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Abstract. The approach adopted to handle hard problems is known as metaheuristics. The problem is
considered as hard if discovering the optimal solution for it may not be always possible within the stip-
ulated time. Discovering a single solution to a problem is easy and can be accomplished extremely fast,
but finding the best possible solution to the same problem is very long. Optimization algorithms are in-
tended to bridge this gap. The research paper aims at solving the problems for finding the optimal solution
for two popular metaheuristic algorithms, GWO (Grey Wolf Optimization) and FF (Firefly) algorithms.
Both the metaheuristics algorithms are studied and implemented. The two technical features comprised
of metaheuristic algorithms are exploration and exploitation. The optimal solution has been evaluated
alongside Makespan and Utilization Rate for both GWO (Grey Wolf Optimization) and FF (Firefly) al-
gorithms. The lower value of the Makespan and higher Utilization Rate is always desirable. Both the
algorithms have been modified via using mathematical functions to enhance the readings concerning per-
formance evaluation parameters. The GWO is been modified via developing a hybrid version comprising
GWO and PSO (Particle Swarm Optimization) algorithms denoted as the Hybrid Modified GWOPSO al-
gorithm. The Firefly algorithm too has been modified and is denoted as a Modified FF algorithm. The
conducted modifications have been measured via different performance evaluation parameters. Finally,
the fault tolerance factor is considered and the modified versions like Modified GWOPSO and Modified
FF are hybridized to develop a new proposed algorithm Hybrid GWOFF (Hybrid Grey Wolf optimizer
Firefly) algorithm and its performance have been evaluated with and without fault tolerance by using
different performance parameters.
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1 Introduction

Algorithms with stochastic constituents were frequently
denoted as a heuristic in the past, however, the modern
literature tends to denote them as metaheuristics. The
usage of a metaheuristic for a problematic scenario is
acceptable bearing in mind the practical time in which it
can discover a possible solution [1, 21]. It might not as-
sure the best solution, but it can guarantee the nearly op-
timal solution, because, in some problems, it is impos-
sible to examine for every combination in a reasonable
time [15, 3]. The two technical features comprised of
metaheuristic algorithms are exploration and exploita-
tion. These two features are often known as diversifi-
cation and intensification respectively. Exploration is
concerned with exploring the global space, producing
varied solutions at a global scale; and exploitation in-
volves the usage of local and global information to cre-
ate the best solution [18, 6]. The equilibrium between
these two features is important. If exploitation takes the
lead, it can quicken the process and respond with a lo-
cal optimum. However, if exploration is the most used,
the probability of finding the global optimum increases,
but this slows down convergence [14, 13]. The opti-
mal solution has been evaluated alongside Makespan
and Utilization Rate for both GWO and FF algorithms.
Both the algorithms have been modified via using math-
ematical functions to enhance the readings concerning
performance evaluation parameters. Finally, these two
algorithms are then hybridized to develop a new hybrid
algorithm Hybrid GWOFF (Hybrid Grey Wolf Firefly)
algorithm with and without fault tolerance. The two
metaheuristics algorithms, GWO (Grey Wolf Optimiza-
tion) and FF (Firefly) algorithms are studied and imple-
mented.

1.1 Grey Wolf Optimization

Several meta-heuristic algorithms dedicated to deal with
optimization complications came into existence in re-
cent years and Grey wolf optimization is one such al-
gorithm. Grey wolf algorithm enjoys resilient optimal
research competence. The working principle behind the
GWO algorithm is analogous to the hunting mechanism
and leadership pyramid of wolves to explore the targets
[11, 8]. Grey wolves prefer remaining in groups with
each group comprising 5 to 12 wolves on average. The
four levels of wolves? hierarchy are mentioned below
[7, 17].

• Alpha (α) - This is the first level hierarchy. Its job
is to make decisions related to hunting, find a place
to sleep, and plan walk time, etc.

• Beta (β) - The job of beta wolves is to assist al-
pha candidates in making decisions or engaging in
supplementary actions.

• Delta (δ) - Delta wolves work under the expertise
of alpha and beta wolves. These are accountable
for inspection, patrol, lookout, and other responsi-
bilities.

• Omega (ω) - Omega wolves have to defer to the
alpha, beta, and delta wolves. The task of omega
wolves is to preserve the integrity of the hierarchi-
cal structure.

The grey wolves are smart enough to surround the
prey with the capability to pinpoint its location. Al-
pha heads the complete hunting process [5]. Often in
complex situations, locating the prey at the beginning
becomes cumbersome. The first three solutions of al-
pha, beta, and delta hold detailed information related to
the position of the prey. The updation in the position of
other wolves depends on positions of alpha, beta, and
delta [26, 9]. The hunting process adopted by a grey
wolf is shown in Figure 1.

The prey is encompassed by the grey wolves and
hunting is carried out. The mathematical equations for
this behavior are mentioned below.

E = |N.Wp(c) - W (c)|
W (c+1) = Wp(c) - M.E
where
E - Denotes to the distance amid a wolf and the prey
W - Denotes to grey wolf?s position vector
Wp - Denotes to prey?s position vector
c - Denotes to the in-progress iteration
M and N - Denotes to the coefficient vectors which

are calculated as
M = 2b.v1 - b
N = 2v2
where b diminishes linearly along with the number

of iterations from 2 to 0. v1 and v2 are the random
vectors in [0,1].

