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Abstract

For a general logic program, a set of n+ 1 logic values is considered and an unde�ned value denoted
u. Partial multi-valued interpretations are also de�ned. A general logic program P may contain the
constants that are de�ned for every logic value. A pseudo-negation denoted eh is de�ned for every integer
h, where 0 � h < n. A partial ordering denoted �h is de�ned between multi-valued interpretations.
Using an operator  de�ned for a program P , a multi-valued pseudo-stable semantics for the program
P is introduced. The pseudo-stable models which satisfy certain properties are minimal elements of the
set of all models for the program P having those properties. The class of pseudo-stable models for a
program P contains strictly the class of 3-valued stable models for P .
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1 Introduction

The stable model semantics has been introduced
by M. Gelfond and V. Lifschitz in [6] and by N.
Bidoit and C. Froidevaux in [1]. This semantics is
strongly connected to well-founded semantics. The
well-founded semantics has been introduced by A.
Van Gelder, K. Ross and J. Schlipf in [14]. It is
a 3-valued semantics. They use the logical values:
true, false and ? (an unknown truth value). They
have shown that if a logic program P has a 2-valued
well-founded model, then this model is the unique
stable model of P . T. Przymusinski in [11] has in-
troduced 3-valued stable models as a generalization
of 2-valued stable models. He has shown that the
well-founded model of any program P coincides with
the smallest 3-valued stable model of P . M. Fitting
in [5] has studied the structure of the family of all
stable models for a logic program using two order-
ings: one is called the knowledge ordering based on
degree of de�nedness, the second is called the truth
ordering based on degree of truth. He shows that in
the �rst ordering, every logic program has a smallest
stable model, which coincides with the well-founded
model. T. Przymusinski in [12] has introduced the
stable model semantics for disjunctive logic programs
and deductive databases. He shows that for normal
programs, the partial disjunctive stable semantics co-
incides with the well-founded semantics. E. Dantsin,

T. Eiter, G. Gottlob and A. Voronkov have shown in
[2] that the stable models are more expressive than
the well-founded models. M. Gelfond and V. Lif-
schitz extended the stable model semantics to pro-
grams with the classical negation [7]. This semantics
is called the answer set semantics. The same authors
extended this semantics to programs with disjunc-
tion in [8]. V. Lifschitz, L. R. Tang and H. Turner
in [9] extended the answer set semantics to programs
with nested expressions. In [3] the author de�ned a
semantics of type well-founded considering the set of
logic values as a complete lattice. In [4] we de�ned a
stable semantics which extends the stable semantics
de�ned by T. Przymusinski in [12].
Mathematical foundations about interpretations,
models, monotonic operators, �xed-points and other
notions concerning logic programs are found in [10].
In this paper we propose a pseudo-stable seman-
tics for a program P , considering the pseudo-
negations, partial orderings between interpretations
and monotonic operators with respect to partial or-
derings.

2 Motivation

In logic programs the negation operator � is used
to represent negation as failure. In the case of n-
valued semantics of logic programs, if I is an inter-



pretation, then the values for I are considered in the
set f0; 1=n; : : : ; 1g, where 0 is false, 1 is true and
k/n are intermediate logic values between false and

true, 1 � k < n. The function I is extended to bI for
all closed formulae of a certain language L. In partic-
ular, the following relations are de�ned: bI(A)=I(A),

for every ground atom A and bI(� S)= 1� bI(S), for
every closed formula S. That means the operator �
is idempotent. There are many situations, for which
the operator � is not idempotent. To illustrate this
point, let us consider the following program:

issickleave(X)  � isgoodhealth(X),
� haspermission(X)

isgoodhealth(a)  cp=n

haspermission(a) cq=n

In this program the predicate issickleave(X) repre-
sents the property of the person X who must sick
leave, the predicate isgoodhealth(X) speci�es the
level of the health for the person X and the pred-
icate haspermission(X) represents a permission de-
gree(from his doctor) for the person X to work. The
constant a represents a person. cp=n and cq=n are
constant propositions coresponding to logic values
p=n, q=n, respectively. The semantics for the �rst
rule is:"if a person has not a good health and he
has not a permission to work from his doctor, then
he must sick leave". The second rule has the se-
mantics:"the health level must be at least p=n". A
similar semantics is considered for the third rule. In
this program we are interested in models for which
the predicate issickleave has only logic values true
or false. Moreover, we make the following assump-
tion:"if the goodhealth level of a person is at most
h=n and he has the permission to work(from his doc-
tor) at most the level h=n, then he must sick leave".
A solution for such programs is to consider the inter-
pretation of the negation � in the following manner:

a) ehv = 1, for every v in Ln; v � h=n.

b) ehv = 0, for every v in Ln; v > h=n.

