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Abstract. Driver alertness detection is one of the significant automotive-related features to Advance
Driver Assistance Systems (ADAS). Electroencephalogram based alertness detection is a direct method
of determining consciousness level. In this paper, an algorithm using a one-dimensional convolution
neural network and bidirectional LSTM to learn the alertness level from EEG signals is proposed. The
algorithm is implemented on an ARM-based single-board computer (SBC) for performance analysis.
Real-time detection of drowsiness is necessary to alert the driver whenever he is about to sleep. Most of
the existing methods focus on off-line analysis for interpreting the driver’s state. The proposed method
uses deep learning techniques to characterize and train the system, and the trained Model is ported to
ARM SBC for real-time performance. Physionet sleep edf data with single-channel FPz-Cz is used for
training the Model. The trained CNN-LSTM based Model gave an accuracy of 93.3 and the test model
gave an accuracy of 89.4 percentage when tested with real-time signals using the Neurosky mind wave
electrode. To reduce road accidents occurring due to the driver’s drowsiness, it is necessary to monitor
driver alertness and alarm when necessary continuously.

Keywords: Electroencephalogram(EEG), Feature extraction, Driver state, Convolutional neural net-
work, Bidierectional Long-Short Memory (Bi-LSTM).
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1 Introduction

According to the AAA Foundation for traffic safety,
drowsy driving is a safety hazard as drunk driving, and
20 percentage of all fatal accidents in the USA are
due to drowsiness. Even the National Highway Traffic
Safety Administration (NHTSA) agrees to it, and also
CSI research center says that drowsy driving is more
dangerous than drunk driving and texting while driv-
ing [1]. Driver state detection is an essential feature
in automotive, that provide an early warning system to
avoid accidents. Various literature methods deal with

analyzing driver behavior like eye blinking and vehicle
behavior like vehicle drifting from the lane. Measure-
ment of driver’s physiological signals like Electroen-
cephalogram (EEG) gives a more direct and accurate
detection method than conventional techniques. EEG
represents the neural activity happening inside the hu-
man brain. EEG has information on both frequency and
amplitude. The brain activity corresponding to different
conditions is represented by various frequency bands
of EEG known as EEG rhythms. These rhythms are
named as theta (0-4Hz), delta (4-8Hz), alpha (8-12 Hz),
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beta (12-30 Hz) and gamma (30-100 Hz) frequency
bands. The extraction and analysis of these frequency
bands’ representative features is vital in determining the
human brain’s different states. EEG analysis includes
various steps comprising of data acquisition using EEG
sensors/electrodes, pre-processing to separate different
EEG rhythms, extraction and selection of representa-
tive features, and finally, classification of EEG features
according to varying conditions of the brain.

Many existing studies use machine learning tech-
niques wherein the classification is performed on hand-
engineered extracted features from the EEG signal. Re-
cently the availability of large data sets of EEG has
led to applying deep learning techniques to EEG anal-
ysis. Deep learning techniques provide robust auto-
matic learning of EEG features compared to conven-
tional hand-engineered feature learning models. This
paper discusses methods for the analysis and classifica-
tion of EEG signals to detect the driver’s cognitive state.
The algorithm is also implemented on the ARM single
board computer for real-time testing. To classify EEG
signals deep learning-based CNN-LSTM technique is
adopted, a combination of convolution neural network
and recurrent neural network (RNN).

The structure of the paper is as follows; in section
two we discuss the related existing literature for the
proposed work, section three discusses methodology
related model architecture, based on deep convolution
neural networks and Bi-LSTMs. section four details
about experiments and results involving datasets, vir-
tual simulation environment, parameter optimization,
porting the Model to ARM SBC. Section four details
observations and discussions on the Model’s parameters
and classifier results and the test results obtained with
the Neurosky sensor and ARM SBC hardware. Section
five concludes the paper.

2 Related Work

The accuracy of EEG classification depends on the rep-
resentative features selected and feature learning mod-
els. A lot of research has been carried out using hand-
engineered methods of feature learning using traditional
machine learning techniques.

Mohammed Diykh et al. discussed identifying six
sleep stages using the statistical time-domain approach
with the structural graph similarity and K-means classi-
fier. [3][16]. Farhan Riaz et al. proposed a feature ex-
traction method that used a time-frequency analysis of
non-stationary EEG signals using empirical mode de-
composition (EMD). [4][17]. Ning Wang, et al. sug-
gested a compact feature representation method to de-
termine epileptic seizure conditions. The proposed fea-

ture elimination method overcomes the redundancy and
noise components for obtaining low dimensional and
independent feature vector [5][14]. Robert Jenke et al.
proposed a method to determine emotions using EEG
signals. They experimented with different feature se-
lection methods and suggested features selection using
multivariate methods to give accurate results compared
to univariate methods. [6].

