Clustering of Quantitative Survey Data based on Marking Patterns
Main Article Content
Abstract
Clustering of quantitative survey data is done in-order to identify the divergent and dominant behaviors of the respondents. It is intended to explore the general tendencies of the respondent groups. Popular clustering methods working on value based similarity are inappropriate for survey data due to its distinct properties. Since marking patterns in survey data represents respondent’s behavior, hence separating the responses on the basis of marking patterns is an effective approach to identify the dominant behaviors. Thus, in this paper, we propose a specialized clustering method for quantitative survey data that combines the features of both, value based as well as pattern based approaches in order to obtain meaningful results. The proposed method does not require presetting of the clustering parameters while it makes use of group labels for selecting features and guiding the centroids at positions, which best describe divergent marking habits. We apply the proposed method over an educational survey dataset and compare its results with K-means clustering with respect to the benchmark stakeholder theory. Comparison results show that the proposed method is more appropriate for quantitative survey data.
Article Details
Upon receipt of accepted manuscripts, authors will be invited to complete a copyright license to publish the paper. At least the corresponding author must send the copyright form signed for publication. It is a condition of publication that authors grant an exclusive licence to the the INFOCOMP Journal of Computer Science. This ensures that requests from third parties to reproduce articles are handled efficiently and consistently and will also allow the article to be as widely disseminated as possible. In assigning the copyright license, authors may use their own material in other publications and ensure that the INFOCOMP Journal of Computer Science is acknowledged as the original publication place.