This function denoted eh is called a pseudo-
negation.

3 Multi-valued Interpretations

We consider a clause having the form A  
B1; : : : ; Bm;� D1; : : : ;� Dq, where A;Bj ; Di; 1 �
j � m; 1 � i � q, are atoms. A program P is a �nite

set of clauses. Let us de�ne multi-valued interpreta-
tions. Let H be the Herbrand base constructed for
a program P . We consider the following set of truth
values: Ln = f0; 1=n; : : : ; (n � 1)=n; 1g. Let h be
an integer, such that 0 � h < n. The value 0 from
Ln corresponds to "false", the value 1 corresponds
to "true" and k=n is an intermediate value between
"false" and "true", for every k; 1 � k < n. More-
over, we use an unde�ned value denoted by u. The
intuitive meaning of the unde�ned truth value u is
possible, rather than a truth value from Ln. There-
fore, the unde�ned status of an atom A in a given
model M of a theory T indicates that M assigns
some, but only unknown truth value to A.

For every v from Ln, let us de�ne by cv the
proposition which has the true value v, for every
ground atom of H. cv is called a constant and our
positive logic programs are allowed to contain propo-
sitions cv among their premises. Let us denote by cu
the constant proposition corresponding to the unde-
�ned value u.

De�nition 1 A multi-valued Herbrand interpreta-
tion I on Ln is a n + 1-uple (F I0 ; : : : ; F

I
n), where

F Ii are disjoint subsets of the Herbrand base H; 0 �
i � n. Let us consider the subset F Iu de�ned as the

set of all remaining atoms in H �
n
[
i=0

F Ii . The in-

terpretation extended to H corresponding to I will be
represented as (F I0 ; : : : ; F

I
n ; F

I
u ).

In the following we consider only Herbrand in-
terpretations and models. An interpretation I =
(F I0 ; : : : ; F

I
n) can be viewed as a partial function

I : H ! Ln de�ned as follows: I(A) = k=n i�
A 2 F Ik for every 0 � k � n. In the case A 2 F Iu we
say that I(A) is unde�ned and we write I(A) = u.
Thus, every interpretation I is considered as a total
function I : H ! Ln [ fug. We consider a pseudo-
negation associated with the integer h, denoted by
eh and having the following properties:

a) � < � implies eh� �eh�, for every �; � 2 Ln.

b) � � h=n implies eh� > h=n for every � 2 Ln.

c) � > h=n implies eh� � h=n for every � 2 Ln.

d) ehu = u

This pseudo-negation di�ers from a negation because
the property of idempotence for the pseudo-negation
is not satis�ed. The relation " < " is the totally or-
dered relation from Ln. The relation � � � means
(� < �) or (� = �).
For n = 1 and h = 0 we consider e0 de�ned as:
e00 = 1, e01 = 0 (it coincides with the negation used
by T. Przymusinski in [11]).
The interpretation I considered as a total function



on H can be extended recursively using the pseudo-
negation eh to the truth valuation bIh from C to
Ln [ fug, where the set C consists of all literals of
H and all conjunctions of literals:

bIh(A) = I(A), for every ground atom A,
bIh(� A) =ehI(A), for every ground atom A,

such that I(A) 6= u,
bIh(� A) = 1, for every ground atom A, such

that I(A) = u,
bIh(L1 ^ : : : ^ Lp) = min

1�i�p
fbIh(Li); bIh(Li) 6= ug.

We must consider min � = 1, where � is the
empty set.
That means the negation � from the clauses bod-
ies of a program P is interpreted via the pseudo-
negation eh.

De�nition 2 An interpretation I satis�es the
ground instantiated rule r of P (or I is a model for
r), having the form: r � A L1; : : : ; Lp i�:

a) bIh(A) = u or

b) bIh(A) 6= u and bIh(L1 ^ : : : ^ Lp) � bIh(A).

De�nition 3 An interpretation I is a model for the
program P i� I is a model for every ground instan-
tiated rule r of P .

In the following we de�ne a partial ordering be-
tween multi-valued interpretations, associated to the
integer h and denoted by �h, where 0 � h < n.

