
Transient Fault Tolerance in Mobile Agent Based Computing
Goutam Kumar Saha

Scientist-F, CDAC, Kolkata, India

Mailing Address: CA – 2 / 4 B, Baguiati,Deshbandhu Nagar, Kolkata 700059, West Bengal, India

gksaha@rediffmail.com

Abstract
 Agent technology is emerging as a new paradigm in the areas of distributed and mobile computing. Agent is a

computational entity capable of relocating code, data and execution- state to another host. Mobile agents' code often

experience transient faults resulting in a partial or complete loss during execution at a host machine. Protocol for

fault – tolerant agent prevents a partial or complete loss of a mobile agent at a host. This article describes how to

detect and recover random transient bit-errors at an agent before starting its execution at a host after its arrival at a

host, in order to maintain availability of an agent by comparing an agent's states by using time and space

redundancy. In this proposed self-repair approach, a software fix for fault – tolerance exists along with an agent.

This generalized scheme is useful for recovering any kind of distributed agents against hardware transient faults (at a

host). This paper presents a fault-tolerance mechanism for mobile agents that attempts to detect and correct any bit

errors that may occur at a host after agents' mobility on a Web Agent-based Service Providing (WASP) platform.

Though in modern distributed systems, the communication stack handles any bit errors and error correction is used

on multiple layers (for example, in transport layer), the proposed approach is intended to be a supplement one to the

conventional error detecting and correcting codes.

Keywords: Mobile Agent, transient fault detection, recovery, and tolerance.

Received June 21, 2005 / Accepted September 15, 2005

1. Introduction
 It is not uncommon to observe that an agent like

a mobile agent often experiences transient faults

(resulting in partial or complete loss) during its

execution at a host. The proposed work is intended to

detect and recover such errors in an agent code in

order to increase its availability and thus, to

complement the intrinsic error detection mechanisms

of a mobile agent system. There is significant

attention within the mobile agent fault-tolerance

community concerning the loss of mobile agents at

remote agent servers that fail by crashing in

[10,16,17,18,19,20]. The proposed generalized

approach establishes test conditions within a single

version of the software program, rather than requiring

multiple and distinct versions of the same program

running concurrently on many machines.

1.1. Agent Overview
 Agent based computing is a new software

paradigm in Information Technology today. Agents

are autonomous programs situated within an

environment, which sense the environment and acts

upon it using its knowledge base to achieve its goals.

A software agent is a piece of software that is

autonomous and owned by some party. Mobile

agents travel through a network of heterogeneous

machines. They have certain special properties,

which make them different from the standard

programs such as mandatory and orthogonal

properties. Autonomy, reactive, proactive and

temporally continuous is the mandatory properties of

the agents. The orthogonal properties are

communicative, mobile, learning and believable in

[3,8]. Agents can be classified based on properties

they posses: local or user interface agents, networked

agents, distributed artificial intelligence (AI) agents

and mobile agents. Among these agents, the

networked agents and user interface agents are single

agent systems whereas the other two agents are

multi- agent systems. The agents of single agent

systems are assumed to never cooperate or

communicate with each other whereas the distributed

AI and mobile agents are multi-agent systems.

1.2. Mobile Agent
 Distributed systems and on a wider scale, the

Internet, are inherently complex in the presence of

asynchrony, concurrency and distribution. Mobile

agent introduces new level of complexity, operating

within an environment that is autonomous, open to

security attacks (directed by malicious agents and

hosts), agent server crashes, and failure to locate

resources in [17]. Mobile agent is an itinerant agent

dispatched from source computer. It contains

program, data and execution state information and it

migrates from one host to another host in the

heterogeneous network and executes at remote host

to accomplish its task in [21]. Mobile agents provide

a significant performance benefit compared to the

conventional client-server paradigm. Conventionally

static clients and servers interact using message

passing over a communication channel. On

receiving a request from a client, the server processes

the request and returns the results over the

communication channel. Network bandwidth remains

under - utilized for large data sets. Mobile agents are

software programs that move from one host to

another. The mobile agent approach is based on

sending the computation to the data, computing

results and accessing local resources. Subsequently

results are returned to the originating host. It is

capable of relocating code, data, and Execution State

to other host.

