
Operating System Process Management and the Effect on Maintenance: A
Comparison of Linux, FreeBSD, and Darwin

Liguo Yu

Computer Science and Informatics
Indiana University South Bend
South Bend, IN 46634, USA

ligyu@iusb.edu

ABSTRACT. Process management is one of the most important and relevant tasks in operating system design. In this paper,

we investigate the process management in Linux, FreeBSD, and Darwin. We compare the data structures used to represent

process and the global variables used to control the current active process in three operating systems. Based on the definition-

use analysis, we study how the number of instances of process control global variable can affect the maintenance of the

operating system kernel. This effect is demonstrated in an empirical study in the relationship between the number of kernel

lines of code modified and the number of instances and number of definitions of process controller global variable. We

conclude that the way process management implemented in Linux makes it more difficult to maintain than FreeBSD and

Darwin.

Keywords: Modularity, common coupling, maintenance.

(Received January 19, 2006 / Accepted May 10, 2006)

1. Introduction

Coupling is a measure of the degree of dependency between

two software components (classes, modules, packages, or

the like). A good software system should have high

cohesion within each component and low coupling between

components. There are several different coupling

categorizations [1], [2], [3], all of which include common

coupling (two modules are common coupled if they access

the same global variable). Common coupling is considered

to be a strong form of coupling, that is, it induces a high

degree of dependency between software components,

making the components difficult to understand and maintain

[4].

Coupling between components strengthens the dependency

of one component on others and increases the probability

that changes in one component may affect other

components, which makes maintenance difficult and likely

to introduce regression faults [5], [6]. Coupling has not yet

been explicitly shown to be related to maintainability.

However, it has been shown that coupling is related to fault-

proneness of a software system [6], [7], [8]. If a module is

fault-prone then it will have to undergo repeated

maintenance, and these frequent changes are likely to

compromise its maintainability. Furthermore, these frequent

changes will not always be restricted to the fault-prone

component itself; it is not uncommon to have to modify

more than one component to fix a single fault.

Consequently, the fault-proneness of one component can

adversely affect the maintainability of a number of other

components. In other words, it is easy to believe that strong

coupling can have a deleterious effect on maintainability.

In previous research, we studied common coupling in

kernel-based software (such as operating systems) and

categorized global variable in terms of the possible impact a

change to it would have on the kernel [9]. The most

deleterious form of common coupling is category-5.

In operating systems, in order to achieve high efficiency,

the process management is usually implemented via a

global variable that accesses all the current active processes

in the system. As further discussed in Section 3, this global

variable is a category-5 variable. In this paper, we

investigate the role played by this category-5 global

variable with regard to the maintainability of three open-

source operating systems: Linux, FreeBSD, and Darwin.

The remaining of the paper is organized as follows: Section

2 outlines the categorization of common coupling in kernel-

based software. We discuss operating system process

management in Section 3. In Section 4, we describe Linux,

FreeBSD, and Darwin. We compare the process

management of Linux, FreeBSD, and Darwin in Section 5.

Section 6 contains the empirical study of the correlation

between the maintenance effort and the process control

global variable. Section 7 contains the discussions,

conclusions and future research.

2. Categorization of common coupling

Each occurrence of a variable in source code is either a

definition of that variable or use of that variable. A

definition of a variable x is a statement that assigns a value

to x. The most common form of definition is an assignment

statement, such as x = 10. The use of a variable x is a

statement that utilizes the value of x, such as y = x – 9.

From the creation of a variable to the destruction of that

variable, each time the variable is invoked, it is either

assigned a new value (a definition) or its present value is

used (a use).

Many software products, especially operating systems and

database management systems, comprise a kernel, a set of

components common to all installations, together with a set

of architecture-specific or hardware-specific nonkernel

components. We refer to a software product that is

comprised of common kernel components together with

optional nonkernel components as kernel-based software.

The kernel is the most important part of a kernel-based

software product. Therefore, the maintainability of the

kernel reflects the maintainability of the kernel-based

software product. Common coupling within a kernel-based

product increases the dependency of the kernel on other

components and, therefore, decreases the maintainability of

the kernel.