De�nition 4 Let I = (F I0 ; : : : ; F
I
n) and J =

(F I0 ; : : : ; F
I
n) be two interpretations. We say that I

�h J if the following inclusions are satis�ed:

a) F Jj � F
I
0 [ : : : [ F

I
j , for every j; 0 � j � h and

b) F Ij � F
J
j [ : : : [ F

J
n for every j; h+ 1 � j � n.

For an integer h �xed, minimal and least models of a
program P with respect to�h ordering, minimize the
degree of truth of atoms, by maximizing the sets of
atoms that correspond to truth values j=n, 0 � j � h
and by minimizing the sets of atoms that correspond
to truth values j=n, h < j � n.

Remark 1 In case n = 1 and h = 0 the ordering
�h coincides with the standard ordering � used by
T.Przymusinski in [11] to study three-valued stable
models.

Proposition 1 Let I and J be two interpretations,
such that I �h J. We have:

i) F Ju � F
I
0 [ : : : [ F

I
h [ F

I
u

ii) F Iu � F
J
u [ F

J
h+1 [ : : : [ F

J
n

iii) F Jj � F I0 [ : : : [ F
I
j [ F

I
u , for every j; h + 1 �

j � n.

iv) F Ij � F
J
u [F

J
j [ : : :[F

J
n , for every j; 0 � j � h.

Proof

(i) Let A be an atom from F Ju . Assume that A 62
F I0 [: : :[F

I
h [F

I
u . It results that A 2 F

I
h+1[: : :[F

I
n .

Using the part b) from De�nition 4, we have A 2
F Jh+1 [ : : : [ F

J
n , which is impossible. The proofs of

(ii)-(iv) are similar to that of (i).

4 Multi-valued Pseudo-stable

Models

In this section we de�ne multi-valued pseudo-stable
models. Firstly, we de�ne an operator, denoted  ,
on the set of all multi-valued interpretations of a pro-
gram P .

De�nition 5 Let P be a logic program and I be
a multi-valued interpretation of P . Let  (I) =

(F
 (I)
0 ; : : : ; F

 (I)
n ) be the interpretation de�ned by

the following relations:

a) For every j; 0 � j � h and A a ground atom, we

have: A 2 F
 (I)
j i� the conditions a1) and a2)

are satis�ed.

a1) for every ground instantiated rule r of P ,
having the form r � A L1; : : : ; Lm, we
have bIh(L1 ^ : : : ^ Lm) � j=n.

a2) there exists a ground instantiated rule r1
of P of the form r1 � A  Q1; : : : ; Qp,

such that bIh(Q ^ : : : ^Qp) = j=n.

b) For every j; h+1 � j < n (in the case h+1 < n)

and A a ground atom, we have: A 2 F
 (I)
j i�

the conditions b1) and b2) are ful�lled:

b1) for every ground instantiated rule r3 of P ,
having the form r3 � A  W1; : : : ;Ws,
we have: bIh(Wi) 6= u for every i; 1 �

i � s, bIh(W1 ^ : : : ^ Ws) � j=n and
bIh(Wi) � (h+1)=n for every i; 1 � i � s.

b2) there exists a ground instantiated rule
r2 of P having the form r2 � A  
V1; : : : ; Vq, such that:

bIh(V1 ^ : : : ^ Vq) = j=n



c) A ground atom A is in F
 (I)
n if there exists a

ground instantiated rule r of P having the form
A L1; : : : ; Lm such that bIh(Li) = 1 for every
i; 1 � i � m.

Remark 2 A ground atom A belongs to F
 (I)
0 i�

for every instantiated rule r of P , having the form:
r � A L1; : : : ; Lm, there is i; 1 � i � m, such that
bIh(Li) = 0.

Remark 3 In case n = 1 and h = 0 the operator
 from De�nition 5 coincides with the operator  
de�ned by T.Przymusinski in [11].

The following theorem shows the monotonic
property of the operator  with respect to the partial
ordering �h, for positive programs.

Theorem 1 Let P be a positive program and  be
the operator as it was considered in De�nition 5. The
operator  is monotonic with respect to the ordering
�h between multi-valued interpretations.