 Fault tolerance is fundamental to further

development of mobile agent based applications.

Fault tolerance is the ability of a system to perform

its function correctly even in the presence of internal

faults. Based on duration, fault can be classified as

transient or permanent. A transient fault is not

reproducible because it will eventually disappear,

whereas a permanent one will remain unless it is

removed by some external agency. A particularly

problematic type of transient fault is the intermittent

fault that recurs, often unpredictably. General fault

tolerance procedure includes error detection and error

recovery. Error detection is the process of identifying

that the system is in an invalid state.

 Mobile agent systems offer various useful

provisions to the user community for accessing the

network resources placed anywhere from anywhere.

This new paradigm of distributed in [7] systems has

the unique property of making it possible for partial

execution of agent's code on more than one platform.

This extension of code distribution that was not

present in the traditional distributed systems makes

the mobile systems very useful. In mobile agent

systems, the runtime codes of mobile agents along

with the data are distributed across the network.

However, the transient nature of the mobile agent

system makes the design policies more complex than

that of traditional systems in [2,13]. During the

migration of the program, the agent's code along with

its execution state is transported to other hosts, which

may be located on heterogeneous platform, and there

the agent resumes its execution. Mobile agent

systems experience the problems because of their

mobility, portability and wireless communications.

The problems that arise with the mobility dimension

are how do these systems incorporate the address,

process, and object migration from host to host. The

problem due to portability is that the mobile code

must be able to do its job with the use of limited

resources without any loss of efficiency. The

resources can be of any form like power, storage etc.

The main hurdles in wireless type of communications

are the heterogeneity, frequent disconnection in [15]

and constant changes in the environment parameters

in [14]. However, mobile agent systems may

experience transient faults often during its transit or

when an agent server experiences electrical

transients. And then it is very difficult to maintain the

availability of mobile agent because the developers

do not have control over the remote agent servers.

Though the basis of a mobile agent system is the

wireless communication, it can also execute on hosts

linked to a fixed network. A mobile agent is lost

when an agent server experiences transient faults

during an agent's execution. The approach in [20]

proposes that a mobile agent inject a replica into

stable storage upon arriving at an agent server.

However, in the event of an agent server crash, the

replica remains unavailable for an unknown time

period.

1.3. Objective & Scope of the work
 The objective of this article is to detect and

recover an agent's random transient-bit-errors that

might have occurred after its arrival at an agent

server or before its execution starts or before it is able

to store its three images on a host's stable storage. In

this approach, the protocol that provides fault

tolerance travels with the agent. This has the

important advantage to allow fault-tolerant mobile

agent execution without the need to modify the

underlying mobile agent platform (in our case on a

Web Agent-based Service Provider (WASP)). A

mobile agent injects two replicas into stable storage

upon its arrival at each agent server. It is intended

that the proposed approach will be executing on a

Web Agent-based Service Provider (WASP)

platform. The WASP architecture is shown in figure

1. The WASP includes a WWW server together with

an agent-specific part called Server Agent

Environment (SAE). It supports Java as the

implementation language since most WWW servers

support Java's Servlet interface (attached to SAE) and

because of Java's ubiquitous availability-especially in

Web browsers, which agents use to communicate

with the user. WWW server redirects all agent-

related request (e.g., agent start, agent migration) to

WASP's SAE. Agents may be started by an HTTP

request to a URL designating a particular agent type

on some server. The actual start of an agent is done

by the server's SAE. After being loaded and

initialized by the SAE, the agent may send its Java-

based GUI to the user's browser. The transfer of

migrating agents is realized with an HTTP post

request to a SAE specific URL, at target WWW

server. The WASP platform provides the necessary

services and tasks for example, mobility support,

resources management, execution support,

communication support and security. The WASP

platform supports these tasks by relying on

established Java distributed computing in [4]

concepts and, more importantly, by integrating agent

environments into WWW-servers in [5,11] with the

help of server extension modules. As an additional

benefit of relying on the well-established WWW

infrastructure, the WASP platform may easily be

deployed in the Internet. HTTP protocol is used for

agent transfer or control. In an agent-based

computing scenario, hosts must provide a kind of a

"docking station" for mobile agents, which act as a

local environment or agent platform. We believe that

communication stack will control transient bit errors

during an agent's transit. Therefore this proposed

scheme does not aim to detect bit errors during an

agent's mobility through a communication channel.

