
interrupted services in 5G systems which are also ex-
pected to increase the number of handovers during a
customer’s service period [4]. Mobility is an implicit
property of mobile wireless networks, and it is accom-
panied by the issues like handoff, frequency reuse, traf-
fic shaping, paging, registration, beckoning, roaming,
location updation, etc. [5]. Therefore, efficient mobility
handling (handoff) is essential for maintaining the pro-
posed QoS in 5G wireless network systems. Handoff
means the process of transferring an ongoing wireless
connection of a mobile device from one BS to another
BS. Mobility prediction is one of the methods adopted
for efficient handover management [6].

Mobility prediction is of utmost importance for
a variety of emerging services and applications like
customized data collections, city planning, intelligent
transport system, traffic and public event management,
object tracking, visual surveillance, mobility manage-
ment, network resource planning, and many more in
the NGWN [6]. To avoid the termination of the ongo-
ing connection of the customer during actual handoff,
generally, some resources are reserved in the base sta-
tions (BS) to accommodate ongoing connections that
are handed over to this cell (BS) after handoff [2]. The
ongoing connection is very unstable during the han-
dover period. Radio resources in BS are limited. If
resource reservations are not optimized dynamically at
the different instants of time, resources will be under-
utilized, causing loss of revenues or ongoing connec-
tions will be forcefully terminated, or the attempts for

new connection will be delayed/blocked, causing cus-
tomer dis-satisfaction [7]. Considering the permissi-
ble high speed of mobile customers in 5G systems, it
is necessary to estimate the expected number of con-
nected devices in a cell at a future instance of time so
that resource allocation and mobility management can
be planned [5]. Because sometimes, handoff requests
need to be addressed within a few seconds by allocat-
ing required resources in the new cell. If the number
of expected handovers into a cell (BS) at a future in-
stant of time can be forecasted, the adequate system
resources can be reserved for that time interval to ac-
commodate the smooth handoff of the ongoing active
connection, and without causing waste of network re-
sources through unnecessary extra reservation [8]. The
success and efficiency of such schemes largely depend
on the mobility prediction technique and its accuracy.

The accuracy of the mobility prediction scheme has
a big impact on network resource utilization, system ef-
ficiency, QoS and customer satisfaction [2]. Smooth
handoff during the handover of the ongoing connection
from the present connected cell to the new cell the cus-
tomer moving into largely depends upon the availability
of required resources (mainly channels, buffers etc.) in
the new cell at that instant of time of handoff [2]. If
resources are available in the new cell, smooth handoff
will occur, and old cell resources will be released. Oth-
erwise, handoff will be unsuccessful and ongoing con-
nection will be forcefully terminated. Therefore, cell
level mobility prediction is much more important for
successful handoff than individual mobile device posi-
tional prediction [9]. Individual positional prediction
is an important research issue for initiating the hand-
off process and avoiding ping-pong effects [10]. More-
over, high accuracy in cell level mobility prediction will
help in designing more efficient resource distribution
plans through the network system, which in turn im-
prove the resource utilization, QoS, customers’ satis-
faction [9] [11]. In this article, a cell level mobility
prediction model has been proposed. The article also
addresses the future research issues that may arise in
the orchestration of mobility prediction in NGWN.