Traditional methods of EEG classification used ma-
chine learning approaches, wherein the feature extrac-
tion selection plays a major role. The features of the
signals in time/frequency/time-frequency domains [19]
are extracted and with a suitable elimination technique,
only significant features were retained. Some methods
also use non-linear techniques like wavelet transforms
[7][13] and also empirical methods of feature extraction
and selection are discussed in the literature.

Recently many researchers are exploring deep learn-
ing methods for EEG signal analysis. The availability
of huge data size for such signals is triggering their re-
search. The literature has recorded that deep learning
approaches proved efficient for image and video analy-
sis.

Yaguang Jia et.al proposed a method to extract
significant features for classifying signals with high
dimensionality and multi-channel properties from a
steady-state motion visual evoked potential signals us-
ing deep belief neural (DBN) network and stacked
restricted Boltzmann machine (RBM). The proposed
method extracts local features from every channel and
further fuses the information before giving it to clas-
sifiers. To achieve higher accuracy and lower inter-
subject variability.[8][15]. Mehdi Hajinoroozi et al.
proposed an approach which incorporates, channel-
wise convolution neural network with restricted Boltz-
mann machine. The algorithm showed convincing re-
sults for Independent Component Analysis (ICA) trans-
formed data compared to raw EEG data [9][12].

Deep learning methods using multiple layers of lin-
ear and non-linear processing have been used in some
of the recent studies. O. Tsinalis, et al. used Convo-
lution neural networks (CNN) to extract time-invariant
features using a single-channel electrode [4]. Wang N
et al proposed Deep Belief Nets (DBNs) to learn fea-
tures based on probabilistic representations from pre-
processed raw polysomnograms [5]. These methods
mainly focused on time-invariant features and did not
consider temporal information. The traditional hand-
crafted feature extraction methods which require the
model to choose a suitable feature extraction and se-
lection methods before using the classification tech-
nique. These techniques provide the desired accuracy
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with proper tuning at feature extraction/selection and
classification levels. The recent deep learning approach
does not require a handcrafted approach to obtain sig-
nificant features, instead, the model learns the features
automatically.

Compared to the conventional neural networks, the
RNNs have a memory element, from which the deci-
sion is based on the previous history. This gives an
advantage of decisions based on the prediction of the
next state[20]. In this paper, we propose a Convo-
lution Neural Network (CNN) based feature learning
model for determining driver alertness level that also
uses a BiLSTM. The combination of CNN based fea-
ture learning model and RNN based classification tech-
nique is adopted in this work. The model automatically
learns the features and can be effectively used for clas-
sification with higher accuracy for predicting the driver
states. The model is ported to ARM SBC for real-time
testing of the algorithm.

3 Methodology

The proposed model uses two main parts as shown in
fig:1. One training model and the other is the prediction
model. The model is trained using CNN and Bidirec-
tional LSTM and the trained model is ported to ARM-
based SoC for testing. The training model is further
divided into two parts as shown in fig:2, the first part is
the feature learning model which learns time-invariant
features using two layers of CNN and the second part is
RNN based bidirectional LSTM which used for learn-
ing temporal features such as state transition rules. The
data used by this network is single-channel EEG 5-s
epochs.

Figure 1: Block diagram of the proposed approach

3.1 Time in-variant Feature learning model

The feature learning model uses two CNNs with dif-
ferent filter sizes. One CNN to learn temporal infor-
mation which has a smaller filter size and other CNN
with a larger filter size to learn frequency information
[2][10]. Four CNN layers and two max pooling layers

are used. The convolution layer performs 1D convo-
lution with its filters, followed by normalization. The
activation function used at the output layer is rectified
linear unit (ReLu). Drop out is further used to reduce
the feature size.

h1i = CNN1(ai) (1)

h2i = CNN2(ai) (2)

Xi = h1i ||h2i (3)

Where hi1 are temporal features from layer 1 of
CNN and hi2 are frequency features of CNN layer 2
and Xi is the concatenated feature set.

