
Adaptive Non-Deterministic Decision Trees: General Formulation
and Case Study

HEMERSON PISTORI1

JOÃO JOSÉ NETO2

MAURO CONTI PEREIRA1

1UCDB - Universidade Católica Dom Bosco
GPEC - Grupo de Pesquisa em Engenharia e Computação,

Av. Tamandaré, 6000 Jd. Seminário, CEP 79117-900, Campo Grande (MS), Brasil
(pistori,mauro)@ucdb.br

2USP - Universidade de São Paulo, Escola Politécnica
LTA - Laboratório de Linguagens e Técnicas Adaptativas

Av. Prof. Luciano Gualberto. Trav. 3 N. 158, CEP 05508-900, São Paulo (SP), Brasil
joao.jose@poli.usp.br

Abstract. This paper introduces the adaptive non-deterministic decision tree, a formal device derived
from adaptive device theory. ANDD-tree is a new framework for the development of supervised learning
techniques. The general formulation of this framework, a case study and some experimental results are
also presented.
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1 Introduction

Decision trees are widely used as a knowledge repre-
sentation tool in machine learning, mainly for their clean
graphical representation, which captures, some aspects
of the human decision process. Algorithms for inducing
decision trees from examples, a major problem in ma-
chine learning, include ID3, C4.5 [19], CART [3] and
ITI [14], the last one being an incremental inducer.

Rule-driven adaptive devices [11], RDAD for short,
were first introduced as a formal framework to solve
some important problems in the domain of compiler
construction, in the late 80’s [10]. The scope of this the-
ory has grown since then, embracing works in areas as
diverse as grammatical inference [12], automatic mu-
sic composition [1], natural language processing [13],
robotics [4], natural computing [15] and computer vi-
sion [16]. A RDAD is composed of a subjacent non-
adaptive formalism and an adaptive mechanism. The
subjacent mechanism is usually characterized by a well
known formalism with a static structure defined by a
set of rules. The adaptive mechanism consists of an
additional set of rules, called meta-rules, that are at-
tached to the subjacent rules and that act on the struc-
ture of the subjacent mechanism by querying, inserting

and removing subjacent rules along its operation. For
instance, if the subjacent mechanism is a finite state au-
tomaton (FSA), its adaptive version, the adaptive finite
state automaton [15], is an automaton that allows their
transitions to be removed or new transitions to be cre-
ated while accepting an input string. Some other re-
search, related to RDAD, include that of Shutt and Ru-
binstein [21], Klein and Kutrib [8] and Jackson [7].

In order to apply RDAD techniques in the context
of decision tree induction, a new formalization for de-
cision trees was created and denominated non-determi-
nistic decision trees, or NDD-trees. The extended de-
vice, an adaptive non-deterministic decision tree beca-
me a framework for the development of decision tree in-
duction algorithms, based on adaptive technology. This
new approach offers a new formal tool for the devel-
opment of distributed and incremental learning strate-
gies, based on decision trees. This paper presents such
framework, together with a case study, the adaptive pre-
fix tree, whose learning performance is comparable to
some state-of-the-art inducers. Non-deterministic deci-
sion trees are described in the next section. Afterwards,
their adaptive versions are introduced. Section 5 reports
some experimental results. Finally, conclusions and fu-
ture works are presented.
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2 Non-Deterministic Decision Tree

In a decision tree, decisions, or classes (for classifica-
tion problems), are represented as the leaves of the tree,
whereas internal nodes carry discrete tests. The results
of these tests, when applied to the problem at hand, de-
termine the path to be followed when the tree is tra-
versed from its root. When a path from the root to any
leaf does not exist, due to missing or inconsistent infor-
mation, NDD-trees proceed, non-deterministically, us-
ing all possible outgoing paths from a node whose test
result is missing, or some other suitable path when the
result of the test is not represented in any of the outgo-
ing paths.

When working non-deterministically, decision trees
may give more than a single answer to a question. In
such cases, the final answer may be given as a ma-
jority vote amongst the occurrences of each possible
answer. A NDD-tree is formally defined as a 6-tuple
T = (I,Σ,Γ, c, A,R) where:

I,Σ,Γ are non-empty sets representing, respectively:
instances, attributes and values. Both Γ and Σ are
finite sets, whereas I may be countably infinite.
The Γ set always contains the unknown value sym-
bol “?”, that represents missing, unknown or non-
existent information.

c ∈ Σ defines the class attribute, whose values may
appear exclusively at the decision tree leaves.

A : I × Σ → Γ describes the instances, by associat-
ing values to each instance attribute. An instance
whose class attribute is mapped into the unknown
value, A(i, c) = ?, is called a training instance;
otherwise, it is called a test instance.

R is the set of rules, inductively defined as:

Leaf 2-tuple (id, v), where v ∈ f(c) is a class
label and id is a rule identifier, or

Internal (n+2)-tuple (id, a, (v1, R1), ..., (vn, Rn)),
where id is an identifier, a ∈ Σ − {c} is an
attribute and vi ∈ f(a), 1 ≤ i ≤ n are at-
tribute values. All elements Ri, 1 ≤ i ≤ n,
are also rules.