1.2 Firefly Algorithm

The firefly algorithm is grounded on the flashing pat-
terns and behavior of fireflies. In essence, FA uses the
following three idealized rules [23, 22]:

• Being unisexual, the fireflies are attracted to other
fireflies irrespective of their sex.

• The intensity of attractiveness depends on the bright-
ness of the fireflies which diminishes with the in-
crease in distance between the fireflies. As per
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Figure 1: Hunting Process Adopted by Grey Wolves [5]

principle, the lesser brighter fireflies are attracted
towards the brighter ones [21, 24].

• In the absence of the brighter firefly, the fireflies
would adopt a random path. The brightness of a
firefly is determined by the landscape of the objec-
tive function [4, 16].

Firefly algorithms have two major advantages when
compared with other algorithms. The principle behind
the working of the Firefly algorithm is the intensity of
attraction which decreases with the increase in the dis-
tance. The total population can routinely be divided into
subgroups and individual groups can swarm about each
mode or local optimum. The global best solution can
be searched among these modes. The second advantage
is that this division permits the fireflies the capability to
find the optima simultaneously if the size of the popula-
tion is considerably higher as compared to the number
of modes. The scenario for the operation of the Firefly
algorithm is shown in Figure 2.

The movement of a firefly i is attracted to another,
more attractive (brighter) firefly j is determined by

xit + 1 =(xit + β0e)-γrij2(xjt - xit) + αεit
where β0 is the attractiveness at the distance r = 0, γ

is a scale-dependent parameter controlling the visibility
of the fireflies and α is a scaling factor controlling the
step sizes of the random walks. The second term is due
to the attraction. The third term is randomization with

α being the randomization parameter, and εit is a vector
of random numbers drawn from a Gaussian distribution
or uniform distribution at time t. If β0=0, it becomes a
simple random walk.

2 State of Art

Jui-Sheng Chou1&Ngoc-Tri Ngo, 2017 [2] proposed
an enhanced metaheuristic, nature-inspired algorithm
termed as MFA (Modified Firefly algorithm). MFA com-
prises different metaheuristic components like Gauss
/ mouse chaotic maps, Levy flight, and adaptive iner-
tia weight along with a conventional FA (Firefly algo-
rithm) to enhance the capability for optimizing. The
purpose of Gauss/mouse maps is to fine-tune the attrac-
tiveness parameter of FA. The adaptive inertia weight
is intended to control the local exploitation and global
exploration of the search process under consideration.
The purpose of Levy flight is to figure out the exploita-
tion of the MFA. The projected MFA was assessed by
associating its enactment in resolving a series of bench-
mark functions with those of the FA and other well-
known optimization algorithms. The effectiveness of
the MFA has been established via its solutions to the
three multi-dimensional structural design optimization
problems.

Among the considered algorithms, MFA delivered
the best results. Investigational consequences exposed
that the anticipated MFA is more competent and active
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Figure 2: The Operational Scenario of Firefly Algorithm

than the compared algorithms. Narinder Singh and S.
B. Singh, 2017 [19]; proposed a new hybrid nature-
inspired algorithm termed as HPSOGWO formed via
hybridization of PSO (Particle Swarm Optimization) and
GWO (Grey Wolf Optimization). The primary empha-
sis laid by the authors is to enhance the capability of
exploitation in PSO alongside enhancing the ability of
exploration in GWO. The authors made use of a few
unimodal, multimodal and fixed dimension multimodal
test functions to check the performance and solution
quality of HPSOGWO. The obtained results indicate
the effectiveness of the hybrid HPSOGWO against the
PSO and GWO variants in accordance with solution sta-
bility, solution quality, the capability to find the global
optimum, and convergence speed. Mehak Kohli, Sankalap
Arora, 2018 [10]; proposed a chaos theory into the GWO
(Grey Wolf Optimization) algorithm aiming to speed up
its global convergence speed. Initially, thorough studies
are conducted on thirteen standard constrained bench-
mark problems with ten diverse chaotic maps to dis-
cover out the most competent one. Thereafter, the chaotic
GWO is equated with the conventional GWO and few
other popular meta-heuristics algorithms like FA (Fire-
fly Algorithm), FPA (Flower Pollination Algorithm) and
PSO (Particle Swarm Optimization) algorithm. The per-
formance of the CGWO algorithm is also authenticated
utilizing five controlled engineering design glitches. The
obtained results exhibited that with a suitable chaotic
map, CGWO can outperform standard GWO, with very
decent performance in contrast with supplementary al-
gorithms and application to controlled optimization prob-
lems. Fazli Wahid, Rozaida Ghazali, 2019 [20]; stated
the features of the FA (Firefly) algorithm as nature in-

spired, meta heuristic, and stochastic algorithm intended
to solve various optimization problems.