Figure 2: CNN-BiLSTM based training model

3.2 RNN based bi-directional LSTM for temporal
features

Bi-directional LSTM is used to learn temporal features
such as state transition rules. The concatenated infor-
mation from CNN layer 1 and layer 2 are input to this
section. The Bi-LSTM uses both forward and backward
propagation which run independently to learn from past
and future representation. The next state is predicted
previous(memory) conditions. Suppose there are Xi in-
put features from previous state representing 1-s EEG
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epoch, bi-directional LSTM learning is represented as,

hft , c
f
t = LSTMθf (h(t− 1)f , c(t− 1)f , xt) (4)

hbt , c
b
t = LSTMθb(h(t+ 1)b, c(t+ 1)b, xt) (5)

Where LSTM is performed on data xt, h
f
t , c

f
t , θf and

hbt , c
b
t , θb are parameters of forward and backward prop-

agation.

3.3 Model specifications

For the time-invariant CNN based feature learning
model, Two CNNs with two layers each. Layer 1 of
CNN1 with filter size as Fs/2 and stride size of 1 and
layer1 of CNN2 had a filter size of Fs*4 and stride size
of 1. Layer 2 of CNN1 and CNN2 had the number of
filters as 32, filter size as 3, and stride size was 1. The
pooling layer used max-pooling with filter size 2 and
stride size 1. Then 0.5 dropout operation was performed
on concatenated data. For Bi-LSTM cell size was 512.
From this, we could retain only significant features and
avoiding the problem of overfitting.

3.4 Algorithm

The model is trained end-to-end using the backpropaga-
tion technique. A two-level training approach is used to
train the model. At the first level model learns for time-
invariant features using two CNNs. The model further
learns for state transition rules to predict the state us-
ing BI-LSTM. Level1: The model is trained using two
CNNs using a supervised approach and Softmax func-
tion at the output layer. Then the model uses Adam
optimizer with learning rate lr. Level 2: The pretrained
model is further trained using Bi-LSTM which uses for-
ward and backpropagation techniques to learn from the
past and future. The state is predicted using state tran-
sition rules.

4 Experiments, Hardware Implementation,
and Results

The experimentation was carried out using data labeled
as alert and drowsy conditions. The feature learning
model of CNN-Bi-LSTM based network was experi-
mented for varying model parameters and verified on
ARM hardware. The model experimented with two
data sets i) Publicly available sleep edf ii) Neurosky
mind wave mobile sensor data collected from a virtual
driving simulation environment

4.1 Sleep edf data sets

The data sets used for training were obtained from pub-
licly available sleep data from Physionet database [11].
The sleep data files known as Polysomnograms(PSG.)
are in the European data formats( edf). The related
annotations are in hypnogram files (hypnogram.edf).
The data consists of data recorded from 61 subjects for
the whole night and has been categorized into differ-
ent sleep stages(W(wake), Sleep stage 1 to 4, Rapid
Eye movement(REM), and unidentified data as ?(Not
scored)). Sleep edf data consists of recording from Fpz-
Oz and Pz-Oz locations of EEG electrodes. The sam-
pling frequency of the data is 100Hz. For the experi-
mentation purpose, the data is separated as W and S1,
the sleep stage 1 or drowsy data, using Polyman tool.

Figure 3: EEG signals for sleep stage S1 and wake stage W

4.2 Data collection using the Neurosky Mindwave
sensor in Virtual driving environment

The raw EEG data is obtained from the brain using the
Neurosky Mindwave sensor (NeuroSky Inc., San Jose,
CA, USA)., a commercially available headset which is a
noninvasive type of brain-computer interface. The sen-
sor consists of a single dry electrode with a dimension
of 12mm x 16 mm, which is to be placed on Fp1(Frontal
left lobe), according to the 10-20 international system.
The data is provided through TGAMI(ThinkGear ASIC
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Module) integrated circuit. The sensor uses an elec-
trode clipped to the left ear lobe as a reference. The
sampling rate of the data is 512 Hz. The sensor is placed
on the scalp to acquire raw EEG information. The ac-
quired raw EEG is used for further processing.

4.3 The virtual driving simulation environment

A virtual driving simulation environment (figure 4) is
used to collect data using the Neurosky sensor. The
environment provides a vision of 180Â◦ from a driver
seat. Three front projectors simulate the real driving
views with inner and outer rear view mirrors with a per-
ceived field of vision close to 360Â◦. The sound system
is also provided with acoustics from inside and outside
the vehicle.

The recordings from the Neurosky mind wave sen-
sor consist of EEG signals from 18 participants, who
took the virtual driving simulator test. The duration
of the data was collected for three to four hours of
monotonous driving between the periods of 1.30 pm
to 5.30 pm. EEG signals acquired are from FP1.
The speed limit of the vehicle was set to 60km/h.
The data was collected in the form of raw EEG into
EDF(European Data Format) using MATLAB software.