Proof Let I �h J . Since F J0 � F I0 , using the

Remark 1, the relation F
 (J)
0 � F

 (I)
0 follows imme-

diately.
Let j be a positive integer , such that 1 � j � h

and A 2 F
 (J)
j . Then we have: for every ground in-

stantiated rule r of P of the form:

r � A L1; : : : ; Lm ; it results that

bJh(L1 ^ : : : ^ Lm) � j=n (1)

and there is a ground instantiated rule r1 of P having
the form:

r1 � A Q1; : : : Qs; such that

bJh(Q1 ^ : : : ^Qs) = j=n (2)

From the relation (1) we obtain that there is a nat-
ural number p; 1 � p � m, such that:

bJh(Lp) � j=n (3)

Since j � h and Lp is an atom, we obtain
bIh(Lp) � j=n which implies

bIh(L1 ^ : : : ^ Lm) � j=n (4)

Let us denote by MA the set of all ground in-
stantiated rule of P , whose head is A. If r 2 MA

has the form A L1; : : : ; Lm, we denote by v
I
A;r the

following logic value: bIh(L1 ^ : : : ^ Lm).
Let vIA = max

r2MA

fvIA;rg. From the relation (4) we

obtain:

vIA;r � j=n and vIA � j=n (5)

Moreover, there exists r1 from MA, such that:

vA;r1 = vIA (6)

If we denote the truth value vIA by q=n, it re-

sults that 0 � q � j, therefore A 2 F
 (I)
q . We have

shown that

F
 (J)
j � F

 (I)
0 [ : : : [ F

 (I)
j ; 1 � j � h (7)

Now, let j be an integer, such that h+1 � j < n

(in the case h+1 < n) and A be an atom from F
 (I)
j .

The conditions b1) and b2) from De�nition 5 are ful-
�lled.

For every ground instantiated rule r3 of P , hav-
ing the form r3 � A W1; : : : ;Ws, we have

bIh(Wi) � (h+ 1)=n; for every i; 1 � i � s (8)

Since Wi are atoms and using the relation I �h J ,
we obtain

bJh(Wi) � (h+ 1)=n; for every i; 1 � i � s (9)

which implies:

bJh(W1 ^ : : : ^Ws) � (h+ 1)=n (10)

Let us denote by MA;d the set of all ground
instantiated rule of P , whose head is A and every
atom from the body is de�ned for the interpretation
J . Let us de�ne vJA;r3 by following logic value:

vJA;r3 =
bJh(W1 ^ : : : ^Ws) (11)

Let k be the integer, such that

k=n = max
r32MA;d

fvJA;r3g (12)

Since b2) is satis�ed, it results that

k � j (13)

The relations (9),(11) and (12) imply:



A 2 F
 (J)
k (14)

We have shown that for every j, such that
h+ 1 � j < n (when h+ 1 < n), we have:

F
 (I)
j � F

 (J)
j [ : : : [ F (J)n (15)

Using the assertion c) and I �h J , we obtain

F (I)n � F (J)n (16)

Thus, the relations (7), (15) and (16) are equiv-
alent with  (I) �h  (J).

The following theorem establishes the existence
of the least model for a positive program P and a
monotonic operator with respect to the ordering �h.

De�nition 6 Let � be an operator de�ned on the
set of all multi-valued interpretations of a program
P and I be an interpretation of a program P . The
operator � is said constrained for I with respect to
the ordering �h i� �(I) �h I.

De�nition 7 We say that an interpretation I has
the property (P1) i� I(A) 6= u for every atom A
which is the head of a ground instantiated rule of
P .

We said that an interpretation I has the prop-
erty (P2) i� I(C) 6= u for every ground atom C, such
that � C appears in the body of a ground instantiated
rule of P .

Proposition 2 Let  be the operator as it was de-
�ned in De�nition 5 and M be a model for the pro-
gram P with the property (P1). Then  is con-
strained for M with respect to �h.

Proof Let  (M) = (F
 (M)
0 ; : : : ; F

 (M)
n ), where the

sets of atoms F
 (M)
j are speci�ed in De�nition 5 for

every j, 0 � j � h.
Firstly, we must show that:

FMj � F
 (M)
0 [ : : : [ F

 (M)
j ;

for every j; 0 � j � h (17)

where M = (FM0 ; : : : ; FMn ).
Let A be an atom from FMj ; 0 � j � h. This

means M(A) = j=n.
Since M is a model for P , it results: for every

A  L1; : : : ; Lm a ground instantiated rule of P ,
whose head is A, we have:

cMh(L1 ^ : : : ^ Lm) �M(A) = j=n

Hence, there is an integer i, such that 0 � i � j

and A 2 F
 (M)
i , therefore the relations (17) are true.