The authors recommended FA as easy to implement
an algorithm. The FA algorithm operates in three stages:
initialization, changing positions, and the termination
stage. The major drawback encountered in the working
of FA is witnessed in its final stage where after a fixed
number of iterations, the improvement in the desired
solution becomes static. In this paper, this matter is
fixed by familiarizing pattern search (PS) at the finish-
ing stage of standard FA when no more progress is wit-
nessed in the solution quality. The anticipated method
comprises three stages. In the primary stage, the pa-
rameters of standard FA are initialized. In the firefly
shifting position step, the randomization factor is used
to describe the solution in the individual iteration of op-
erational phases. In the last stage, the augmented values
gained from the FA throughout its maximum number of
iterations are set as inputs to the pattern search algo-
rithm. The pattern search enhances the values gained
in the maximum iterations of standard FA. The antici-
pated method has been termed as FA-PS in which PS
has been utilized to acquaint with enhancement in the
solution quality of standard FA. The established method
has been smeared to numerous types of maximization
and minimization functions and the performance has
been linked with standard FA and genetic algorithm in
terms of accomplishing the greatest optimal values for
the functions being considered. A noteworthy devel-
opment has been witnessed in the solution quality of
FA. Zhihang Yue, Sen Zhang, and Wendong Xiao, 2020
[25]; stated that GWO (Grey Wolf Optimization) falls
under the category of the meta-heuristic algorithm with
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strong optimal search capability. However, GWO of-
ten converges to the local optimum. Alongside GWO,
the author elaborated on FWA (Fireworks algorithm).
The authors hybridized the two algorithms to attain the
global optima successfully. The suggested algorithm is
a mix of exploration capability of FWA and exploita-
tion capability of GWO. The authors set a balance co-
efficient. The sixteen benchmark functions have been
used in the conducted research. By altering the bal-
ance coefficient, the FWGWO algorithm can circum-
vent the local optimal value as much as possible and
has a higher convergence speed. The comparison of
the developed hybrid FWGWO algorithm is compared
with nine other algorithms comprising the conventional
GWO, enhanced GWO, conventional FWA, and aug-
mented GWO. The achieved results indicate the FWGWO
is quite effective in improving the convergence speed
and global search capability of the FWA and GWO.
Yuanyuan Liu, Jiahui Sun, Haiye Yu, Yueyong Wang,
and Xiaokang Zhou, 2020 [12]; proposed an improved
GWO algorithm based on DE (differential evolution)
and OTSU algorithms and named it DE-OTSU-GWO.
GWO algorithm is attached with Tsallis entropy, multi-
threshold OTSU, and DE algorithm. The updation of
the population is done using DE and GWO algorithm
via Tsallis entropy considering crossover steps. Tsallis
entropy is intended to calculate the fitness quickly. The
multi-threshold OTSU computes the fitness in the initial
population and ensures the stability of the initial stage.
CEC2005 benchmark function is used to test the per-
formance of DE-OTSU-GWO. Equated with prevailing
PSO (Particle Swarm Optimization) and GWO algo-
rithms, the investigational outcomes exhibited that the
DE-OTSU-GWO algorithm is more steady and precise
in solving functions. Besides, associated with supple-
mentary algorithms, a convergence behavior investiga-
tion demonstrated the high quality of the DE-OTSU-
GWO algorithm. The OTSU algorithm progresses the
precision of the overall algorithm while enhancing the
running time. After an accumulation of the DE algo-
rithm, the time complexity will upsurge, but the solu-
tion time can be reduced. Compared with PSO, GWO,
DE-GWO, and 2D-OTSU-FA, the DE-OTSU-GWO al-
gorithm has improved results in segmentation valua-
tion.

3 Contribution And Implementation

This section comprises the detailed implementation of
GWO, Hybrid GWOPSO (Grey Wolf Optimization Par-
ticle Swarm Optimization), Firefly, and Modified Fire-
fly algorithms accompanied by flowcharts and algorithms.
The obtained results have been analyzed by readings of

different performance evaluation parameters like Makespan,
Utilization Rate, Throughput, Waiting Time, and Turnaround
Time.

3.1 Grey Wolf Optimization

Flowchart of GWO Figure 3 depicts the flowchart il-
lustrating the working of the GWO algorithm.

Algorithm of GWO The algorithm for GWO is men-
tioned below.

• Initialize the wolf population Wi (i = 1, 2, .... , n)

• Initialize b, M, and N

• Calculate the fitness of three search agents

Wα (Best search agent)

Wβ (Second-best search agent)

Wδ (Third-best search agent)

• while (c < Max number of iterations) for each search
agent

Apprise the position of the current search agent

end for

Update b, M, and N

Calculate the fitness of all search agents Update
Wα, Wβ, and Wδ

c = c + 1

end while

return Wα

Implementation - GWO (Grey Wolf Optimiza-
tion)

The different parameters considered with assigned
values to execute the working of GWO are given in case
1.

Case 1
Number of search agents (Searchagents_no) = 30
Test functions that ranges from F1 to F23 (Func-

tion_name) = ’F1’
Maximum Number of iterations (Max_iteration) =

500
The readings obtained after the execution of GWO

as per values assigned to the parameters are mentioned
in Table 1, which shows the readings of the first 15 and
last 15 iterations.

Results:
Makespan: 1.2160
Utilization Rate: 0.8224
Throughput = 0.231489362
Turnaround time in Deci seconds = 115.744681
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Figure 3: Working of GWO algorithm

Waiting time in Deci seconds = 115.288830
Burst time in Deci seconds = 0.455851
Optimum value of the objective function evaluated

by GWO is: 7.9879
Figure 4 shows the graphical representation of the

obtained results from the implementation of GWO as
per defined readings. The figure on the left side shows
the results in relevance with the parameter space and
the figure on the right side shows the graph depicting
the Best Score (Y-axis) against the number of iterations
(X-Axis).

