
Asynchronous Backtracking with temporary and fixed links: A
New Hybrid Member in the ABT Family

IONEL MUSCALAGIU1

POPA HORIA-EMIL2

MANUELA PANOIU1

The "Politehnica" University of Timisoara,
The Engineering Faculty of Hunedoara
Revolutiei, nr. 5, Hunedoara, Romania

The University of the West,
The Faculty of Mathematics and Informatics

V. Parvan, nr.4, Timisoara, Romania
1(mionel,m.panoiu)@fih.utt.ro

2hpopa@info.uvt.ro

Abstract. Starting from the algorithm of asynchronous backtracking (ABT), a unifying framework for
some of the asynchronous techniques has recently been suggested (called ABT kernel). Within this
unifying framework, several techniques have been derived, known as the ABT family. They differ in the
way they store nogoods, but they all use additional communication links between unconnected agents to
detect obsolete information. A first way to remove obsolete information is to add new communication
links to allow a nogood owner to determine whether this nogood is obsolete or not. These added links
were proposed in the original ABT algorithm. The second solution consists in temporary keeping the
links. A new link remains until a fixed number of messages have been exchanged through it. After
that, it is removed. In this article is proposed a solution for the elimination of outdated informations
between agents, by adding new links for the purpose of informing the agents, some links becoming
permanent, others temporary. It consists in combining the permanent links with the temporary ones. The
solution is based on determining the number of messages necessary for keeping the temporary links,
number determined dynamically during the runtime. Based on these informations some links become
permanent, others are kept temporary, until that number of messages is exchanged between the agents
connected by temporary links. A new hybrid technique can be obtained from ABT kernel by applying
this method, the experiments show a better efficiency in comparison with the asynchronous backtracking.

Keywords: Artificial intelligence, distributed programming, constraints, agents

(Received November 18, 2005 / Accepted February 07, 2006)

1 Introduction

The constraint programming is a model of software tech-
nology used to describe and solve large classes of prob-
lems as, for instance, combinatorial problems, planning
problems, etc. The idea of sharing various parts of the
problem among agents that act independently and that

collaborate among themselves using messages, in the
prospective of gaining the solution, proved useful, as
it lead to obtaining a new modelling type called Dis-
tributed Constraint Satisfaction Problem (DCSP) ([7]).

According to the IT literature the backtracking algo-
rithm distributed in an asynchronous way (Asynchronous

(mionel,m.panoiu)@fih.utt.ro�
hpopa@info.uvt.ro�

Backtracking -ABT), existing for the DCSP model, is
considered the first complete algorithm for the asyn-
chronous search. It is the first complete algorithm that is
asynchronous, distributed and competitor, in which the
agents can roll up in a competitive and asynchronous
way, published in [7]. This algorithm is based on send-
ing nogood messages among agents for doing an intelli-
gent backtracking and for ensuring the completeness of
the algorithm. The nogood messages are lists of joined
values at distinct variables in which there are inconsis-
tent among some variables.

Starting from the algorithm of asynchronous back-
tracking (ABT), it has recently been suggested in [1]
a unifying framework, a starting kernel for some of the
asynchronous techniques. From this kernel, several tech-
niques have been derived, known as the ABT family.
They differ in the way they store nogoods, but they
all use additional communication links between uncon-
nected agents to detect obsolete information. These
techniques start from a common core (called the ABT
kernel) which can lead to some of the known techniques,
including the algorithm of asynchronous backtracking,
by means of eliminating the obsolete information among
agents. These techniques, too, within the ABT family
are based on sending nogood messages among agents
for performing an intelligent backtracking and assur-
ing the completeness of the algorithm. Starting from
the ABT kernel, one can obtain some of the known
techniques, such as asynchronous backtracking (ABT),
Distributed Backtracking (DIBT), Distributed Dynamic
Backtracking (DisDB), [1].

In [1] were suggested several solutions for the elim-
ination of the old information among agents: adding
temporary links.

A first way to remove obsolete information is to add
new communication links to allow a nogood owner to
determine whether this nogood is obsolete or not. These
added links were proposed in the original ABT algo-
rithm.