From the viewpoint of maintenance, changes to a definition

of a global variable can affect the use of that global

variable, but not vice versa. In previous study [9], we used

definition-use analysis to study global variable and

presented an ordered categorization of common coupling

within kernel-based software. Global variables are divided

into five categories, from the least deleterious (category-1)

to the most harmful (category-5). For example, a category-1

global variable is defined in kernel components but has no

uses in kernel components. Because there is no use of a

category-1 global variable in a kernel component,

definitions in other components (kernel or nonkernel)

cannot affect kernel components. Consequently, all kernel

components are independent with respect to this global

variable, and the presence of a category-1 global variable

will not cause difficulties for kernel component

maintenance.

On the other hand, a category-5 global variable is defined in

both kernel components and nonkernel components, and is

used in kernel components. A kernel component that uses a

category-5 global variable is therefore vulnerable to a

modification made in a kernel component or a nonkernel

component in which that global variable is defined. It is

extremely difficult to minimize the impact of changes that

involve category-5 global variables. Therefore, category-5

global variable has potential effect on the maintenance of

kernel modules. (For details of global variable categories 2,

3, and 4, the reader is referred to [9].)

3. Process management in operating systems

In operating systems, process is defined as “A program in

execution” [10]. Process can be considered as an entity that

consists of a number of elements, including: identifier,

state, priority, program counter, memory pointer, context

data, and I/O request. The above information about a

process is usually stored in a data structure, typically called

process block. Figure 1 shows a simplified process block

[10]. Because process management involves scheduling

(CPU scheduling, I/O scheduling, and so on), state

switching, and resource management, process block is one

of the most commonly accessed data type in operating

system. Its design directly affects the efficiency of the

operating system. As a result, in most operating systems,

there is a data object that contains information about all the

current active processes. It is called process controller.

Figure 2 shows the structure of a process controller [10],

which is implemented as a linked-list of process blocks.

Figure1:Simplified process block [10]

In order to achieve high efficiency, process controller is

usually implemented as a global variable that can be

accessed by both the kernel modules and nonkernel

modules. For example, any time a new process (task) is

created, the module that created this process should be able

to access the process controller to add this new process.

Therefore, process controller – the data object that controls

the current active process – is usually implemented as a

category-5 global variable. This means, both the kernel

modules and nonkernel modules can access process

controller to change its fields and these changes can affect

the uses of process controller in kernel modules.

Figure2: Process controller structure [10]

4. Linux, FreeBSD, and Darwin operating systems

Linux, FreeBSD, and Darwin are three open-source

operating systems. Linux is a completely new

implementation of UNIX using module structure. The

advent of KDE (K Desktop Environment) and GNOME

(GNU Object Model Environment) makes Linux a user-

friendly desktop operating system. FreeBSD is another

widely used BSD (Berkeley Software Distribution)

operating system. It is also a UNIX-like operating system. It

is well suited for both desktop and server applications. It

features high performance file system operations, and

provides robust network services. Darwin is an open-source

core used in Apple OS X. It consists of two major

components: a microkernel based on Mach, and a full

implementation of BSD (largely based on FreeBSD).

All three open-source operating systems are kernel-based,

which means they contain both architecture independent

kernel modules and architecture dependent nonkernel

modules. In this paper, we studied Linux 2.4.20, FreeBSD

5.1, and Darwin XNU-517. The size of three operating

systems is shown in Table 1. All three operating systems

are written in C. Each “.c” or “.h” source file is considered

as a module.

Table 1: The kernel and nonkernel structure of three operating systems

Operating system Kernel modules Nonkernel modules Kernel KLOC Total KLOC

Linux 2.4.20 26 9,407 14 4,260

FreeBSD 5.1 131 3,353 108 1,793

Darwin XNU-517 196 1,656 110 744

5. Process management in Linux, FreeBSD, and

Darwin

Table 2 summarizes the process management structure of

Linux, FreeBSD, and Darwin. In Linux, process block is

implemented as a data structure, task_struct. In FreeBSD,

process block is implemented as a data structure, proc. In

Darwin, process block is implemented as a data structure,

task. All three data structures contain the similar

information about a process, such as process id, process

state, file information, and so on. The process block

(task_struct in Linux, proc in FreeBSD, and task in

Darwin) is the most complicated data structure in their

corresponding operating systems. For example, task_struct
contains 83 field variables; 60 are primitive types, 3 are

composite data structures, and 20 are pointers to composite

data structures [11].