Modified Hybrid GWOPSO
Flowchart for Modified Hybrid GWOPSO
The proposed flowchart for Hybrid GWOPSO is shown

in Figure 5.
Algorithm for Hybrid Modified GWOPSO

• Consider appropriate search agents (SearchAgents_no)

• Choose from the range of test functions from F1 to

F23(Function_name)

• Fix maximum iterations (Max_iter)

• Load details of the selected benchmark function

• Initialize positions of alpha, beta, and delta wolves

A_pos=zeros(1,dim); A_score=inf;

B_pos=zeros(1,dim); B_score=inf;

D_pos=zeros(1,dim);D_score=inf;

• Initialize the positions of search agents

If the boundaries of all variables are equal and user
enter a single number for both ub (upper bound)
and lb (lower bound)

if Boundary_no==1

Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;

End
INFOCOMP, v. 19, no. 2, p. 109-119, June, 2021.
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Figure 4: Results Obtained after Execution of GWO in Graphical Form

Table 1: Readings of performance evaluation parameters obtained
after execution of GWO as per Case 1

Iteration
No.

Burst
Time

Waiting
Time

Turnaround
Time

1 0.003032 0 0.003032
2 0.006386 0.003032 0.009418
3 0.007086 0.009418 0.016504
4 0.008116 0.016504 0.02462
5 0.008871 0.02462 0.033491
6 0.009729 0.033491 0.043221
7 0.010855 0.043221 0.054076
8 0.011553 0.054076 0.065629
9 0.012684 0.065629 0.078313
10 0.013463 0.078313 0.091776
11 0.014189 0.091776 0.105965
12 0.014954 0.105965 0.120919
13 0.015608 0.120919 0.136527
14 0.016297 0.136527 0.152824
15 0.017187 0.152824 0.170011

CONTINUED
486 0.443723 108.54499 108.988712
487 0.443723 108.54499 108.988712
488 0.444585 108.98871 109.433298
489 0.445442 109.4333 109.87874
490 0.446271 109.87874 110.32501
491 0.446977 110.32501 110.771987
492 0.449061 111.22032 111.669379
493 0.449773 111.66938 112.119152
494 0.450428 112.11915 112.56958
495 0.452021 113.02074 113.472763
496 0.452715 113.47276 113.925478
497 0.453728 113.92548 114.379206
498 0.454452 114.37921 114.833658
499 0.455172 114.83366 115.28883
500 0.455851 115.28883 115.744681

Else If each variable has a different lb and ub

if Boundary_no>1

for i=1:dim

ub_i=ub(i);

lb_i=lb(i);

Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

End

End

End

• Execute until the maximum number of iterations is
reached.

Calculate the objective function for each search
agent.

Apprise Alpha, Beta, and Delta.

For Alpha

if fitness<A_score (value of fitness is less than A_score)

A_score=fitness; (assign fitness to A_score)

A_pos=Positions(i,:); (update positions)

end

For Beta

if fitness>A_score && fitness<B_score (value of
fitness is more than A_score and less than B_score)

B_score=fitness; (assign fitness to B_score)

B_pos=Positions(i,:); (update positions)

end

For Delta
INFOCOMP, v. 19, no. 2, p. 109-119, June, 2021.
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Figure 5: Flowchart of Proposed Hybrid GWOPSO Algorithm

if fitness>A_score && fitness > B_score && fit-
ness < D_score

(value of fitness is more than A_score and B_score
and less than D_score)

D_score=fitness; (assign fitness to D_score)

D_pos=Positions(i,:); (update positions)

End

• Return the search agents that go beyond the bound-
aries of the search space

• Calculate objective function for each search agent

• Update Alpha, Beta, and Delta
INFOCOMP, v. 19, no. 2, p. 109-119, June, 2021.
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• Decrease linearly from 2 to 0.

a=2-l*((2)/Max_iter)

• Update the Position of search agents including omegas

• Draw search space

• Draw objective space

• Obtain results

Implementation of Hybrid Modified GWOPSO
The different parameters considered with assigned

values to execute the working of Modified Hybrid
GWOPSO are given in case 2.

Case 2
Number of search agents (SearchAgents_no) = 30
Test function ranges from F1 to F23 (Function_name)

= ’F1’
Maximum Number of Iterations (Max_iteration) =

500
The readings obtained after the execution of Modi-

fied Hybrid GWOPSO as per Case 2 are mentioned in
Table 2,which shows the readings of the first 15 and last
15 iterations.

Results:
Makespan: 1.0460
Utilization Rate: 0.9560
Throughput = 0.3815871
Turnaround time in Deci seconds = 190.793550
Waiting time in Deci seconds = 190.045185
Burst time in Deci seconds = 0.748364
Optimal value of the objective function calculated

by PSOGWO is: 708.5633
Figure 6 shows the graphical representation of the

obtained results from the implementation of Modified
Hybrid GWOPSO as per Case 2. The figure on the
left side shows the results in relevance with the param-
eter space and the figure on the right side shows the
graph depicting Best Score (Y-axis) against the num-
ber of iterations (X-Axis) in the case of GWO (blue
line) and Hybrid Modified GWOPSO (red line). The
graph depicts the Modified Hybrid GWOPSO algorithm
scores over the GWO algorithm in terms of Best Cost
achieved.

The comparative evaluation of considered evalua-
tion parameters is shown in Table 3.