A second solution (called by its authors ABTemp,
in [1]) consists in the temporary keeping of those links
between the agents that cannot determine if an informa-
tion is outdated or not. This algorithm adds new links
between agents during search, as ABT. The difference
is that new links are temporary. A new link remains
until a fixed number of messages have been exchanged
through it. After that, it is removed.

In [6] are investigated different values for the num-
ber of messages, values that are either statically deter-
mined (before the run) or dynamically during the run-
time. In [6] a dynamical solution for determining the
number of messages necessary for maintaining a con-

nection is proposed, the experiments show a better ef-
ficiency (reported to the computational effort made) in
comparison with the standard Yokoo variant. The dy-
namic solution is based on determining the maximum
message flux of nogood messages and using those in-
formations for determining the number of messages.

Starting from the dynamic solution proposed in [6]
for determining the necessary number of messages needed
for keeping a temporary link, in this article is proposed
a new hybrid method for eliminating the outdated infor-
mations between agents. This solution consists in trans-
forming some of the temporary links into permanent
links, based on the information about the outdated mes-
sage flux. Applying this method to the ABTkernel, we
can obtain a new hybrid technique, technique that uses
what’s best in the two derived techniques: ABT and
ABT temporary link. The experiments show a better
efficiency (reported to the computational effort made)
in comparison with the asynchronous backtracking.

2 The Framework

This paragraph presents some notions known from the
IT literature related to the DCSP modeling, ABT algo-
rithm [7] and ABT family, [1].

2.1 The Distribution Constraint Satisfaction Prob-
lem

Definition 1 The model based on constraints CSP - Con-
straint Satisfaction Problem, existing for centralized ar-
chitectures, consists in:
- n variables X1,...,Xn, whose values are taken from fi-
nite domains D1, D2,...,Dn.
- a set of constraints on their values.

The solution of a CSP implies to find an association
of values to all the variables so that all the constraints
should be fulfilled.

Definition 2 A problem of satisfying the distributed con-
straints (DCSP) is a CSP, in which the variables and
constraints are distributed among autonomous agents
that communicate by transmitting, messages.

In this article we will consider that each agent Ai

has allocated a single variable xi.
The Asynchronous Backtracking algorithm uses 3

types of messages:

• the OK message, which contains an assignment
variable-value, is sent by an agent to the constraint-
evaluating-agent in order to see if the value is good.

• the nogood message which contains a list (called
nogood) with the assignments for which the loose-
ness was found is being sent in case the constraint-
evaluating-agent found an unfulfilled constraint.

• the add-link message, sent to announce the neces-
sity to create a new direct link, caused by a nogood
appearance.

ABT requires constraints to be directed. A con-
straint causes a directed link between the two constrained
agents: the value-sending agent, from which the link
departs, and the constraint-evaluating agent, to which
the link arrives. To make the network cycle-free there
is a total order among agents, which is followed by the
directed links.

Each agent keeps its own agent view and nogood
store. Considering a generic agent self, the agent view
of self is the set of values that it believes to be as-
signed to agents connected to self by incoming links.
A nogood is a subset of agent view. If a nogood ex-
ists, it means the agent can not find a value from the
domain consistent with the nogood. When agent Xi

finds its agent-view including a nogood, the values of
the other agents must be changed. The nogood store
keeps nogoods as justifications of inconsistent values.
Agents exchange assignments and nogoods. When self
makes an assignment, it informs those agents connected
to it by outgoing links. Self always accepts new assign-
ments, updating its agent-view accordingly. When self
receives a nogood, it is accepted if it is consistent with
self’s agent view, otherwise it is discarded as obsolete.
An accepted nogood is added to self’s nogood store to
justify the deletion of the value it targets. When self
cannot take any value consistent with its agent-view ,
because of the original constraints or because of the
received nogoods, new nogoods are generated as in-
consistent subsets of the agent-view, and are sent to
the closest agent involved, causing backtracking. The
process terminates when achieving quiescence, mean-
ing that a solution has been found, or when the empty
nogood is generated, meaning that the problem is un-
solvable.