2 Literature Survey

Mobility prediction has been one of the hot research
issues since the beginning of the 21st century. Sev-
eral works have been reported adopting different ap-
proaches to achieve different objectives like offering
location-based services, optimum resource utilization
and efficient handoff management. Ing-Ray Chen et al.
[12] predicts the departure time of a mobile user from
its movement pattern and travel histories. In contrast,
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Bhattacharya et al. [13] used a search tree-based ap-
proach for mobility prediction. Levine et al. used the
concept of shadow cluster for predicting resource reser-
vation in a cell, whereas Soh and Kim [14] used road
topology for dynamic channel reservation in cells. This
scheme needs BS to maintain a large dataset for road
lengths, GPS and adds traffic overheads. The proposed
model in this article has no extra cost; only control data
typically recorded in BS can do the prediction. Balico
et al. [15] predicted the future location of a moving ve-
hicle in VANET using localization and time-series ap-
proaches. Fazio et al. [7] presented the different ap-
proaches of cell level mobility prediction for advance
resource reservations to maintain connection continu-
ity and to enhance QoS. With the advancement of tech-
nologies, deployment of smaller cells has been the ne-
cessity in 5G network systems that are accompanied by
a higher number of handoffs, and more interference at
the cell edges [3]. Therefore, mobility has more im-
portance than ever before in maintaining the QoS in
NGWN. Mobility prediction can help avoid undesired
handoff, reduce forced terminations, and improve re-
source utilization and QoS. An entropy-based predic-
tion algorithm is developed by [16] to estimate the in-
dividual user’s future location. It shows that inspite of
its random nature, a user’s history of daily movement
contains a higher degree of predictability. The entropy-
based mobility prediction approach has also been ap-
plied in [17] for predicting a vehicle’s future location.
User group based cell prediction was done by Kuruvatti
et al. [18] whereas authors in [19] predicted the user’s
future locality considering the direction of movement.
The state transition is an important event in statistical
prediction [20]. A state can represent the number of
connected mobile devices in a BS, the status of buffer
occupation, traffic load, or the status of free channels
in a cell. Any change in the parameter representing the
state makes a state transition, and every state transition
occurs with a specific transition probability that can be
estimated from the data collected in the operational sys-
tem [21]. This article has adapted one such approach for
cell level mobility prediction. Jin et al. [22] used mo-
bility history to predict the user’s next cell for advance
resource reservation to handle real-time handoff. Tra-
jectory based mobility prediction can also effectively
improve the network efficiency through resource reser-
vation at cell [23]. A log file-based mobility prediction
algorithm is developed by authors in [24] to the user’s
next cell to meet the objective of seamless handoff.

3 Proposed Scheme

This section explains the cellular structure of the wire-
less system and the mathematical analysis adopted in
this work.

3.1 System Model

A seven cell wireless system structure Fig.1 is consid-
ered where heterogeneous traffic is assumed to be in-
dependently and homogeneously distributed among the
cells. Mobile devices (MD) are randomly and indepen-
dently leaving a cell or BS, and some are entering into it
from the neighbouring cells and vice versa. The move-
ment of MDs among neighbouring BSs is collectively
exhaustive.

Figure 1: Layout for 7 Cell Cellular Wireless system Deployment

3.2 Mathematical Model

Because of the random mobile characteristics, some
MDs come into a BS from their neighbouring BSs, and
some leave it. The is represented by the number (Xn)
of MDs connected with a BS at the nth instant or in-
terval. Statistically, it can be proved that the move-
ment of MDs between the BSs follows the discrete-state
Markov process [20]. Hence, the next (n+ 1)th instant
state of the connected MDs to a BS depends only on
their previous (nth) state.

Therefore, the state transition probabilities of the
Markov chain [20] can be obtained as :

P [Xn = k|Xn−1 = j] = pjk. (1)

i.e., MDs move from BSj to BSk with probability
Pjk. It is assumed that the total population in a cluster
(Fig. 1) of base stations is constant. In this context, the
total population distribution of MDs over a cluster of
base stations at any instant of time is represented by a
vector
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B(n) = [bn1, bn2, bn3, bn4, bn5, bn6, bn7] (2)

Where bni represents the fraction of total MD pop-
ulation of the cellular system present in BSi at nth in-
stant of time and satisfy

7∑
k=1

bnk = 1 (3)

Here, the interval instant n represents different slots
of 15 minutes duration that are considered as transition
steps. The vector B(0) is called the initial distribution
vector and can be estimated from equation (4). To es-
timate b0i (i.e. total mobile device population in base
station i (BSi) at time instant n=0). If X1, X2, X3, X4,
X5, X6, X7 are the mobile device population in BS1,
BS2, BS3, BS4, BS5, BS6, BS7 respectively at n = 0,
then

b0k =
Xk∑7
i=1 Xi

, k = 1, 2, 3....7 (4)

Now, with passing time, every BS will retain a
large fraction of its resident MD (known as retention)
and release some fraction of its connected MDs to the
neighbouring base stations. At the same time, it will
receive some new connections from the neighbouring
cells. The total MD population in the cluster remaining
constant, 1-step Markov LossGain transition matrix P
can be estimated from equation (5) as

P =



p11 p12 p13 p14 p15 p16 p17

p21 p22 p23 p24 p25 p26 p27

p31 p32 p33 p34 p35 p36 p37

p41 p42 p43 p44 p45 p46 p47

p51 p52 p53 p54 p55 p56 p57

p61 p62 p63 p64 p65 p66 p67

p71 p72 p73 p74 p75 p76 p77

 (5)