The readings for different parameters for GWO and
Hybrid GWOPSO have been obtained in Table III. The
Makespan for GWO has been recorded as 1.2160 and
for the Modified Hybrid GWOPSO has been recorded
as 01.0460. The lower is the value of Makespan, the
better is the performance of the algorithm. The Uti-
lization Rate is inversely proportional to the Makespan

Table 2: Readings of performance evaluation parameters obtained
after execution of Modified Hybrid GWOPSO as per Case 2

Iteration
No.

Burst Time
(in seconds)

Waiting Time
(in seconds)

Turnaround Time
(in seconds)

1 0.003869 0 0.003869
2 0.008903 0.003869 0.012772
3 0.010308 0.02308 0.012772
4 0.012094 0.02308 0.035174
5 0.013515 0.035174 0.048739
6 0.015383 0.048739 0.064122
7 0.016882 0.064122 0.081004
8 0.018296 0.081004 0.0993
9 0.019702 0.0993 0.119002

10 0.021081 0.119002 0.140083
11 0.022605 0.140083 0.162689
12 0.024514 0.162689 0.187202
13 0.025909 0.187202 0.213111
14 0.027375 0.213111 0.240486
15 0.028826 0.240486 0.269312

CONTINUED
486 0.7258 179.73721 180.46301
487 0.7273 180.46301 181.19031
488 0.728961 181.19031 181.91927
489 0.730483 181.91927 182.64975
490 0.732262 182.64975 183.38202
491 0.73384 183.38202 184.11586
492 0.73535 184.11586 184.85121
493 0.737406 184.85121 185.58861
494 0.738928 185.58861 186.32754
495 0.74043 186.32754 187.06797
496 0.74206 187.06797 187.81003
497 0.74358 187.81003 188.55361
498 0.745078 188.55361 189.29869
499 0.746497 189.29869 190.04519
500 0.748364 190.04519 190.79355

Table 3: The values of Performance Evaluation Parameters of GWO
and Modified Hybrid GWOPSO algorithms

Parameters
/ Algorithms GWO Modified Hybrid

GWOPSO
Makespan 1.216 1.046

Utilization Rate 0.8224 0.956
Waiting Time
(deci seconds) 115.28883 190.045185

Turnaround Time
(deci seconds) 115.744681 190.79355

Throughput 0.231489362 0.3815871
Optimal Value 7.9879 708.5633
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Figure 6: The Comparative Results of GWO and Hybrid GWOPSO as per readings of Case 2

and therefore Modified Hybrid GWOPSO has a higher
Utilization Rate of 0.9560. The higher value of the Uti-
lization Rate indicates the optimized use of available re-
sources. Similarly, the Throughput for Modified Hybrid
GWOPSO is 0.3815871 which is greater than GWO
having a Throughput of 0.231489362. The Throughput
is considered as the primary parameter to evaluate the
performance of an algorithm. The Turnaround Time for
Modified Hybrid GWOPSO is 190.793550 Deci sec-
onds and for GWO is 115.744681 Deci seconds. The
Waiting times of 115.288830 and 190.045185 Deci sec-
onds have been recorded for GWO and Modified Hy-
brid GWOPSO respectively. The Optimal Value for
GWO has been recorded to be 7.9879 and that for Mod-
ified Hybrid GWOPSO has been 708.5633. The greater
value obtained for Optimal Value for Modified Hybrid
GWOPSO indicates the superiority of Modified Hybrid
GWOPSO over GWO.

Different fragments of Figure 7 illustrate the com-
parative graph of the performance evaluation parame-
ters for GWO and Modified Hybrid GWOPSO. In all
the fragments, the X-axis denotes the name of the algo-
rithms under consideration. The Y-axis represents the
readings of different performance evaluation parame-
ters. In Fig. 7 (a), the Y-axis represents the reading of
makespan, in Fig. 7 (b), Y-axis represents the utiliza-
tion rate, in Fig. 7 (c), Y-axis denotes the throughput,

in Fig. 7(d), Y-axis represents denotes the turnaround
time in deci seconds, in Fig. 7(e), Y-axis represents the
waiting time in deci seconds, and Fig. 7(f) represents
the readings for optimal value.

So, from the discussion, it can be concluded that the
Modified Hybrid GWOPSO scores over GWO in terms
of Makespan, Utilization Rate, Throughput, Turnaround
Time, Waiting Time, and Optimal Value.

3.2 Firefly Algorithm

This sub-section elaborates the implementation of the
Firefly and Modified Firefly algorithm via means of
flowcharts, algorithms, and implementations. Figure 8
shows the detailed flowchart of the Firefly algorithm.

Algorithm for Firefly algorithm

• Initialize the parameters (Number of Decision Vari-
ables, Decision Variables Matrix Size, Decision
Variables Lower and upper bound, Maximum Num-
ber of Iterations, Number of Fireflies (Swarm Size),
Light Absorption Coefficient, Attraction Coefficient
Base Value, Mutation Coefficient, Mutation Co-
efficient Damping Ratio, and Uniform Mutation
Range).