2.2 The ABT Family

Starting from the algorithm of asynchronous backtrack-
ing (ABT), in [1], several derived techniques were sug-
gested, based on this one and known as the ABT family.
They differ in the way that they store nogoods, but they
all use additional communication links between uncon-
nected agents to detect obsolete information. These
techniques are based on a common core (called ABT

kernel) hence some of the known techniques can be ob-
tained, including the algorithm of asynchronous back-
tracking, by eliminating the old information among the
agents. In [1] the starting point is a simple proce-
dure that includes the main characteristics of the asyn-
chronous search algorithms. Starting from this proce-
dure, which forms the unifying framework, one can reach
the known algorithms or variants that are close to them:
asynchronous backtracking (ABT), Distributed Dynamic
Backtracking (DisDB), Distributed Backtracking algo-
rithm (DIBT).

The ABTkernel algorithm requires, like ABT, that
constraints are directed- from the value-sending agent
to the constraint-evaluating agent-forming a directed acyclic
graph. Agents are ordered statically in agreement with
constraint orientation. Agent i has higher priority than
agent j if i appears before j in the total ordering. In this
article we will consider the lexicographical order for the
agents, order used also in the case of the asynchronous
backtracking algorithm. Considering a generic agent
self, Γ−(self) is the set of agents constrained with self
appearing above it in the ordering. Conversely, Γ+(self)
is the set of agents constrained with self appearing be-
low it in the ordering.

The ABT kernel algorithm, is a new ABT-based al-
gorithm that does not require to add communication
links between initially unconnected agents. The ABT
kernel algorithm is sound but may not terminate (the
ABT kernel may store obsolete information). In [1]
were suggested several solutions for the elimination of
the old information among agents, solutions that are
summarized hereinafter.

A first way to remove obsolete information is to add
new communication links to allow a nogood owner to
determine whether this nogood is obsolete or not. These
added links were proposed in the original ABT algo-
rithm.

A second way to remove obsolete information is to
detect when a nogood could become obsolete. In that
case, the hypothetically obsolete nogood and the values
of unrelated agents are forgotten. These two alternative
ways lead to the following four algorithms:

1. Adding links as preprocessing: ABTall. This al-
gorithm adds all the potentially useful new links
during a preprocessing phase. New links are per-
manent.

2. Adding links during search:ABT. This algorithm
adds new links between agents during search. A
link is requested by self when it receives a Back
message containing unrelated agents above self in
the ordering. New links are permanent.

3. Adding temporary links. This algorithm adds new
links between agents during search, as ABT. The
diference is that new links are temporary. A new
link remains until a fixed number of messages have
been exchanged through it.

4. No links: DisDB. No new links are added among
the agents. To achieve completeness, this algo-
rithm has to remove obsolete information in finite
time. To do so, when an agent backtracks forgets
all nogoods that hypothetically could become ob-
solete.

In this article, we will propose a solution for com-
bining the two methods for eliminating the outdated in-
formations, solution that will lead to the fifth hybrid al-
gorithm:

5. Adding temporary links: ABT with fixed and tem-
porary links. This new algorithm adds new links
during the search. A part of these links are tempo-
rary, they are kept until a certain number of mes-
sages is exchanged (number determined dynami-
cally during the runtime). In exchange, some tem-
porary links are transformed in fixed links, based
on some information regarding the maximal flux
of outdated nogood values.

3 Determining the value for the number of mes-
sages

In this paragraph we will present many solutions for
determining the number of messages exchanged by the
agents with temporary links, messages for which it must
be kept a temporary link, solutions proposed in [6].

In [6] are proposed two types of solutions: statical
solutions (for which the number of messages is fixed
and doesn’t change during the runtime) and dynamical
solutions (for which the value of the number of mes-
sages varies during the runtime).

The static solutions proposed are based on deter-
mining for each agent, before the run, the value of the
number of messages that have to be transmitted for a
link. That number can be determined in many ways,
many static variants were proposed. It will be used as
the maximum number of messages transmitted.