Secondly, we show that:

F
 (M)
j �Mj [ : : : [Mn;

for every j; h+ 1 � j � n (18)

Let A be an atom from F
 (M)
j .

There exists a ground instantiated rule r2 of
P , having the form r2 � A  V1; : : : ; Vl, such
that cMh(Vi) 6= u for every i; 1 � i � l and
cMh(V1 ^ : : : ^ Vl) = j=n. Since M(A) 6= u and
M is a model for r2, it results M(A) � j=n, hence
A 2Mj [ : : : [Mn, therefore (18) is true.

De�nition 8 Let I be an interpretation and M a
set of interpretations such that I 2M. We say that
I is the least element of M with respect to �h i�
I �h J , for every J 2 M. This element I will be
denoted M - least interpretation. Besides this, if I
is a model for P , it will be denoted M - least model
of P . Let us denote byMP1 the set of models of the
program P with the property (P1).

Theorem 2 Let P be a positive program and  be
the operator as it was de�ned in De�nition 5. There
exists the least �xed point of the operator  , denoted
M(P;  ) with respect to the ordering �h. Moreover,
M(P;  ) is a model of P and if the model M(P; )
has the property (P1), then M(P; ) is the MP1 -
least model of P .

Proof The Theorem 1 emphasizes that the operator
 is monotonic with respect to �h. Using Propo-
sition 2 we have  is constrained for every model
M 2MP1 with respect to �h.

The model M(P; ) can be obtained by iterat-
ing ! times the operator  on the interpretation ?,
where ! is the �rst ordinal and? is the least interpre-
tation with respect to �h, hence ?= (H;�; : : : ; �),
that means F?

0 = H and F?
j = � (the empty set),

for every j; 1 � j � n. It follows that M(P; ) is the
least �xed point of the operator  .

Let us show that M(P; ) is a model for P .
Let us denote the model M(P; ) by M . We have
 (M) =M .

Using the representation of an interpretation as

a vector of sets, we obtain: (F
 (M)
0 ; : : : ; F

 (M)
n ) =

(FM0 ; : : : ; FMn ), hence F
 (M)
j = FMj for every j; 0 �

j � n. These relations imply:



A 2 F
 (M)
j i� A 2 FMj i�

M(A) = j=n for every j; 0 � j � n:

In the case 0 � j < n using the de�nitions of

F
 (M)
j , we have: for every ground instantiated rule
r of P having the form r � A  L1; : : : ; Lm, A 2

F
 (M)
j implies cMh(L1 ^ : : : ^ Lm) � j=n = cMh(A),

hence M satis�es r.
In the case j = n we have A 2 F

 (M)
n i�

A 2 FMn i� M(A) = 1.
The relationM(A) = 1 implies thatM satis�es

every ground instantiated rule of P whose head is A.

If A 2 F
 (M)
u , then A 2 FMu , which implies M

satis�es every ground instantiated rule r of P with
the form A L1; : : : ; Lm.

Let us consider the case M = M(P; ) having
the property (P1). Let M 0 be an arbitrary model
from MP1 . Using proposition 2, we obtain the op-
erator  is constrained for M 0 with respect to �h,
hence  (M 0) �h M

0.
Using the relations?�hM

0,  (M 0)�hM
0 and

the monotonicity of the operator  with respect to
�h, we obtain that M(P; ) �h M

0, hence M(P; )
is theMP1 - least model.

The following example points out that, in gen-
eral, the modelM(P; ) is not theMP - least model
of the program P , whereMP is the set of all models
of P .

Example 1 Let P1 be the following program:

a b;� c;� d

a a;� d

b a;� c

c c2=3

d c1=3

Let h = 1; n = 3 and the pseudo-negation e1,
which is a negation, de�ned as: e0 = 1; e1=3 =
2=3; e2=3 = 1=3; e1 = 0.

The interpretation M = (FM0 ; : : : ; FM3 ), where
FM0 = fa; bg, FM1 = fdg; FM2 = fcg; FM3 = � is
M(P1;  ). If we consider the interpretation M2 =
(FM2

0 ; : : : ; FM2

3 ), where FM2

0 = fa; bg and FM2

i = �,
for every i; 1 � i � 3, then M2 is a model for P1, but
M 6 �1M2.