The proposed scheme is not meant for wireless

environments because of weakest link with limited

bandwidth and throughput. An on-line algorithm or a

software fix has been designed in order to detect and

recover (at the beginning of the execution of an agent

at a host) various random bit- errors or byte -errors at

an agent code that might occur at its arrival at a host.

We assume that transient bit errors at agent code and

proposed protocol that may get induced during its

transit will be handled by Error Correction

mechanisms at the transport layer. We assume that

agent's run-time bit-errors that may get induced after

the execution of an agent has started, are detected by

the intrinsic Error Detection Mechanisms (EDM) of a

system (exceptions, memory protection, checksums

etc.). After its arrival, an agent code injects two

replicates (i.e., it becomes triplicate) at a host. We

execute the triplicate images of an agent at a host

sequentially with similar inputs (or by using buffer

for inputs like system time etc.,) and at the end of

execution of the images of an agent, we compare the

images' answers in order to find an answer in

majority that is considered to be a correct answer.

Such scheme is intended to mask an erroneous

answer from the execution of triplicate images at a

host on a WASP environment. In such case, our

dependency on EDM of a host is raised. However, if

no answer in majority is found then such fault-

masking scheme crashes. The proposed software

protocol is intended to complement the intrinsic

EDM of an agent server. To make mobile agents

resilient to transient bit-errors, the proposed work

needs an agent to be replicated into three images after

its arrival at a host. The software fix verifies and

corrects byte after byte of the images in memory

using space and time redundancy. Thus the proposed

work is intended to verify and recover an agent that

might have experienced transient faults upon its

arrival at a host. Again, in order to detect errors

during the execution time of an agent, we rely on the

EDM (checksums scheme) at the host.

Figure 1. The WASP Platform Architecture

User's
Web
Browser

HTTP Request

 Agent Request

Agent Response

Read File

Redirect

Agent

SAE

 Web Server

1.4. Mobile Agent Environment
 We may also consider the Mobile Agent

Code Environment (MACE) [Torsten Stolpmann,

1997], which is an interpretative execution

environment for mobile agents and the software fix

programmed in C or C++. The code is based upon

the model of an abstract machine. The MACE

compiler generates byte code derived from the

internal representation of Register Transfer Language

(RTL) code produced by the GNU C compiler from

C or C++ source. This byte code consists of pseudo

machine language operations of an abstract

microprocessor within a virtual memory image,

which is interpreted by the MACE Interpreter. This

allows a safe and efficient execution and the simple

migration of agent code. However, for the agents on

hosts linked to fixed network, we can use compiling -

systems. Like any interpretative system MACE is

also subject to an inherent performance penalty

compared to compiling-systems.

1.5. Contribution
 Like any other fault tolerance approach, the

proposed generalized scheme also inherits an

overhead (of the order of three) in both time and

space. In order to tolerate potential transient faults

we cannot avoid such time and space redundancy.

Though a self-stabilizing distributed algorithmic

technique running on each node on the network, is

useful for bringing a system to a legal configuration

in a finite number of steps from an arbitrary illegal

system configuration caused by message corruption

or sensor malfunction, it suffers from high time

redundancy. Other fault tolerant schemes like,

Algorithm Based Fault Tolerance in [6], Assertions

in [12] etc., suffers from the lack of generality and

wide applicability. Other costly schemes like, N-

Version Programming (NVP) in [1], Triple Modular

Redundancy (TMR) relies upon multiple versions of

software and hardware. However, the proposed

scheme is a low-cost solution because this relies on

only one version of agent software, which is

enhanced with the protective software fix. This

approach does not lack in generality and

applicability. This is intended to complement the

intrinsic EDM in agent server systems towards

tolerating random bit-errors. In other words, the

proposed work is based on an enhanced single

version-programming (ESVP) scheme using the extra

protective code. The proposed technique needs three

replicas or images of the agent code. It is assumed

that an agent platform will allow its replication or

reception. It does not need multiple independently

developed versions of the agent-code. Rather it uses

only an enhanced single – version (ESV) agent-code.