The static variants suppose the building of the in-
duced graph associated to the problem (in a preprocess-
ing phase). To each DCSP problem we can associate a
constraint graph, in which the nodes are agents/variables,
and the edges are given by the existence of the con-
straints between agents/variables. From this constraint
graph we can obtain the induced graph, corresponding

to the existing order, by adding links between the par-
ents of each node, if those links doesn’t exist already.
That graph is built as in [2]. Based on this graph,
we can determine a number of fixed messages for each
agent, as follows:

• The number of messages will be equal to the num-
ber of neighbors in the induced graph, for each
agent. Each agent will keep a certain link until
the number of messages exchanged will be equal
to the number of neighbors.

• The second solution is obtained from the previous,
but we compute a global value, common for all the
agents, which is the greatest value of the numbers
of neighbors of each agent.

The experiments in [6] show that for small dimen-
sion problems, the solutions are efficient, but along with
the increasing in dimension of the problems, the basic
variant surpasses clearly the variants with temporary
number of links. Thus, the best solution, experimen-
tally observed, is to dynamically determine the maxi-
mum number of messages during the runtime, which
hasn’t a fixed value. The number must be variable, for
each agent, a global value wouldn’t be the best choice.
Practically, during the runtime, the value of the number
of messages is dynamically deduced and it is adjusted
depending of the evolution of the algorithm.

The dynamic variants proposed in [6] are based on
using the informations regarding the outdated nogood
message flow. That information changes during the run-
time. As we know, when self receives a nogood, it is
accepted if it is consistent with self’s agent view, other-
wise it is discarded as obsolete. The outdated message
flow increases also because the agents are not informed
(because of the inexistence of the supplementary links).
Thus, each agent uses a supplementary data structure,
for retaining the number of outdated nogood messages
encountered at a given time. Those values are used
for the determination of the number of messages ex-
changed for each temporary link. Practically, that value
is the greatest number of nogood messages received at
a given time. This is the first dynamical solution pro-
posed. A second dynamical solution is obtained from
the first, by also using the information regarding the
number of neighbors each agent has. In the case of
the first solution, at the beginning of the runtime, the
outdated nogood message flow is very small; as a re-
sult the number of messages for which a link is kept is
small. So, we start with a fixed value for the number
of messages, equal to the largest number of neighbors
from the induced graph. This initial value is actualized

during the runtime, using the largest value of the num-
ber of outdated messages, from all the agents.

4 Asynchronous Backtracking with temporary
and fixed links

In [6], the experiments show that the second dynamic
solution for determining the number of messages is the
most efficient. This solution will be the starting point
for building a new derived technique. Thus, we will use
the information regarding the flux of outdated nogood
messages, for determining the periods of runtime for
which some temporay links will be kept. Unlike in that
solution, some links will be transformed in fixed links.
That will be the basic idea that will stay at the basis of
constructing a new derived technique.

In [6], to increase the efficiency of the two dynami-
cal variants proposed, each agent tries to keep as long as
possible some temporary links. Starting from those ob-
servations, the solution proposed in that article consists
in transforming some temporary links in fixed links. In
fact, the temporary links with those agents with which
it has exchanged a maximal flux of nogood messages,
are transformed in fixed links. For each agent is deter-
mined the agent with which it had a maximal number
of outdated messages (between those with which it had
temporary links). The temporary link that exists with
that agent will be transformed into a permanent one (the
link will remain until the final stage in detecting the so-
lution).

That solution supposes that each agent knows the
maximum number of outdated messages received by
each agent. A solution is based on the transmission of
maximums for each agent to the ones it is connected,
in the moment of the transmission of an info or no-
good message. The idea is similar to that from the al-
gorithm for determination of the additive cost in [4].
In figure 1 we present the algorithm for determining
the maximum value amongst the maximums of the out-
dated messages flow. Each agent keeps a local list of
counter variables (COldNogood) for counting the num-
ber of outdated messages received. Also, each agent
keeps a counter MaxOldNogood which will retain the
maximum of the numbers of messages between neigh-
bors. Each agent, in the moment of transmitting a mes-
sage, attaches the value for the maximum flux of out-
dated messages, value stored in MaxOldNogood. In ex-
change, at the receiving of a message from an agent Ak

that contains the maximum value of it, SenderMx will
update the value of the corresponding counter existing
in the agent Ak in the list COldNogood.