Now, we introduce a new operator on multi-
valued interpretations, which depends on the opera-
tor  , the integer h and on pseudo-negation eh. It
will be denoted by ��( ; h; eh). This operator is of
type Gelfond-Lifschitz operator [6].

De�nition 9 Let P be a general logic program with
negation, denoted �, let h be a positive integer such
that 0 � h < n and eh a pseudo-negation de�ned
on Ln. Let I be a multi-valued interpretation. We
denote by P=I the program obtained from P by re-
placing in every ground instantiated clause of P all
negative literals L =� A by the constant cv, where
v =ehI(A).

The resulting program P=I is positive, hence by
the Theorem 2, there is the least �xed point of  (a
model for P=I), denoted M(P=I;  ). Let us de�ne
the operator ��( ; h; eh) by the following relation:

��( ; h; eh)(I) =M(P=I;  ):

Remark 4 If the constant c1 belongs to the body of
a clause, then it may be eliminated from this clause.
If the constant c0 belongs to the body of a clause, then
this clause can be removed.

De�nition 10 Every �xed point of ��( ; h; eh) is
called a multi-valued pseudo-stable model for P with
respect to the operator  , the ordering �h and
pseudo-negation eh.

Remark 5 Every 3-stable model is a multi-valued
pseudo-stable model.

Proof The proof results from Remarks 1 and 3.

5 Minimal Pseudo-stable

Models

In this section we show that if a multi-valued pseudo-
stable model has the properties (P1) and (P2), then
it is a minimal model of P on the set of all models
of P with the properties (P1) and (P2), with respect
to the ordering �h.

Theorem 3 Let M be a pseudo-stable model for P
as it was de�ned in De�nition 10. If M has both of
properties (P1) and (P2), then M is a minimal ele-
ment ofMP1\MP2 (the set of all models of P which
has the properties (P1) and (P2)), with respect to �h.

Proof Let M be a �xed point of the operator
��( ; h; eh). Firstly, we show that M is a model for
P . Then, it will result that M is a model for P=M
(using Theorem 2).

Let us consider an arbitrary ground instanti-
ated clause from P , having the form:

r � A B1; : : : ; Bm;� D1; : : : ;� Dq (19)



The corresponding clause to r from P=M is r0:

r0 � A B1; : : : ; Bm; cv1 ; : : : ; cvq (20)

where vj =ehM(Dj); j = 1; q. In the case M(Dj) =
u, we take vj = u and cu = u. It results:

M is a model for r i�

M is a model for r0 (21)

Since M is a model for P=M , it results that M
is a model for P .

Secondly, let us consider M having the proper-
ties (P1) and (P2). This implies M 2 MP1 \MP2 .
We must show that M is a minimal element of
MP1 \MP2 with respect to �h.

LetM1 be a model fromMP1 \MP2 , such that
M1 �h M . We show that M1 =M .

Let r and r0 be the clauses from (1) and (2) re-
spectively and r00 be the clause from P=M1 with the
form:

r00 � A B1; : : : ; Bm; cw1
; : : : ; cwq

(22)

with wj =ehM1(Dj); j = 1; q. If M1(Dj) = u then
wj = u.

Since we have M1 is a model for r i� M1 is a
model for r00 andM1 is a model for P; it results that

M1 is a model for r00 (23)

We show that M1 is also a model for r0 (24)

If M1(A) = u, then the relation (24) is true.
Let us consider the case M1(A) 6= u.

For a ground instantiated rule r of P , having
the form: r � A  L1; : : : ; Lp, let us denote by
body(r) the conjunction: (L1 ^ : : : ^ Lp). We de�ne

by vM1

A;r00 and v
M1

A;r0 , the following logical values:

vM1

A;r00 =
cM1;h(body (r00)) (25)

vM1

A;r0 =
cM1;h(body (r0)) (26)

We have:

vM1

A;r00 = min fcM1;h(B1 ^ : : : ^Bm); Fg (27)

where F = min
1�j�q

fcwj
; cwj

6= ug and

vM1

A;r0 = min fcM1;h(B1 ^ : : : ^Bm); Gg (28)

where G = min
1�j�q

fcvj ; cvj 6= ug. We intend to show

that:

G � F (29)

Since M1 is a model fromMP1 \MP2 , we ob-
tain wj 6= u for every j; 1 � j � q. Similarly, we
have vj 6= u for every j; 1 � j � q.