In Linux, process controller is implemented as a global

variable, current. In version 1.0.9, current was declared as

a pointer to data structure task_struct in kernel module

sched.c:

struct task_struct *current = &init_task;

From version 1.3.31 onward, current was declared as a

preprocessor macro get_current(), which is an inline

function that returns a pointer to data structure task_struct.
In both cases, current can be viewed as a pointer to data

structure task_struct.

In FreeBSD, global variable curproc is used to represent

the process controller. In module proc.h, it is declared as a

pointer to data structure proc:

struct proc* curproc;

In Darwin, global variable kernel_task is used to represent

the process controller. In module task.c, it is declared as a

pointer to data structure task:

typedef struct task *task_t;
task_t kernel_task;

Using LXR (Linux Cross Reference) tool, for each

operating system, we determined all the occurrences of the

process controller global variable (current for Linux,

curproc for FreeBSD, and kernel_task for Darwin) in

kernel modules and in nonkernel modules. For each

instance of the global variable, we determined whether it is

a definition or a use. The definition-use analysis was

performed on the basis of the theory outlined in Section 2.

For example, the statement

current->state = TASK_RUNNING;

was considered a definition of current, because the value of

current (or, more precisely, the data structure to which it

points) is changed. Conversely, the statement

if (curproc->need_resched) x = 1; else x = 0;

was considered a use of curproc, because the value of

curproc (or, more precisely, the data structure to which it

points) is referenced, but not changed. On the other hand,

the statement

kernel_task->request_count ++;

was considered both a definition and a use of kernel_task,

because the value of kernel_task (or, more precisely, the

data structure to which it points) is first referenced and then

changed.

Table 3 summarizes the general results of definition-use

analysis. In Linux kernel modules, there are 114 instances

of definitions and 382 instances of uses of current. In

nonkernel modules, current is defined 1,403 times and

used 6,795 times. Adding the definitions and the uses yields

a total of 8,694 instances of current in Linux. The

corresponding total number of instances of curproc in

FreeBSD and kernel_task in Darwin are 483 and 104

respectively. The number of instances of process controller

global variable in Linux is about 18 times of FreeBSD and

84 times of Darwin. Figure 3 shows the number of instance

of global variable per KLOC (thousand of lines of code).

We can see, considering the size difference of three

operating systems, Linux still has more instances of process

controller global variable than FreeBSD and Darwin.

Table 2: Process management in three operating systems

Operating Process block Process controller

 system Name Description Name Description

Linux task_struct Composite data structure current Pointer to task_struct

FreeBSD proc Composite data structure curproc Pointer to proc

Darwin task Composite data structure kernel_task Pointer to task

Table 3: Definitions and uses of the process controller global variable in three operating systems

Operating Global Kernel modules Nonkernel modules Overall

system variable Number of

definitions

Number

of uses

Number of

definitions

Number

of uses

Number of

definitions

Number of

instances

 Linux current 114 382 1,403 6,795 1,517 8,694

FreeBSD curproc 22 95 3 363 25 483

Darwin kernel_task 5 46 1 52 6 104

Each installation of Linux, FreeBSD, or Darwin consists of

all the kernel modules, plus a set of nonkernel modules

specific to that installation, its architecture, and its drivers.

It might therefore be argued that, in any one installation, the

number of instances of process controller global variable

(current for Linux, curproc for FreeBSD, and kernel_task

for Darwin) in nonkernel modules is likely to be far smaller.

From the viewpoint of maintenance, however, what is

important is the total number of instances of the process

controller global variable. If a change is made to a global

variable, it has to be consistently made to every instance of

that global variable. Thus, the total number of instances is

what counts, not the number in a specific installation.