This algorithm is applied to the ABT Yokoo tech-
nique, allowing each agent to retain the maximum value

Algorithm 1. Determining the maximum number of
outdated messages received by the agents.
1: Each agent initializes the counter variable COldNogood
with 0. Also, MaxOldNogood is initialized with 0.
2: When an agent sends a message it includes in the
message the value of it’s MaxOldNogood counter.
3: When an agent receives a outdated nogood value from

a Sender agent, the corresponding counter from the
COldNogood list is updated.

Replace-item Sender COldNogood with
item Sender COldNogood + 1

4: if an agent receives a message with a counter SenderMx
from Sender agent then

if item Sender COldNogood < SenderMx then
Replace-item Sender COldNogood

with SenderMx
end if
Set MaxOldNogood = max { COldNogood }

end if

Figure 1: Determining the maximum number of outdated messages
received by the agents

for the number of outdated nogood messages exchanged
between the agents.

For keeping the evidence of each agent’s temporary
links that have become fixed, we will use a list of flags
that store the value 1 for a temporary link that has be-
comed permanent (in the algorithm in figure 2 is called
FlagList). Practically, the existence of the value 1 in the
list of flags of an agent, on the position k, will allow the
keeping of the link to the agent Ak.

In figure 2 we show those modifications required
in the ABT Yokoo technique (variant derived from the
core ABTkernel), based on the method of determining
of temporary links and of those temporary links trans-
formed in permanent links, in order to to obtain a new
hybrid technique, technique that uses what’s best from
both of the derived techniques: ABT and ABT tempo-
rary link. The modifications are marked with ***.

Obtaining this variant derived from ABTkernel, sup-
posed many changes in the basic ABTkernel algorithm,
derived in asynchronous backtracking. Some remarks
should be made, for a better understanding of the mod-
ifications necessary in the ABT Yokoo code, modifica-
tions necessary for obtaining the ABT with temporary
links variant.

First of all, each agent will use two extra sets Γ+
e (self)

and Γ−e (self), for the identification of the child and
parent agents that appear because of the temporary links.
In procedure ABTkernel(), in lines 1.1. and 1.2. they
are determined. Also, it is necessary to introduce two

procedure ABTkernel()
1 myValue ←empty; end ← false;
1.1 Set Γ+

e (self) ← ∅ ***
1.2 Set Γ−e (self) ← ∅ ***
2 CheckAgentView();
3 while (not end) do
4 msg←getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end ← true;
9.1 AddL : SetLink(msg);
9.2 RemoveL: RemoveLink(msg); ***
end

procedure CheckAgentView(msg)
1 if not consistent(myValue;myAgentView) then
2 myValue← ChooseValue();
3 if (myValue) then

for each child∈ Γ+(self) do
sendMsg:Info(child;myValue);

3.1 CheckRemoveLink(Self, Child) ***
4 else Backtrack();
end

procedure ProcessInfo(msg)
1 Update(myAgentView; msg.Assig);
2 CheckAgentView();
end

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood;Γ−(self) ∪ {self}) then
2.1 CheckAddLink(msg)
3 add(msg:Nogood;myNogoodStore);
4 myValue ← empty; CheckAgentView();
5.1 else

if Coherent(msg.Nogood; self) then
SendMsg:Info(msg.sender; myValue);

5.2 Replace item Sender COldNogood with
item Sender COldNogood + 1 ***

end

procedure SetLink(msg)
1 add(msg.sender;Γ+(self));
2 add(msg.sender;Γ+

e (self)); ***
3 sendMsg:Info(msg.sender; myValue);
end
procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if not (var ∈ Γ−(self)) then
3 sendMsg:AddL(var,self);
4 add(var;Γ−(self)); add(var;Γ−e (self)); ***
6 Update(myAgentView; var ← varValue);
end

procedure RemoveLink(msg) ***
1 remove(msg.sender;Γ−(self));
2 remove(msg.sender;Γ−e (self));
end

procedure CheckRemoveLink(msg) ***
1 for each child ∈ Γ+

e (self)
2 if (item child COldNogood = MaxOldNogood) then

replace item Child FlagList with 1;
3 if (item child CMessTemporaryLink ≥ MaxOldNogood

and item Child FlagList = 0) then
4 remove(child;Γ+(self));
5 remove(child;Γ+

e (self));
6 sendMsg:RemoveL(child,self);
7 Update(myAgentView; var child ← unknown);
end

procedure Backtrack()
1 newNogood←solve(myNogoodStore)
2 if (newNogood = empty) then
3 end ← true; sendMsg:Stop(system);
4 else
5 sendMsg:Back(newNogood, xj);