• Empty Firefly Structure

firefly.Position = []
INFOCOMP, v. 19, no. 2, p. 109-119, June, 2021.
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Figure 7: (a) Makespan, (b) Utilization Rate, (c) Throughput, (d) Turnaround Time, (e) Waiting Time, (f) Optimal Value
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Figure 8: Flowchart of Firefly Algorithm

firefly.Cost = []

• Initialize Population Array

pop = repmat(firefly, nPop, 1)

• Initialize Best Solution Ever Found

BestSol.Cost = inf

• Create Initial Fireflies

for i = 1:nPop

pop(i).Position = unifrnd(VarMin, VarMax, Var-
Size);

pop(i).Cost = CostFunction(pop(i).Position);
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if pop(i).Cost <= BestSol.Cost

BestSol = pop(i);

end

end

• Initialize Array to Hold Best Cost Values

BestCost = zeros(MaxIt, 1);

• Execute loops to build new population array new-
pop via finding an optimal position and best cost
value.

• Perform merging of population array pop and newly
formed population array newpop to form merged
array pop.

pop = [pop,newpop]

• Perform sorting on merged population array.

[ , SortOrder] = sort([pop.Cost])

pop = pop(SortOrder)

• Truncate the merged population array.

pop = pop(1:nPop)

• Store Best Cost Ever Found

BestCost(it) = BestSol.Cost

• Show Iterations information

• Damp Mutation Coefficient

alpha = alpha*alpha_damp

• Obtain results and plot graph.

Execution Parameters
The different parameters playing part in the execu-

tion of the Firefly algorithm are stated below with a
brief description.

Number of Decision Variables - nVar
Decision Variables Matrix Size - VarSize = [1 nVar]
Decision Variables Lower Bound - VarMin
Decision Variables Upper Bound - VarMax
Maximum Number of Iterations - MaxIt
Number of Fireflies (Swarm Size) - nPop
Light Absorption Coefficient - gamma
Attraction Coefficient Base Value - beta0 Mutation

Coefficient - alpha Mutation Coefficient Damping Rati
- alpha_damp Uniform Mutation Range -delta = 0.05
*(VarMax - arMin)

Case 3:
The values assigned to the participating parameters

are mentioned as :-
nVar = 5

Table 4: Optimal Solution for iterations obtained as per specifications
of Case 3

Iteration
No.

Optimal
Solution

1 10377.216
2 733.6742
3 49.489
4 49.489
5 10.7325
6 4.9077
7 2.894
8 2.894
9 2.0964

10 2.0964
CONTINUED

291 0.0001526
292 0.0001526
293 0.0001379
294 0.0001379
295 0.0001379
296 0.0001379
297 0.0001379
298 0.000135
299 0.000135
300 0.0001223

VarSize = [1 nVar]
VarMin = -10
VarMax = 10
MaxIt = 300
nPop = 25
gamma = 1
beta0 =2
alpha = 0.2
alpha_damp = 0.98
delta = 0.05 * (VarMax ? VarMin)
Table 4 shows the value of the Optimal solution at

different iterations showing the first 10 and last 10 iter-
ations.

Results
Makespan: 9.1509
Utilization Rate: 0.1093
Optimal Solution: 0.0001223
The obtained Optimal Solution after successful ex-

ecution of 300 iterations as per parameters readings de-
fined in Case 3 is shown in Figure 9. The X-axis de-
notes the number of iterations and Y-axis refers to the
Optimal Solution.

Modified Firefly algorithm
The flowchart for the Modified Firefly algorithm has

been depicted in Figure 10.
Algorithm

• Initialize the parameters and structure array.
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Figure 9: Plotted Graph Depicting Achieved Optimal Solution as per Case 3

• Populate the structure array with positions of the
fireflies and set the initial cost to infinity.

• Initialize the number of pseudo time sets and reset
the random generator.

if nargin<1

instr=[12 50];

end

n=instr(1);

MaxGeneration=instr(2);

rand(’state’,0);

• Generate the initial locations of n fireflies.

[xn,yn,Lightn]=init_ffa(n,range);

• Initialize the range.

• Replicate and tile an array swarm.

swarm=repmat(fly,n,1);

• Set global best cost gbest to infinity and initialize
an array pos_gbest to hold global best positions.

gbest=Inf;

pos_gbest=[];

• Return an array of random numbers chosen from
the continuous uniform distribution uisnf UNIFRND,
swarm(i).pos.

for i=1:n

swarm(i).pos=unifrnd(smin,smax,1,d);

swarm(i).cost=cost_func(swarm(i).pos);

end

• Execute loop of n fireflies assigning swarm(i).pos
to swarm(i).cost using cost function cost_func.

• Assigm swarm(i).cost to gbest and swarm(i).pos to
pos_gbest as long as swarm(i).cost<gbest.

if swarm(i).cost<gbest

gbest=swarm(i).cost;
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Figure 10: Flowchart for Modified Firefly algorithm

pos_gbest=swarm(i).pos;

end

• Execute nested loop for the maximum number of
iterations max_iter and obtain results for optimal
position and best possible solution.

Execution Parameters

The different parameters playing part in the execu-
tion of the Modified Firefly algorithm are stated below:
-

Number of Decision Variables - d
Minimum value of Decision Variables - sMin
Maximum value of Decision Variables -sMax
Maximum Number of Iterations -
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Table 5: Optimal Solution for iterations obtained as per specifications
of Case 4

Iteration
No.