It tolerates (detect & recover) one byte -fault in every

three bytes at the same offset or displacement inside

the three images of an agent. However, it detects all

the three bytes-errors because the probability that all

three corrupted bytes at an offset in the images will

represent the same value is negligibly small (2-24),

because the chance of all three similar bytes, at

various locations, getting altered to some other

similar value is (1/28 * 1/28 * 1/28), as transient

caused errors are random and independent in nature.

Only one image of an agent executes on an agent -

server while the other two images of the same agent

code are used for the purpose of fault detection

(through state comparison) and recovery thereof.

This paper does not address the synchronization

issues (e.g. lock-step execution) because all the three

images of an agent-code are not executed

simultaneously; rather only one image or copy of an

agent is executed here on a host.

2. Work Description
 The proposed approach is capable of detecting

transient faults or soft errors in the mobile agent’s

code and data. The objective of this software is to

verify and repair the random byte-errors (induced

upon its arrival at a host) in a mobile agent before its

execution on a host starts. This is necessary to

prevent error propagation. This software technique is

a useful tool for fixing fault tolerance in mobile agent

systems. We assume that byte-errors that may occur

after a mobile agent starts execution at a host will be

detected by a host's intrinsic EDM in the case when

we do not execute all the three copies of an agent in a

sequence in order to vote upon their answers for a

majority one. Alternately, on using extra time

redundancy (if allowed) we compute run-time

checksums of the image in execution and compare it

with the previously computed (and saved)

checksums, for detection of run-time errors that

might occur once the execution of a mobile agent has

started. In such case, we have the option to restart the

mobile agent's execution in order to gain a fail-safe

kind of fault tolerance. Thus, ambiguities in

computed answers are also avoided. We cannot rely

entirely on the various conventional error- correcting

codes or EDM (implemented by hardware circuits at

a host) though they are capable of both detecting and

correcting certain types of errors. They are not free

from limitations. For example, adding six extra bits

per sixteen-bit word, single or double can correct bit

errors. However, random multiple- bit errors are very

common type of errors that are caused by potential

transients. Conventional off-line error -corrective

fixes can detect but cannot correct all random

multiple- bit errors.

 The pseudocode of the proposed protocol for

detecting and correcting bit errors in a mobile agent

upon its arrival is described by a procedure namely,

Mobile_FLT_DET_REP (as shown in Table-1), for

fault check and repair.

ALGORITHM- Mobile_ FLT_DET_REP

The following steps (pseudocode) describe how the Mobile_FAULT_DET_REP algorithm verifies for the presence

of multiple number of byte - errors in the mobile agent code and data, and how it corrects the erroneous bytes of the

contaminated agent code, by comparing an agent's state (using three images of an agent that are injected at a host

upon its arrival) byte by byte. The symbols "/* */" are to enclose remarks only.

/* There are three images or replicas of an agent that are injected at a host. Byte-wise comparisons and corrections

are carried out (using XOR) till the last byte of the images. It verifies the corresponding three bytes at an offset say,

d, of the three images of the agent code and if any byte error has occurred, then it repairs the corrupted byte. Starting

addresses of the three images are known. The notation IG 1
d
 denotes the d th byte (at an offset say, d) in the

agent's first image or Image –1. */

Step 1. Set S = Size of an image in bytes. /*size of an image in bytes is known*/

Step 2. Set d = 0 /* initialize the memory offset say, d*/

Step 3. R12 = IG 1d
 .XOR. IG 2d /*bytes at offset d in images IG 1 , IG 2 are -

Step 4. If R12 .EQ. 0 , Then: - XORed and result is stored at R12 */

No Error. /* goto step 5 i.e., program control goes out of the outer -

 EndIf of step-4, for scanning the next byte of the three images */

Else:

 R13 = IG 1d
 .XOR. IG 3d

 If R13 .EQ. 0 , Then:

 IG 2d
 = IG 2d

 .XOR. R12 /* Bytes at IG 1d ,IG 3d
 are correct but IG 2d

 is bad, so the erroneous byte at IG 2d
 is repaired*/

 Else:

 R23 = IG 2d
 .XOR. IG 3d

 If R23 .EQ. 0, Then:

IG 1d
 = IG 1d

 .XOR. R12

/* Bytes at IG 2d , IG 3d
 are correct but IG 1d

 is bad, so the

erroneous byte at IG 1d
 is repaired*/

 Else:

 Call HARD_ERR /*All the three bytes at the same offset d in the three images are

corrupted i.e. all the three images are corrupted - indicates a memory device problem or permanent errors,

Call HARD_ERR routine to restart the agent execution. */

 {End of If structure}

 {End of If Structure }

{End of If Structure }

Step 5. Set d = d + 1 /* offset d is incremented by one to scan next byte */

If d < S, Then: /* Scan the next byte for error detection & -

GOTO Step 3. repair thereof */

Else:

Return /*After the entire scan & repair, starting from 0th byte through (S-1) th byte in

 the 1st,2nd and 3rd images simultaneously, program control goes back to the

 primary image of agent and agent execution continues in an application based on

 mobile agents */

{ End of If structure }

 [End of Algorithm – Mobile_FLT_DET_REP]

Table 1. Algorithm for Mobile Agent Error Detection and Repair

3. Discussion
 Mobile_FLT_DET_REP is invoked for the error

detection and recovery of an agent. Algorithm-

Mobile_FLT_DET_REP shows the steps involved in

detection and correction of errors of the agent code.

Whenever an agent visits a host, it injects two

replicas at host and we need to store it in the memory

of the computing host. The starting addresses of the

three images are for example, say, IG1, IG2 and IG3

respectively. When the offset d is of say 0 (initial

value), then the address IG1
0 denotes the starting

address of first image IG1 only, because IG1
0 means

the value of (IG1 + 0) i.e., the starting address plus

offset. In general, if IGN were the starting address of

the N th image then, the address of the d th byte (or

at offset say, d) is shown by equation (1).

IG Nd = IG N + d …… (1)

Again, if any one byte out of the three corresponding

bytes of the three images at an offset say, d, is

corrupted, then this routine can repair the corrupted

byte by XOR ing. The wrong byte is detected by

comparing three bytes at the same offset, as shown at

step 3 and step 4 of the Algorithm. If two

corresponding bytes content are same then XORing

result is zero i.e., 00000000 or 00H. Otherwise, result

is a nonzero value. In general, if the two byte –

contents of p th and q th images at an offset say, d,

are say, IG p
d , IG q

d and if these two values are not

corrupted, then the following equation is true.

 IG pd .XOR. IG qd = 0 ……. (2a)

 Otherwise, if the two-byte contents are not same,

then the equation (2a) will not be satisfied. In other

words, relation (2b) is true.

 IG pd .XOR. IG qd • 0 ……. (2b)

 The possibility of getting inadvertently alteration

(by transients) of two similar bytes in two images

(located at two distant locations) to mean a some

other value resulting in a similar corrupted byte-

pattern, is negligibly small. In other words the

chances of byte error remaining undetected is:

 (1 / (2 8))* (1 / (2 8)) = 1 / (2 16) ……. (3)

 This method is capable of detecting even 8 bit errors

i.e., even an entirely corrupted byte can be detected.

If say, IG pd byte is corrupted to IG p*
d. But say, IG q

d

and IG r
d byte- contents remain same at an offset d

(i.e., are not affected by transients) in the images IG q

and IG r and then by comparing three corresponding

bytes of the three images, we can detect that IG p
d

byte is corrupted (as shown at step-3 and step-4 of

the Algorithm). The corrupted byte is repaired in the

following way. This is applicable even for 8 bit errors

in a byte. For an example, the original bit-pattern of

IG p
d is 1001 1101 and after the worst case corruption

(all eight bit alterations), the byte- pattern of IG p
d is

say, IG p*
d = 0110 0010 then the result (in Rqp) on

XOR ing these two byte- patterns will be: Rqp = IG
 q

d

.XOR. IG p*
d = 1111 1111 Now, the byte -pattern on

carrying out (IG p*
d .XOR. Rqp) will be 1001 1101

i.e., corrupted byte pattern IG p*
d is repaired or

corrected. If there is no error in an agent program and

data code, then the following equation will be

satisfied. IG pd = IG qd = IG rd ……..(4a)

 The chance of satisfying the equation (4a) by the

corrupted three bytes of the three images at the same

offset is negligibly small, because the transients’

effects on memory, registers are very random and

independent in nature.