/*where xj has the lowest priority in V */
6 Update(myAgentView;rhs(newNogood)←unknown);
7 CheckAgentView();
end

function ChooseValue()
1 for each v∈D(self)not eliminated by myNogoodStore do
2 if consistent(v; myAgentView) then return (v);
3 else add(xj = valj) self 6= v;myNogoodStore);

/*v is inconsistent with xj ’s value */
4 return (empty);
end

procedure Update(myAgentView; newAssig)
1 add(newAssig;myAgentView);
2 for each ng ∈ myNogoodStore do
3 if not Coherent(lhs(ng);myAgentView) then

remove(ng;myNogoodStore);
end

function Coherent(nogood; agents)
1 for each var ∈nogood ∪ agents do
2 if nogood[var] 6= myAgentView[var] then

return false;
3 return true;
end

Figure 2: The ABT algorithm with temporary and fixed links.

data structures CMessageTempLink and COldNogood.
The first structure will be used by an agent Ai to retain
the number of info messages transmitted for each tem-
porary link. The second structure is used for counting
the number of outdated messages received.

The new algorithm needed the introduction of a forth
message RemoveL, which announces a child agent of
the canceling of a temporary link between two agents.
Practically, the child agent will cancel the Sender agent
from the list of its parents. The required modifications
appear in line 9.2. from procedure ABTkernel() and
procedure RemoveLink(), (a new added routine).

Third after selecting a new value and announcing
the childrens about the new selection, is necessary the
verification of temporary links to determine how many
of them remain actual. This thing is done in procedure
CheckAgentView(msg) line 3.1, by calling a new pro-
cedure named CheckRemoveLink(Self, Child). That
routine verifies, for child agents from Γ+

e (self), if the
maxim number of messages transmitted for that link
is reached. That maximum number can be determined
with the method proposed in this article. In case that the
maximum value MaxOldNogood was attained, that link
is canceled and the working framework (MyAgentView)
is updated. Also, if the child agent is that that has at-
tained the maximum number of nogood messages re-
ceived, it is labeled with 1, such as it’s link with the
current agent becomes permanent and will not be can-
celed.

5 Experimental Results

This paragraph will present our experimental results,
obtained by implementing and evaluating the asynchronous
techniques that were introduced. In order to make such
estimation, these techniques have been implemented in
NetLogo 2.0.2, a distributed environment, using a spe-
cial language named NetLogo, [8], [9], [10]. A screen-
shot is shown in Figure 3.

The asynchronous techniques were applied for a clas-
sical problem: the problem of coloring a graph in the
distributed versions. This problem can represent var-
ious application problems such as channel allocation
problems in mobile communication systems, in which
adjoining cells (regions) cannot use the same channels
to avoid interference. For the problem of graph col-
oring we took into consideration two types of prob-
lems defined as in [5]- (we kept in mind the param-
eters n - number of knots/agents, k-3 colors and m -
the number of connections between the agents). We
evaluated two types of graphs: graphs with few con-
nections (called sparse problems, having m=n x 2 con-
nections) and graphs with a special number of connec-

Figure 3: NetLogo implementation for Asynchronous Backtracking
with temporary and fixed links

tions, known to be difficult problems (called difficult
problems and having m=n x 2.7 connections). For each
version a number of 100 trials were carried out, retain-
ing the average of the measured values (for each class
10 graphs are generated randomly, for each graph being
generated 10 initial values, a total of 100 runs).

We counted the number of messages (which means
the quantity of ok and nogood messages), the number of
constraint checks (the local effort), the number of con-
current constraint checks (as defined in [4]). The evalu-
ations have been made for each technique presented.