The rule that contains all other rules, corresponding
to the top of this hierarchy, is called the root. The space
of configurations, C, of a NDD-tree, is a set of ordered
pairs (τ, ι), where τ ∈ R is a rule and ι ∈ I is an in-
stance. Initial configurations, c0 ∈ C, are characterized
by the root coupled with some instance ι ∈ I . Final
configurations are all configurations that have leaves as
the first element of the pair. The stream of input stimuli

of a NDD-tree consists of instances, whereas the stream
of output stimuli is composed of class values. The op-
eration of a NDD-tree, T , proceeds as long as there are
instances in the input stream, as follows:

1. Given a non-final configuration (τ ′, ι), with τ ′ =
(id, a, (v1, R1), ..., (vn, Rn)), we say that T reaches
in one step the configuration (τ ′′, ι), denoted (τ ′, ι) `
(τ ′′, ι), if, and only if, one of these happens:

Deterministic Step: A(ι, a) = vi and τ ′′ = Ri,
for some 1 ≤ i ≤ n.

Non-deterministic Step: ¬∃i|A(ι, a) = vi, for
1 ≤ i ≤ n and τ ′′ = Rj , for some 1 ≤
j ≤ n. If there is no path for a given at-
tribute value then follow all available paths.
In other words, handle this attribute as if it
were a missing value.

2. When a final configuration, ((id, v), ι), v ∈ f(c),
is reached, v (or the majority voted class, in case of
non-determinism) is appended to the output stream.
If there are new instances to be read from the input
stream, the machine is set to the initial configura-
tion (reading the next example), and the algorithm
is restarted.

The overall approach to handle missing value is very
similar to the one proposed by Quinlan [17, 18], the
difference being only in the way that the concepts are
formalized. This new formalization seeks to define de-
cision trees as rule-driven devices, an essential step in
the application of adaptive technology [11].

3 Adaptive NDD-tree

The application of adaptive technology, using NDD-
trees as the subjacent mechanism, results in the adaptive
device called adaptive non-deterministic decision tree,
or ANDD-tree, for short. The adaptive layer improves
the subjacent mechanism by allowing it to change its
structure R (hierarchical set of rules) just before or after
a configuration change happens in the subjacent layer.
All changes are accomplished through the execution of
a set of elementary adaptive actions, used to query, in-
sert or remove rules. Each set of elementary adaptive
actions is called an adaptive function, which can be at-
tached to any rule, by appending adaptive function calls
to it. Adaptive function calls may appear in many rules,
but each rule is allowed to carry at most two adaptive
function calls, one to be executed before and the sec-
ond, after the rule is applied.

An ANDD-tree is a duple AT = (SM,AM), where
SM , the subjacent mechanism, is a NDD-tree T =



(I,Σ,Γ, c, A,R) with a slight change in its R structure,
which now accommodates optional adaptive function
calls attached to rules; and AM , the adaptive mech-
anism, is a set of adaptive functions. The operation
of an ANDD-tree starts following that of the subjacent
mechanism, described in section 2, until an adaptive
function is called. In this circumstance, structure R is
modified according to the elementary actions specified,
and the execution of the subjacent mechanism proceeds.
The overall mechanism stops its execution whenever
the subjacent rules becomes inoperable, for instance,
when an adaptive function removes all rules, or when
the input stream is empty (no more instances).

4 Case Study: Adaptive Prefix Trees

An adaptive prefix tree is a special kind of ANDD-tree
that grows incrementally, driven by training examples,
optionally interleaved with testing examples. Unlike
most usual decision tree induction algorithms, adaptive
prefix tree does not try to build a minimum-size de-
cision tree. Instead, it keeps all training instances in
a prefix-tree-like structure, and therefore, may also be
considered as an instance-based learning approach. The
non-deterministic nature of the underlying device gives
the whole mechanism the ability to generalize beyond
training cases.

The adaptive functions in an adaptive prefix tree im-
pose a complete order on the attribute set Σ. The struc-
ture R consists, initially, of a single leaf containing the
missing value. As training instances are processed, R

grows like a prefix-tree for strings of the same size, with
each string position corresponding to some attribute.
The maximum depth of an adaptive prefix tree is |Σ|.
Figure 1 shows the evolution of an adaptive prefix tree
for a hypothetical machine learning problem and some
arbitrarily chosen training instances. The problem has
four binary (yes-or-no) attributes, a1, ..., a4, the last one
being a class attribute. In this graphic representation,
left and right child edges correspond, respectively, to
the attribute values yes and no. Adaptive function calls
are indicated in brackets. Strings of Y’s and N’s repre-
sent the attribute values of a specific training instance.