 (1/(28))* (1/(28))*(1/(28)) = 1 / (2 24) ……. (4b)

 In other words, the chances of three bytes at

different locations corresponding to a particular value

with similar byte-pattern, getting altered

simultaneously to a similar value in order to satisfy

equation (4c) is negligibly small. Here, IG p*
d denotes

a corrupted byte of the image–p at an offset d.

 IG p*
d = IG q*

d = IG r*
d……..(4c)

 The chance of a value stored at an offset say, d,

in all the three images getting altered simultaneously

into some other three different values, is negligibly

small. Such disastrous effect indicates a possibility of

memory device hardware or permanent errors and

then HARD_ERR routine is invoked for necessary

recovery thereof (e.g., restarting the agent code). In

other words, the possibility of invoking the error

routine namely, HARD_ERR (as shown at step-4) is

negligibly small (2 -24).

 The routine Mobile_FLT_DET_REP verifies

and recovers byte errors in the entire mobile agent

code, by increasing the value of offset d from 0 to

S–1 (the size of an image is of say, S bytes). This is

very effective for soft errors (induced during its

transit or at reception at a host) detection and

corrections of agent code prior to its execution on a

host. After detecting and repairing the entire agent

code, program control goes to start the execution of a

mobile agent's image. Even a totally corrupted agent

image can be repaired by this proposed technique of

repairing byte by byte.

3.1. Experimental Results
 The capability of the proposed scheme for

detection and correction of transient bit errors of a

mobile agent upon its arrival at a host and before

executing an agent at a host is assessed here. It is

observed that hardware Error Detection Mechanisms

(EDM) at a host could detect 25% errors whereas the

software fix could detect 37% errors in a fault

injection (i.e., causing random bit errors) experiment

based on a compiler SingleStep7.4 of SDS Inc, for a

Motorola 68040 processor (using simple C programs

as benchmarks). Remaining errors were found to be

fail-silent (without changing program behavior).

Space redundancy of this proposed technique is about

three.

Time and Space redundancy remain at the same order

for domains with higher number of agents running in

a host. However, because of the lower economic

trend on the hardware prices, this much space

redundancy can be easily afforded. This higher time

redundancy (of the order of three) can be affordable

when we use an affordable high-speed processor and

memory.

4. Merits & Limitations
 The proposed technique is promising enough to

detect multiple soft errors and corrections thereof

with an affordable redundancy in both time and

memory space for gaining higher fault-tolerance.

This is also very useful for the system maintenance

engineers for the work of faster memory scrubbing

i.e., for periodic rewriting and correction of data

stored at all memory addresses. The algorithm based

on bit operator XOR is meant for faster fault detection

and recovery. However it does not have the overhead

of multiple software versions, hardware redundancy

and synchronization, in order to obtain the agent

code's transient fault - immunity. It is a low cost

solution. It is suitable for self – stabilizing the agent

code against the transient caused random byte errors.