The evaluations had certain particularities due to the
NetLogo medium. The NetLogo medium is a program-
ming medium with agents that allows implementing the
asynchronous techniques ([8], [9], [10]), but has cer-
tain particularities related to asynchronous work with
agents. The agents work with the specific command
"ask". A command like this will allow launching the
work routines with the messages. Of course, each agent
works asynchronously with the messages, but at the end
of a command’s execution there is a synchronization of
agents’ execution, synchronization that particularizes,
in a way, the implementations being used. This type of
agents work resembles the one used in [3] at the evalua-
tion of AWCS algorithm together with resolvent-based
learning.

By analyzing the message queues for the asynchronous
technique (after the technique has been implemented in
NetLogo) and applied for the problem of graph color-
ing, it observed a very large quantity of redundant mes-
sages. Certain agents have in the messages queue (that
they manage) info type messages coming from the same
agent, by which they are informed about the changing
of that agent changing its value. These info type mes-
sages are redundant. Starting from these observations,

Procedure INFO-messages-filtering
Extract Msg(info, xi)
If there is no other info message in the
message-queue received from xi

[
call the info messages treatment procedure (info, xi)
/* ProcessInfo(msg)

]
end

Figure 4: Filtering algorithm

we have defined a simple filtering technique that ap-
plies on the message queues. When we extract from the
message tail an info-type message, this is not immedi-
ately dealt with by the info routine, but verified not to
be redundant. Should this situation occur, the message
is ignored by eliminating it form the message queue,
otherwise the normal routine of dealing with ok mes-
sages is used. We further present the filtering algorithm
applied for each message queue (figure 4).

Therefore, for each version a number of 100 tri-
als were carried out, but in the conditions of applying
the filtering algorithm in the message queues. The two
evaluated versions were called ABT (Yokoo’s ABT),
ABTTFL(ABT temporary and fixed links). The val-
ues obtained for the three graph classes, big size graphs
(with 30, 40 respectively 50 knots) are stored in the
1st table. For the case of the version with temporary
and permanent links two variants of algorithms were
evaluated, corresponding to two ways of determining
the maximal number of outdated messages received by
each agent:

• a version in which the maximum number of out-
dated messages is determined with the method present
in figure 1, version labeled ABTTFL#1. Prac-
tically speakings, we obtain the maximum of the
flux of outdated messages for all the agents.

• a version in which the maximum number of out-
dated messages is determined only between the neigh-
bours of each agents, without the need of applying
the method in figure 1. Practically, each agent de-
termines MaxOldNogood from it’s list COldNo-
good (that is a local maximum). That version we
will label by ABTTFL#2.

As known, the verified constraints quantity evalu-
ates the local effort given by each agent, but the number
of concurrent constraint checks allows the evaluation of
this effort without considering that the agents work con-
currently (informally, the number of concurrent con-

Table 1: The results for ABT versions (Graph-Coloring Problem)-
constraint checks

n=30 Constraints C-ccks
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 443073.78 484444.93 77567.37 76658
ABTTFL#1 264004.69 466694.05 62819.55 87131.03
ABTTFL#2 223118.56 434123.82 58791.95 81332.32

n=40 Constraints C-ccks
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 1276261.88 3496629.71 187313.21 407892.71
ABTTFL#1 671172.36 2332383.68 127092.26 415689.09
ABTTFL#2 731456.78 2715132.67 138292.29 479856.25

n=50 Constraints C-ccks
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 8003935.93 11706566.68 839876.36 1562254.00
ABTTFL#1 3899996.22 9641356.58 777720.36 1735377.40
ABTTFL#2 7328765.76 12674531.88 866721.34 2100675.20

straint checks approximates the longest sequence of con-
straint checks not performed concurrently). Analyz-
ing the results from table 1, we can notice small com-
putational efforts, for small dimensions, compared to
the basic Yokoo variant. Besides, the second version
of ABTTFL#2, required a smaller effort for obtain-
ing the solution than the first variant. Instead, once
the problems increase in dimension (40 and 50 nodes),
the ABTTFL#1 variant is more efficient. Regarding
the number of concurrent constraints verified, unfortu-
nately the variants proposed require values closer to the
basic ABT variant.