Figure 2: State transition diagram of Markov Chain with 3 BSs

Where each row in the transition matrix shows the
retention and loss probabilities i.e., pij = probability of
loss from i to j and each column shows the gain proba-
bilities i.e., pij= probability of gain from i to j. When
i j, pij= the probability of retention in the same cell. P
satisfy the Markov Chain [20] properties given below:

0 ≤ pij ≤ 1and

7∑
i=1

pij = 1; (6)

pij can be estimated as given below:
For retention (i.e. pii), if Ai is the number of mobile

devices that are connected to the ith base station at the
nth interval and are still connected with the ith base
station in the (n+1)th interval, then pii = Ak/Xi , Xi

= MD population connected with ith base station at nth

interval. For loss, if Lij is the number of mobile devices
migrated to the neighboring jth base station from ith

base station, then pij = Lij/Xi, Xi = MD population
connected with ith base station at nth interval, j= 1 to
7 except i = j that represents retention.

For gain, if Gij is the number of mobile devices mi-
grated to the neighbouring jth base station from ith base
station, then pij = Gij/Xi, Xi = MD population con-
nected with ith base station at nth interval, j = 1 to 7
except i = j that represents retention.

As per Chapman-Kolmogorov [25] analysis, the nth

interval LossGain transitional matrix can be estimated
as

P (n) = P.P (n− 1) = Pn. (7)

The state of all the base stations is finite. So, the
share of connected mobile devices among the consid-
ered cluster of base stations in our system after the nth
interval can be expressed as

B(n) = B(0).Pn (8)

For equilibrium state at the kth interval, the Loss-
Gain transition matrix will remain constant, i.e.

P (k) = P (k + 1) (9)

This can be determined by using matrix algebra and
solving simultaneous equations

B(k) = B(k).P and

7∑
i=1

bkj = 1 (10)

All the parameters used here are available in the
database of the base station controller. Therefore, the
prediction system can be designed for a flexible and
suitable interval and can be performed automatically by
the system if the intelligence is imparted into it.
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4 Experimental setup and Results & Discus-
sion

The simulation was performed with varying random-
ness with 7000 mobile nodes. From the traces, data
are collected for movement, channel status, connection
status during new connection setup and handoff. The
arithmetic mean for all the collected data parameters are
calculated and used for estimating the transition matrix.
For simplicity, the LossGain matrix (P) with 3 base sta-
tions are presented here. The initial population distribu-
tion vector (B) obtained is given below. A comparison
of the predicted and actual number of mobile devices at
different intervals is presented too.

Initial probability matrix:

B = [0.143 0.142 0.141] (11)

LossGain Transition Matrix:

P =

 0.55 0.255 0.255
0.275 0.575 0.15
0.15 0.255 0.625

 (12)

Table 1: Predicted and Actual connected MDs in BS1

N Predicted Actual %Difference
1 975 978 0.31
2 970 974 0.41
3 971 976 0.51
4 971 975 0.41
5 967 963 0.42
6 968 972 0.41
7 972 967 0.52

Figure 3: Predicted and Actual values in BS1

5 Conclusion

In this article, a statistical learning approach is used to
forecast the expected client served by a cell in a fu-
ture interval of time. The prediction is all within <

Table 2: Predicted and Actual connected MDs in BS2

N Predicted Actual %Difference
1 1022 1024 0.20
2 1033 1035 0.19
3 1033 1032 0.10
4 1026 1021 0.49
5 1027 1030 0.29
6 1030 1033 0.29
7 1026 1030 0.39

Figure 4: Predicted and Actual values in BS2

Table 3: Predicted and Actual connected MDs in BS3

N Predicted Actual %Difference
1 1002 998 0.40
2 996 991 0.50
3 997 992 0.50
4 1003 1004 0.10
5 1006 1007 0.10
6 999 995 0.40
7 1002 1003 0.10

Figure 5: Predicted and Actual values in BS3

1% confidence level. The model may be used to plan
the resource requirement of a base station for manag-
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ing handoff and new connection requests, congestion
control efficiently. The model works with the data col-
lected at the base station controller, estimates the pre-
diction parameters, so it can be extended for imparting
prediction intelligence in the next-generation wireless
networks with machine learning and Big data [26]. Cell
dwell time, handoff initiation time, distributed (termi-
nal device) handoff management, and prediction accu-
racy are important research areas for future works. Our
future works will be towards this direction.
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