The stabilizing time includes the time redundancy for

comparing the bytes of the images and for correction

thereof. The disastrous event of entire damage of all

the three images of an agent is also detected by it

without resending agent code. But, for recovery of

such disastrous event, an error routine

HARD_ERROR is invoked for restarting or reloading

the agent code execution from stable memory. If one

byte among the three bytes (at an offset say d in the

three images) is corrupted, then this algorithm can

detect and recover it. Even, it detects the

consequences of two or three corrupted bytes in the

images; but for recovery, we invoke the

HARD_ERROR routine for reloading from stable

storage. Even if the three images get corrupted at

random locations with random byte- errors causing

random values, this technique proves to be useful

also (as shown at 4(b)) for detection and recovery

through the HARD_ERROR routine. This is a useful

approach towards the transient fault – tolerant mobile

agent. However, in the conventional methods (e.g.,

NVP, TMR), there exists higher redundancy in both

time and memory space, and in synchronization. For

example, an NVP scheme needs (n+2) number of

versions (or variants) and machines in order to

tolerate n number of sequential faults. Whereas, this

proposed technique, based on so-called ESVP

(Enhanced Single Version Programming), needs (n

+2) number of images (or copies) of a single-version

(SV) mobile agent and one reliable fast machine only

for tolerating (detection & recovery) n number of

sequential faults. In other words, to tolerate two

sequential faults this ESVP technique needs only four

replicas of the same version of the application and

one machine only. The proposed approach is not

intended to tolerate agent software design bugs. The

other merits of this approach include its lower -cost,

generality and wider applicability. Indeed, if the host

the agent is executing on has crashed, the agent is not

available. The limitation of the

Mobile_FLT_DET_REP routine is its inability to

detect errors that may occur after the execution of an

agent has started. In case a mobile agent's host

crashes, we can use mobile shadow in [9] for better

availability by resending a shadow mobile agent from

its parent host. In order to address run time errors that

are occurring during the execution of an agent, we

use a checksum scheme or we may adopt (if more

time overhead is permitted) the fault-masking scheme

to run all the images of an agent and at the end of

execution of all images, we compare the answers in

order to find an answer in majority.

5. Conclusion
 The proposed generalized approach establishes

test conditions within a single version of a mobile

agent program, rather than requiring multiple and

distinct versions of the same mobile agent program

running concurrently on many machines. This

scheme is able to detect and repair transient errors in

mobile agent code upon its arrival at a host. This is

effective at the cost of an affordable redundancy in

both time and space, without an increased monetary

budget. We believe that in a few years, the computing

power, disk capacity and wireless bandwidth will be

abundant on small footprint devices (cell phones,

etc,) also and then, it will not be difficult for us to

operate measurements and thorough experiments on

this so called ESVP based protocol for wireless

platform also. However, for more robustness, a few

images (say, 3) of the Mobile_FLT_DET_REP

routine can also be used in order to tolerate faults

(say, one sequential fault) inside this decider routine

itself. This is also applicable to an NVP system that

needs three versions of the decider program in order

to tolerate a fault inside the decider. It can be used as

a very effective tool for the system engineers for

designing and maintaining a robust mobile agent for

a mobile computing application. It provides

reliability in a mobile computing application using a

WASP and WWW server, through on-line errors-

detection and corrections and thus, it eliminates

ambiguities, arising due to agent code–corruptions at

random. This software fix has wider applicability

including scientific computations and embedded

systems. This work is intended to supplement the

existing EDM at a mobile host.