Table 2: The results for ABT versions (Graph-Coloring Problem-
nogood and ok messages

n=30 Nogood Ok
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 1427.20 1691.20 5407.34 6142.25
ABTTFL#1 940.22 1741.61 3053.32 5669.61
ABTTFL#2 981.12 1614.23 3338.19 5551.78

n=40 Nogood Ok
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 2920.43 8820.10 11323.40 32946.23
ABTTFLL#1 1873.33 6541.21 5922.09 20512.21
ABTTFL#2 2163.13 6623.51 6819.81 21231.85

n=50 Nogood Ok
m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT 11008.18 21130.77 44184.56 71094.45
ABTTFL#1 8287.04 19858.26 26908.60 69642.81
ABTTFL#2 11745.71 23185.81 46174.70 83198.28

In the case of the message stream, the observed be-
havior of the computing effort remained aproximatively
the same, the hybrid variants proposed needing a mes-
sage flow much less than the Yokoo basic variant with
fixed number of links. But in the case of problems with
great dimension and density, the ABTTFL#1 variant
needed a smaller message stream than the ABTTFL#2
variant.

The experimental values analysis shows that from

the two variants proposed, the first variant is the most
efficient, compared to the second variant which for large
dimension problems require much higher costs. Thus,
the determination of the MaxOldNogood value is rec-
ommended, value used as maximum value for the num-
ber of messages transmitted for the temporary links, by
applying the algorithm presented in figure 1. Another
observation is relative to the two classes of problems
analyzed: problems with a high density and those with
a low density. The values obtained are closer to those of
the basic variant, in the case of difficult problems (those
with a density greater that 2.7). But, for problems with
rare density the two hybrid variants proposed are more
efficient than the basic Yokoo variant.

6 Conclusion

In this article is proposed a new member of the ABT
family, member derived from the ABT kernel by elim-
inating the outdated information between agents, com-
bining two older methods for eliminating outdated in-
formation between agents: adding permanent links be-
tween agents, and adding temporary links. The new
member presume transforming some of the temporary
links in permanent links, based on information relative
to the outdated message flux received by each agent.

To obtain this hybrid technique a method for deter-
mining the number of messages that is transmitted for
temporary links and a solution for determining the links
that become permanent.

The evaluations realized in the conditions of various
problems, with initial random values, for the problems
with various densities, show that the proposed variants
is more efficient than the basic technique, for both types
of problems (with low density and difficult), for small
and for large dimensions of the problems.

References

[1] Bessiere, C., Brito, I., Maestre, A., Meseguer, P.
Asynchronous Backtracking without Adding Links:
A New Member in the ABT Family. Artificial Intel-
ligence, 161:7-24, 2005.

[2] Dechter, R., Pearl, J. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelli-
gence, 34:1-38, 1988.

[3] Hirayama, K., Yokoo, M. The Effect of Nogood
Learning in Distributed Constraint Satisfaction. In
Proceedings of the 20th IEEE International Confer-
ence on Distributed Computing Systems, 169-177,
2000.

[4] Meisels, A., Kaplansky, E.,Razgon, I., Zivan, R.
Comparing performance of distributed constraints
processing algorithms. Notes of the AAMAS’02
workshop on Distributed Constraint Reasoning,
pages 86-93, Bologna, Italy, 2002.

[5] Minton, S., Johnston, M.D., Philips, A. B., Laird, P.
Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problems.
Journal of Artificial Intelligence, 58(1-3): pag. 161-
205, 1982.

[6] Muscalagiu, I., Popa, H. E., Panoiu, M. Determin-
ing the number of messages transmitted for the tem-
porary links in the case of ABT Family Techniques.
Proceedings of the 7th International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing, Timisoara, Romania. IEEE Computer
Society Press, 2005.

[7] Yokoo, M., Durfee, E. H., Ishida, T., Kuwabara,
K. The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions
on Knowledge and Data Engineering 10(5), pag.
673-685, 1998.

[8] Wilensky, U. NetLogo itself: NetLogo. Avail-
able: http://ccl.northwestern.edu/netlogo/. Cen-
ter for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston,
1999.

[9] MAS Netlogo Models-a. Available:
http://jmvidal.cse.sc.edu/netlogomas/.

[10] MAS Netlogo Models-b. Available:
http://ccl.northwestern.edu/netlogo/models/community.