Thus, an adaptive prefix tree is an ANDD-tree TA =
((I,Σ,Γ, c, A,R),Θ) with some restrictions, namely:
(1) the set of attributes, Σ, follows some arbitrary order,
thus it may be expressed by a sequence, a1, a2, ..., aj ,
where j = |Σ|, (2) the class attribute is aj , (3) R =
[A1] (R1, ?) and finally, (4) Θ contains j adaptive func-
tions, A1, A2, ..., Aj , one for each attribute. All adap-
tive functions Ai, 1 ≤ i < j, are parameterless and
contain just one elementary insertion action that appro-
priately adds a new node to the tree.

Attributes Sample Miss
Datasets Contin. Discrete Size
audiology 0 69 226 0.06%
autos 15 10 205 1%
breast 0 9 286 0.3%
diabetes 8 0 768 none
german 7 13 1000 none
heart 13 0 270 none
hepatitis 6 13 150 5%
horse-colic 7 20 368 18.7%
ionosphere 34 0 341 none
iris 4 0 150 none
mushroom 0 22 8124 1%
sick 7 22 3772 5.4%
vehicle 18 0 946 none
vote 0 16 435 3%
vowel 10 3 990 none

Table 1: Datasets from UCI used in the adaptive prefix tree’s experi-
ments.

5 Experiments and Results

In order to compare the adaptive prefix tree performance
on a broader set of benchmarks, some issues related to
continuous value, missing and inconsistent data should
be handled. A pre-processing phase discretizes contin-
uous data using the Fayyad and Irani’s discretization
method [6], and substitutes missing values by mode and
mean estimations. The inherent non-determinism of the
adaptive prefix tree’s underlying mechanism, the NDD-
tree, handles the problem of inconsistent samples in a
straightforward manner by simply choosing all avail-
able paths, and using majority vote to decide.

The adaptive prefix tree has been implemented and
experimented using Weka1 (Waikato Environment for
Knowledge Analysis) [22]. Table 2 shows the average
accuracy (correct classification rate) of the adaptive pre-
fix tree compared to Naive Bayes [5], 3-NN (k-Nearest
Neighborhood with k = 3), C4.5 [20] and ID3 [9], us-
ing the Weka default values [22] for parameters specific
to each classifier. The average accuracy has been taken
from a 10-Fold Stratified Cross-Validation experiment.
Plus and minus signals indicate, respectively, better and
worse performance of the adaptive prefix tree compared
to each of the other techniques, based on a T-Test statis-
tic in the 95% confidence level. The cases where adap-
tive prefix trees presented a statistically superior perfor-
mance are shown in bold font. Datasets were taken from

1Weka is a free open source software available at
http://www.cs.waikato.ac.nz/˜ml/weka/
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the UCI repository and detailed description for each one
of them can be found in [2]. Table 1 summarizes some
important information about theses datasets.

The experiments indicate that this simple RDAD,
with a global discretization method and very simple adap-
tive functions (just one elementary adaptive action), had
a competitive performance in several datasets. For 13
out of 15 datasets, adaptive prefix tree presented the
same or higher accuracy than Naive-Bayes. Compari-
son with instance-based approach (KNN) is balanced:
no significant difference on 11 datasets , but with a
remarkable difference in favor of adaptive prefix tree
on the audiology and auto datasets. The C4.5 classi-
fier performed better on 4 datasets, all of them seem to
benefit from the local discretization method inherent to
this algorithm (in the case of adaptive prefix tree, the
discretization is performed globally, before the learn-
ing phase). Adaptive prefix tree also performed well on
the four datasets with only nominal attributes: audiol-
ogy, breast, mushroom, vote. This helps to dismiss any
claim that its accuracy is solely dependent of the super-
vised discretization method applied.

ID3 has been considered here just because it is the
only tested method that does not have a built-in mecha-
nism to deal with continuous features, just like the adap-
tive prefix tree. This makes the comparison a bit more
fair, and as can be seen in table 2, adaptive prefix tree
shows significantly better results on almost half of the
datasets and lower accuracy on only 3 of them. In order
to apply ID3, the datasets were first discretized, using
the same method employed with adaptive prefix tree.

6 Conclusion

A new algorithm for learning classifiers, represented as
non-deterministic decision trees, has been introduced,
and experimental results indicating that this algorithm
performs well when compared to other machine learn-

ing algorithms were presented. Nonetheless, the main
contribution of this work is not the algorithm, but a new
formal framework, based on adaptive devices, that rep-
resents the learning algorithm as a self-modifying pro-
cess. The formalism clearly distinguishes the subja-
cent, essentially static level (e.g. a non-deterministic
decision tree), from the adaptive level, where structural
changes on the underlying level are predicted to happen
as external information is gathered.

Another important feature of an adaptive device is
that the learning process, which occurs only inside adap-
tive functions, may be distributed among different parts
of the underlying structure. One would have, for in-
stance, an interactive decision tree which allows a spe-
cialist to indicate groups of nodes in which learning
should not happen. A prototype of such environment
is under development. Suggestions for future works
include the development of new ANDD-trees and the
search for new ways to integrate prefix-tree instance-
based learning and decision tree learning.
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