6. References
[1] Avizienis, A. The N-Version Approach to Fault
Tolerant System, IEEE Trans. Software Engineering,
v. SE-11, n.12, p.1491-1501, 1985.
[2] Borselius, N. Mobile Agent Security, Electronics
& Communication Engineering Journal, v.14, n.5,
IEE, UK, 2002.
[3] Dasgupta, P., Narasimhan, N., Moser, L. and
Smith, P.M. MAGNET: Mobile Agents for
Networked Electronic Trading, IEEE Transactions on
Knowledge and Data Engineering, v.24, n.6, p. 509-
525, 1999.
[4] Funfrocken, S. Migration of Java-based Mobile
Agents- Capturing and Reestablishing the state of
Java Programs, Proc. of the 2nd Intl. Workshop on
Mobile Agents, p.26-27, 1998.
[5] Funfrocken, S. How to Integrate Mobile Agents
into WEB servers, Proc. of the WETICE'97
Workshop on Collaborative Agents in Distributed
Web Applications, Boston, p.94-99, 1997.
[6] Huang, K.H. and Abraham, J.A. Algorithm-Based
Fault Tolerance for matrix perations, IEEE
Transactions on Computers, v.c-33, n.6, p.518-528,
1984.
[7] Marris, J., Satyanarayan, M., Conner, M.H.,
Howard, J.H., Rosenthal, D.S., and Andrew, F.D. A
Distributed Personal Computing Environment, ACM
Communication, v.29, 1986.
[8] Nagamuta,V.and Endler, M. Coordinating Mobile
Agents through the Broadcast Channel, Proc. SBRC,
Florianopolis, 2001.
[9] Pears, S, Xu, J. and Boldyreff, C. Mobile Agent
Fault Tolerance for Information Retrieval
Applications: An Exception Handling Approach,
Proc. of the DSN’2001, 2001.
[10] Pleisch, S.and Schiper, A. Modeling Fault-
Tolerant Mobile Agents as a Sequence of Agreement
Problems, Proc. of the 19th Symp. on Reliable
Distributed Systems (SRDS), Nuremberg, p.11-20,
2000.
[11] Pleisch, S. and Schiper, A. FATOMAS- A
Fault-Tolerant Mobile Agent System Based on the
Agent-Dependent Approach, Proc. of the Intl. Conf.
on Dependable Systems and Networks (DSN 2001),
2001.
[12] Rela, M.Z., Madeira, H. and Silva, J.G.
Experimental Evaluation of the Fail-Silent Behavior
in Programs with Consistency Checks, Proc.of the
FTCS -26, p.394-403, 1996.
[13] Rothermel, K., et.al, Mobile Agent Systems :
What is Missing?, Proc. of the DAIS, 1997.
[14] Saha, G.K. Fault Management in Mobile
Computing, ACM Ubiquity, v.4, n.32, ACM Press,
USA, 2003.
[15] Satyanarayan, M., Kistler, J.J., Mummert, L.B.,
Ebling, M.R., Kumar, P. and Lu, O. Experience with

Disconnected Operation in a Mobile Computing
Environment, Proc. of 1993 USENIX Symposium on
Mobile & Location Independent Computing,
Cambridge, MA, 1993.
[16] Schneider, F. Towards Fault-Tolerant and
Secure Agentry, Proc. of the 11th Intl. Workshop on
Distributed Algorithms, Sarbrucken, p.1-14, 1997.
[17] Silva, L.M., Batista, V. and Silva, J.G. Fault -
Tolerant Execution of Mobile Agents, Proc. of the
Intl. Conf. on Dependable Systems and Networks,
New York, p.144-153, 2000.
[18] Silva, F.M. and Zeletin, R.P. Mobile Agent -
Based Transactions in Open Environments, IEICE
Transactions on Communications, E83-B(5), p.973-
987, 2000.
[19] Strasser, M., Rothermel, K. and Maihofer, C.
Providing Reliable Agents for Electronic Commerce,
Proc. of the TREC'98, LNCS 1402, Springer-Verlag,
p.241-253, 1998.
[20] Vogler, H., Hunklemann, T. and Moschgath, M.
An Approach for Mobile Agent Security and Fault
Tolerance Using Distributed Transactions, Proc. of
the Intl. Conf. on Parallel and Distributed Systems
(ICPADS'97), Seol, p.268-274, 1997.
[21] Wong, D., Paciorek, N. and Moore, D. Java

based mobile agents, Communications of ACM, v.

42, n.3, p.92-102, 1999.

Author’s Biography
In his last seventeen years’ research and development
experience, he has worked as a Scientist in LRDE,
Defence Research & Development Organisation,
Bangalore, and at Electronics Research &
Development Centre of India, Calcutta. At present,
he is with the Centre for Development of Advanced
Computing, Kolkata, India, as a Scientist-F. He has
authored around one hundred research papers in
SAMS Journal, ACM, C&EE J., IEEE, CSI, JISE etc.
He is a senior member in IEEE, Computer Society of
India, ACM, and Fellow in IETE. He has received
various awards, scholarships and grants from both the
national and international organizations. He is a
reviewer of the CSI Journal (India), AMSE Journal
(France & Spain) and of an IEEE Magazine. He is an
associate editor of the ACM Ubiquity (ACM Press,
USA). His field of interest is on dependable, fault
tolerant computing and natural language processing.