As described in Section 2, the instances of global variable

that can affect kernel are the definitions. Because any

changes to a definition can result the corresponding changes

to the use of the global variable in kernel. From Table 3, we

see that there are 114 instances of definitions of current in

kernel modules, and 1,403 instances of definitions in

nonkernel modules. That is, there are 1,517 instances of

definitions of current that could affect a kernel module if a

modification were made to the module containing that

definition of current. The corresponding number of

definitions of curproc in FreeBSD and kernel_task in

Darwin are 25 and 6, which are much smaller than the

number of current.

Figure 4 compares the number of definitions of process

controller global variable per KLOC of the three operating

systems. Because every definition of the process controller

global variable constitutes a potential source of

vulnerability from the viewpoint of maintenance of the

operating system kernel, Figure 4 shows that changes to

current in Linux are likely to need more effort than

changes to curproc in FreeBSD and changes to

kernel_task in Darwin.

2.04

0.27
0.14

0.00

0.50

1.00

1.50

2.00

2.50

Linux FreeBSD Darwin

N
u

m
b

e
r

o
f
In

s
ta

n
c
e

s
 o

f
P

ro
c
e

s
s

C
o

n
tr

o
ll
e

r
G

lo
b

a
l
V

a
ri

a
b

le
 p

e
r

K
L

O
C

Figure 3: Comparisons of Linux, FreeBSD, and Darwin:

number of instances of process controller global variable

6. Correlation between maintenance effort and process

controller global variable

In Section 2, we analyzed the relationship between

category-5 global variable and the maintenance of kernel

modules. Process controller is a category-5 global variable.

Our analysis indicates that more instances of process

controller global variable can affect the maintainability of

kernel modules, which in turn can result more maintenance

effort. To understand their relationship empirically, we

performed the following study.

0.36

0.01 0.01

0.00

0.10

0.20

0.30

0.40

Linux FreeBSD Darwin

N
u

m
b

e
r

o
f
D

e
fi
n

it
io

n
s
 o

f
P

ro
c
e

s
s

C
o

n
tr

o
ll
e

r
G

lo
b

a
l
V

a
ri

a
b

le
 p

e
r

K
L

O
C

Figure 4: Comparisons of Linux, FreeBSD, and Darwin:

number of definitions of process controller global variable

From version 1.0.0 to version 2.4.20, we studied 299

release of Linux, for each release, we determined the

number of instances and the number of definitions of

process controller global variable current. For each release,

we also determined the number of kernel lines of code

modified compared to the previous version, which is used

to represent the maintenance effort. We would expect to

find the maintenance effort (the number of kernel lines of

code modified) increases as the number of instances of

current increases and the number of definitions of current
increases. In more detail, we tested the following two null

hypotheses:

• H01: There is no linear relationship between the number

of kernel lines of code modified and the number of

instances of current in each release.

• H02: There is no linear relationship between the number

of kernel lines of code modified and the number of

definitions of current in each release.

In these tests, the number of kernel lines of code modified

is the dependent variable Y, the number of instances of

current and the number of definitions of current are

identified as independent variables X.

To test these hypotheses, we would need to calculate the

correlation, which summarizes the strength of the

relationship between the two variables X and Y. Several

different correlation coefficients have been put forward,

including Pearson’s correlation coefficient and Spearman’s

rank correlation coefficient [12]. For Pearson’s correlation

coefficient to be valid, variables X and Y both need to be

normally distributed. However, it is unlikely that either X or

Y will have a normal distribution. Therefore, we use

Spearman’s rank correlation test. If the rank correlation

coefficient proves to be statistically significant at, say, the

0.01 level, we will reject the null hypothesis, and accept the

alternate hypothesis.

Table 4 shows the correlation coefficients between

maintenance effort (the number of lines of code modified)

and the two measures of current, and the corresponding p-

values. Both two tests show the correlation coefficients are

significant at the 0.01 level (2-tailed). Therefore, we reject

the two null hypotheses. Because we use the number of

kernel lines of code modified to represent the maintenance

effort of kernel modules, we conclude that

• There is significant positive linear correlation between

the maintenance effort of kernel modules and the

number of instances of process controller global

variable.

• There is significant positive linear correlation between

the maintenance effort of kernel modules and the

number of definitions of process controller global

variable.