Optimal
Solution

1 1.4727
2 2.7405
3 2.7405
4 2.8976
5 2.8976
6 2.8976
7 2.8976
8 3.0069
9 3.0069
10 3.0069
CONTINUED
291 2.9983
292 2.9983
293 2.9983
294 2.9983
295 2.9983
296 2.9983
297 2.9983
298 2.9983
299 2.9983
300 2.9999

Max_Iter Number of Fireflies (Swarm Size) - n
Light Absorption Coefficient - gamma
Attraction Coefficient Base Value - beta0
Mutation Coefficient - alpha
Mutation Coefficient Damping Ratio - damp
Case 4:
The values assigned to the participating parameters

are depicted below.
d = 2
sMin = -10
sMax = 10
Max_Iter = 300
n = 25
gamma = 1
beta =1
alpha = 2 damp = 0.99
Table 5 shows the value of the Optimal Solution at

different iterations, showing the first 10 and last 10 iter-
ations.

Results
Makespan: 7.2652
Utilization Rate: 0.1376
Optimal Solution: 2.9999
Figure 11 shows the output for the Griewank test

function as per readings of Case 1MFF.
Table 6 shows the values of different performance

evaluation parameters obtained for Firefly and Modified
Firefly algorithms.

Table 6: Readings of different performance evaluation parameters for
Firefly and Modified Firefly

Algorithms Makespan Utilization
Rate

Optimal
Solution

Firefly 9.1509 0.1093 0.0001223
Modified
Firefly 7.2652 0.1376 2.9999

The readings for different parameters for Firefly and
Modified Firefly algorithms have been obtained in Ta-
ble 6. The Makespan for Firefly algorithm has been
recorded as 9.1509 and the Modified Firefly algorithm
has been recorded as 7.2652. The lower is the value
of Makespan, the better is the performance of the al-
gorithm. The Utilization Rate is inversely proportional
to the Makespan and therefore Modified Firefly algo-
rithm has a higher Utilization Rate of 0.1376 as com-
pared to the Firefly algorithm having a Utilization Rate
of 0.1093. The higher value of the Utilization Rate in-
dicates the optimized use of available resources. The
optimal solution for the Modified Firefly algorithm is
2.9999 as compared to the Firefly algorithm which is
.0001223.

Different fragments of Figure 12 show the compari-
son between Firefly and Modified Firefly algorithm for
different performance evaluation parameters. In all the
fragments, the X-axis denotes the name of the algo-
rithms under consideration. The Y-axis represents the
readings of different performance evaluation parame-
ters. In fig. 12 (a), the Y-axis represents the reading
of makespan, in Fig. 12 (b), Y-axis represents the uti-
lization rate, in Fig. 12 (c) represents the readings for
optimal value. The graphs indicate the superiority of
the Modified Firefly algorithm in the case of all three
performance evaluation parameters.

3.3 Fault-Tolerant Hybrid GWOFF algorithm

Figure 13 shows the flowchart for the proposed fault-
tolerant hybrid GWOFF algorithm.

Algorithm
Initiate by entering the number of iterations.

1. Initialize the parameters relevant to GWO (Num-
ber of Decision Variables, Decision Variables Ma-
trix Size, Decision Variables Lower and upper bound,
Maximum Number of Iterations, Number of Fire-
flies (Swarm Size), Light Absorption Coefficient,
Attraction Coefficient Base Value, Mutation Coef-
ficient, Mutation Coefficient Damping Ratio, and
Uniform Mutation Range).
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Figure 11: The Griewank Test Function Graph for Modified Firefly as per readings of Case 4

2. Select the benchmark function and load its details.

3. Create the search space and objective space.

4. Initialize the position of search agents.

5. Generate the initial population randomly to calcu-
late the fitness of alpha, beta, and delta.

6. Return the search agents crossing the boundaries
of the search space.

7. Evaluate the objective function for each search agent
and update the values of alpha, beta, and delta.

8. Initiate the parameters related to the Firefly algo-
rithm and define the initial cost function.

9. Populate the structure array with positions of the
fireflies and set the initial cost to infinity.

10. Initialize the number of pseudo time sets and reset
the random generator.

11. Generate the initial locations of n fireflies. [xn,yn,Lightn]=init_ffa(n,range);

12. Initialize the range.

13. Replicate and tile an array swarm. swarm=repmat(fly,n,1);

14. Set global best cost gbest to infinity and initialize
an array pos_gbest to hold global best positions.

gbest=Inf;

pos_gbest=[];

15. Return an array of random numbers chosen from
the continuous uniform distribution using UNIFRND,
swarm(i).pos.

for i=1:n

swarm(i).pos=unifrnd(smin,smax,1,d);

warm(i).cost=cost_func(swarm(i).pos);

end

16. Execute loop of n fireflies assigning swarm(i).pos
to swarm(i).cost using cost function cost_func.

17. Assigm swarm(i).cost to gbest and swarm(i).pos to
pos_gbest as long as swarm(i).cost<gbest.
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Figure 12: (a) Makespan, (b) Utilization Rate, (c) Optimal Solution

if swarm(i).cost<gbest

gbest=swarm(i).cost;

pos_gbest=swarm(i).pos;

end

18. Execute nested loop for the maximum number of
iterations max_iter and obtain results for optimal
position and best possible solution.

19. Call Firefly routine and get updated positions.

20. Enter the number of Virtual Machines (VMs) and
faulty agent scenarios with the number of faulty
agents in each scenario.