The relation (29) becomes:

min
1�j�q

fcvjg � min
1�j�q

fcwj
g (30)

Using the relation M1 �h M , De�nition 4 and
the properties of the pseudo-negation eh, we obtain
vj � wj for every j; 1 � j � q, which implies (30).
From the relations (28), (27) and (30) it results:

vM1

A;r0 � v
M1

A;r00 (31)

But M1 is a model for r00, hence we have:

vM1

A;r00 �M1(A) (32)

From the relations (31) and (32) it results that
M1 is a model for r0, hence the assertion (24) is true.

We have shown the following:

M1 is a model for P=M and M1 2MP1 \MP2(33)

Using the results of Theorem 2, we obtain:

M �h M1 (34)

From (34) and M1�h M it results M =M1.

The following Remark points out that, in gen-
eral, a pseudo-stable model for P is not minimal with
respect to �h and for all models of P .

Remark 6 The interpretationM from Example 1 is
a pseudo-stable model for P1, but it is not minimal
with respect to �1 and for all models of P1.

Proof The interpretation M3 = (FM3

0 ; : : : ; FM3

3 ),
where FM3

0 = fa; bg; FM3

1 = fdg; FM3

2 = FM3

3 = � is
a model for P1. But M3 �1 M and M3 6= M , hence
M is not minimal with respect to �1 and over all
models of P1.

In the following we consider an arbitrary
monotonic operator �, instead of the operator  .



De�nition 11 Let � be a monotonic operator with
respect to �h and I an interpretation. We say that
I is generated by �, if there is an interpretation I 0,
such that I = �!(I 0).

Let us denote byMP;� the set of all models of
P , which are generated by the operator �.

We extend the results of Theorem 2 on
monotonic operators and consider the set of all mod-
els of P generated by these operators.

Theorem 4 Let P be a positive program and � a
monotonic operator with respect to �h. There exists
the least �xed point of �, namely �!(?).

If �!(?) is a model for P , then this model is
the least model of P , with respect to �h and on the
set of all models of P generated by �.

The proof is straightforward.
The following example shows that, in general,

the set of all models for P is di�erent from the set of
all models for P generated by the operator  .

Example 2 Let P2 be the following positive program
(n = 3):

a b; c1=3
a a; c2=3
b a; c1=3
c c2=3
d c1=3
Let I = (F I0 ; : : : ; F

I
3 ), where F I0 = F I3 =

�; F I1 = fdg; F I2 = fcg.
I is a model for P2, but it is not generated by

the operator  as in De�nition 5.

The following example points out that, in gen-
eral, for a monotonic operator �, the interpretation
�!(?) is not a model for P .

Example 3 Let P3 be the program as follows:
a b; c1=3
a a; c2=3
b a; c1=3
c 1
d c1=3
Let I = (F0; : : : ; F3) and � de�ned by: �(I) =

(G0; : : : ; G3), where G0 = �;G1 = F0; G2 = F1 [
F2; G3 = F3. The operator � is monotonic with re-
spect to �1; �

!(?) = (�; �;H; �), but �!(?) is not a
model for P3.

Let ��(�; h; eh) be the operator de�ned for �; h
and eh.

��(�; h; eh)(I) =M(P=I; �):

The di�erence between ��( ; h; eh)(I) and
��(�; h; eh)(I) consists of the fact that the �rst is
a model for P , on the contrary the second is not, in
general, a model for P .

De�nition 12 Every �xed point M of the operator
��(�; h; eh), in case it is a model for P=M , is called a
multi-valued pseudo-stable model for P with respect
to the operator �, the ordering �h and the pseudo-
negation eh.

Theorem 5 Let M be a multi-valued pseudo-stable
model for P with respect to the operator �, the or-
dering �h and the pseudo-negation eh.

If M has the properties (P1) and (P2), then M
is a minimal element ofMP1 \MP2 \M

P=M;� with
respect to the ordering eh.

The proof is similar with that of Theorem 3, conse-
quently it is omitted.

6 Conclusion

In this paper we have proposed a pseudo-
stable semantics for logic programs using pseudo-
negations, partial orderings between interpretations
and monotonic operators with respect to partial or-
derings. The class of pseudo-stable models for a pro-
gram P contains strictly the class of 3-valued stable
models for P . We have shown that if a multi-valued
pseudo-stable model has certain properties, then it
is a minimal model of P on the set of all models of
P with those properties, with respect to the ordering
�h.
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