It should be noted that the hypothesis tests here did not

show the causal relationship between the number of

instances of process controller global variable and the

maintenance effort. It only provided the empirical

evidences. To show the causal relationship empirically, a

well organized experiment should be performed, in which,

all other factors must be fixed.

7. Discussions, conclusions, and future research

Our empirical study on 299 versions of Linux shows that

strong linear correlations exist between kernel maintenance

effort (the number of kernel lines of code modified) and the

number of instances and the number of definitions of

process controller global variable, which statistically

indicate the relation between maintenance effort and

process control global variable.

Process controller is usually designed as a category-5

global variable. This has been verified in Linux, FreeBSD,

and Darwin. However, the ways to implement the global

variables are different for three operating systems, which

have different degree of effects on kernel maintenance. Our

study shows current has more deleterious effects on Linux

than curproc on FreeBSD and kernel_task on Darwin.

Linux is continuously growing with more drivers being

added and more platforms are supported. Adding more

drivers means more processes will be associated with global

variable current. If more platforms are supported, more

platform-specific tasks will be added, too, causing further

instances of current to be added. This will result in even

greater increases in the number of instances of current.
That is, as Linux grows, the kernel maintenance problem

caused by current will be exacerbated.

To summarize, in this paper, we compared the process

management in Linux, FreeBSD, and Darwin. In all three

operating systems, process control is managed via a global

variable, a pointer to a composite data structure that stores

the process information. However, we found, the number of

instances of process controller global variable current in

Linux is very different from curproc in FreeBSD and

kernel_task in Darwin. Based on the definition-use

analysis of its effect on maintenance and an empirical study

on the relationship between maintenance effort and process

controller global variable, we deduce that Linux will be

more difficult to maintain than FreeBSD and Darwin.

Our future research will study the architecture difference

among Linux, FreeBSD, and Darwin to understand how the

system architecture contributes to the difference in the

number of instances of process controller global variable.

Based on this, we will study how Linux should be

restructured to improve its maintainability.

References

[1] Stevens, W. P., Myers, G. J., and Constantine, L. L.

Structured design, IBM Systems Journal. v. 13, no. 2,

p.115–139, 1974.

[2] Offutt, J., Harrold, M. J., and Kolte, P. A Software

metric system for module coupling, Journal of Systems

and Software. v. 20, p. 295–308, 1993.

Table 4: The correlation between the number of kernel lines of code modified and the two measures of current

Measure Number of instances of current Number of definitions of current

Correlation coefficient 0.151 0.307

Number of data set 299 299

P-value <0.009 <0.001

[3] Jones, P. The Practical Guide to Structured Systems

Design. Yourdon Press, New York, 1980.

[4] Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., and

Offutt, J. Quality impacts of clandestine common

coupling, Software Quality Journal. v. 11, p. 211–218,

2003.

[5] Briand, L. C., Daly, J., Porter, V., and Wüst, J. A

comprehensive empirical validation of design

measures for object-oriented systems, Proceedings of

the 5th International Software Metrics Symposium,

Bethesda, MD, p. 246–257, 1998.

[6] Troy, D. A. and Zweben, S. H. Measuring the quality

of structured designs, Journal of Systems and

Software. v. 2, p. 112–120, 1981.

[7] Kafura, D. and Henry, S. Software quality metrics

based on interconnectivity, Journal of Systems and

Software. v. 2, p. 121–131, 1981.

[8] Selby, R. W. and Basili, V. R. Analyzing error-prone

system structure, IEEE Transactions on Software

Engineering. v. 17, p. 141–152, 1991

[9] Yu, L., Schach, S. R., Chen, K., and Offutt, J.

Categorization of common coupling and its

application to the maintainability of the Linux kernel,

IEEE Transactions on Software Engineering. v. 30, p.

694–706, 2004.

[10] Starllings, W. Operating Systems: Internals and

Design Principles, 5ed, Prentice Hall, 2004.

[11] Rusling, D. The Linux kernel. 1999,

www.linuxhq.com/guides/TLK/tlk.html

[12] Nolan, B. Data Analysis, an Introduction, Polity Press,

Cambridge MA, 1994.