21. Set the lower limit of faulty agents to 0 in each
scenario and enter the upper limit dynamically.

22. Calculate the maximum value of the best fitness
function.

23. If current iteration < Maximum number of itera-
tions

Go to Step 2

Else

Go to Step 24

24. End the process.

Execution Parameters
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Figure 13: Flowchart of the Proposed Fault-Tolerant Hybrid GWOFF algorithm

Beyond the execution parameters involved in Modi-
fied versions of GWO and FF, the following parameters
participated in the execution of the fault-tolerant hybrid
GWOFF algorithm.

Number of iterations - iter
Number of virtual machines - np
Number of faulty agents scenario - dim
Number of faulty agents in each scenario - dmat(1,i)
Case 5:
Iter - 300

Np - 10
Dim - 3
Number of faulty agents in Scenario 1= 50
Number of faulty agents in Scenario 2= 10
Number of faulty agents in Scenario 3= 50
Results
The max value of the fitness function= 2.981882

With Fault Tolerance
Makespan: 8.9684
Utilization Rate: 0.1115
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Turnaround Time (deci seconds): 10.6351
Without Fault Tolerance
Makespan: 10.4605
Utilization Rate: 0.0956
Turnaround Time (deci seconds): 12.1272
Figure 14 shows the final positions of the agents at

the end of the 300th iteration.

 

Figure 14: The Final Positions of the agents at the end of the 300th
iteration as per Case 1Fault Tolerance Hybrid

Figure 15 shows the performance of the proposed
Hybrid GWOFF algorithm without fault tolerance red
color) and with fault tolerance (green color). The varia-
tion in the red-colored graph is much more as compared
to the variation in the green-colored graph. This indi-
cates that the stability in the case of a Hybrid GWOFF
algorithm with fault-tolerance is much more as com-
pared to the one without fault-tolerance.

 

Figure 15: Performance of Hybrid GWOFF without and with fault
tolerance as per Case 1 Fault Tolerance Hybrid

Table 7: Results of K-means clustering with K=6 for the survey
dataset

Scenario Makespan Utilization
Rate

Turnaround
Time

With Fault
Tolerance 8.9684 0.1115 10.6351

Without Fault
Tolerance 10.4605 0.0956 12.1272

Table 7 shows the readings of different performance
evaluation parameters obtained after executing the Hy-
brid GWOFF algorithm as per specifications of Case 5.

Different fragments of Figure 16 show the compar-
ison between the Hybrid GWOFF algorithm with and
without fault tolerance for different performance eval-
uation parameters. In all the fragments, the X-axis de-
notes the name of the algorithms under consideration.
The Y-axis represents the readings of different perfor-
mance evaluation parameters. In Fig. 16 (a), the Y-
axis represents the reading of makespan, in Fig. 16
(b), Y-axis represents the utilization rate, and in Fig.
16 (c) represents denotes the turnaround time in deci
seconds. The graphs indicate the superiority of the Hy-
brid GWOFF algorithm with fault tolerance for all three
performance evaluation parameters.
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Figure 16: (a) Makespan, (b) Utilization Rate, (c) Turnaround Time

4 Conclusion

In the case of the Grey Wolf Optimization algorithm,
the Makespan for GWO has been recorded higher than
the Hybrid GWOPSO. Hybrid GWOPSO has a higher
Utilization Rate as compared to GWO. The Through-
put for Hybrid GWOPSO is greater than GWO. The
Turnaround Time for Hybrid GWOPSO is on the lower
side as compared to that of GWO. The Waiting Time of
GWO is much higher as compared to Hybrid GWOPSO.
The Optimal Value for Hybrid GWOPSO is higher than
GWO. The greater value obtained for Optimal Value for
Hybrid GWOPSO indicates the superiority of Hybrid
GWOPSO over GWO. In the case of Firefly algorithms,
the Makespan for Modified Firefly has been recorded
lower than Conventional Firefly. The Modified Firefly
has a higher Utilization Rate as compared to Conven-
tional Firefly. In the case of the Hybrid GWOFF algo-
rithm, the performance of the algorithm is with higher

stability as compared to the one without fault tolerance.
The experimental results of the implemented Hybrid
GWOFF Fault Tolerant algorithm show an improvement
in performance over the Hybrid GWOFF without Fault
Tolerance. The performance evaluation of the algorithms
has been measured in terms of the three main schedul-
ing performance metrics: Makespan, Utilization Rate,
and Turnaround time. The readings of Makespan and
Turnaround time have been found lower in the case of
Hybrid GWOFF with fault tolerance under both the sce-
narios tested with varying numbers of iterations, VMs,
and Faulty Scenarios. The reading of Utilization Rate
has been found higher in the case of Hybrid GWOFF
with fault tolerance under both the scenarios tested with
varying numbers of iterations, VMs, and Faulty Sce-
narios. This indicates that the performance of Hybrid
GWOFF with fault tolerance is much better than the one
without fault tolerance. In the future, the number of per-
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formance evaluation parameters could be increased and
the hybridization makes take place among more than
two meta-heuristic algorithms. Although improvements
have been witnessed in the optimization algorithms us-
ing swarm intelligence and meta-heuristics algorithms,
yet a unique algorithm capable of handling all optimiza-
tion problems effectively and with the best parameters
readings is to come up. The development process of hy-
brid algorithms will continue until the best combination
of algorithms would be found.
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