Figure 4: Performance of training and validation for sleep edf data

4.4 Algorithm Implementation

The implementation of the algorithm was done using
TensorLayer, the extended library from Google Tensor-
flow. The numerical computations involving CPU and
GPUs during training and validation are performed us-
ing the TensorLayer library. The model is trained and
validated from the collected dataset a 2 GB Nvidia 840
MX GPU system; dependencies like python, NumPy,
CUDA toolkit 8.0 and CuDNN v5, TensorFlow-gpu,
matplotlib , scipy, pandas , tensor layer and sci-kit learn
were installed. The obtained checkpoints are saved as
a model that is deployed on ARM SBC with the pre-
installed TinkerOS (a Debian Linux derivative). All the

dependent libraries such as python, NumPy, and sci-kit
learn, are installed which are compatible with the hard-
ware to run the inference. The training time for each
fold was around 2.5 hours and testing time was nearly
40ms for 20 epochs.

4.5 Model Extraction

The trained model is extracted and saved in two meth-
ods,

• The weights are saved as .h5 file and the architec-
ture is saved as .json file. While loading the model,
first the architecture is loaded, and then weights
are added to it.

• Alternatively, the model with both training weights
and architecture is saved as .model file.

4.6 Hardware Implementation

Hardware implementation to deploy a neural network
requires special attention. Training and testing both
could be performed on the microcontroller having
higher RAM and a high-performance processor. Train-
ing on any personal computer and deploying the model
file on embedded hardware seems to an intelligent
choice. We selected the ARM-based Single board com-
puter with ARMv7-A 32-bit architecture, CPU with
quad-core 1.8GHZ ARM Cortex-A7, 600MHz Mali
T760 MP4 GPU[18]. This processing ability was suffi-
cient to run our application.

4.7 Virtual Environment

The testing of the algorithm is performed on the vir-
tual environment. A virtual environment tool that pro-
vides a platform wherein the dependencies are required
by each project can be maintained separately by creat-
ing isolated virtual environments. Python process uses
a heavy library, as in our case Keras, TensorFlow, Ten-
sorLayer, and also the hardware ARM SBC also has
several processes of the operating system. In such con-
ditions, the virtual environment helps maintain depen-
dencies of both Python and hardware OS. In the above
case of two processes, we are cutting off the depen-
dency of our application process with that of the default
processes of the ARM SBC. Thus by using a virtual en-
vironment for application processes, the load on OS is
reduced i.e. the dependencies of each process are iso-
lated from the system and each other.
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4.8 Experimenting with the model

Experimentation was done for variations in different
architecture for the first part, feature learning model,
which includes CNN layers. The drop out of 0.5 and
Bidirectional LSTM with 512 cell size was fixed. The
variations in the CNN layers are shown in table 1 along
with the results. Convolution layers, number of fil-
ters, filter size, and stride size were varied and the
results are compared. The model also experimented
with various tunable parameters, which included, based
on the number of epochs, batchsize, numunits4, em-
bedsize, inputdepth, nchannels, maxtimestep, output-
maxlength. After experimentation finally, the architec-
ture was freezed to two CNNs with two layers and two
Bi-LSTM. The model was evaluated using k-fold cross
validation where k was set to 10. For each fold (Ts-
Ts/k) recordings to train the model and Ts/k to test the
model where Ts is the total number of samples in the
data set. This procedure was iterated 10 times to test
all the readings and computed the performance metrics.
Table 2 and 3 show the accuracy results of training, val-
idation, and testing for both sleep edf and Neurosky
data.

Table 1: Results for different architectures for feature learning model

CNN
Architecture

Convolution
Layer-1

Convolution
Layer-2

Maxpool
layer

CNN-1 16,Fs/2,1 32,Fs*4,1 2,1
CNN-2 16, Fs*4,1 32,3,1 2,1
CNN-1 32, Fs/2,1 64, Fs*4, 1 2,1
CNN-2 32, Fs*4,1 64,3,1 2,1
CNN-1 128, Fs/2,1 128, Fs*4, 1 2,1
CNN-2 128,Fs*4,1 128,3,1 2,1

Table 2: Accuracy results of training, validation, and testing (Sleep
EDF)

Training Validation Testing
Wake 94.39 92.73 89.84

Sleep Stage1 93.23 91.67 90.67

Table 3: Accuracy results of training, validation, and testing (Neu-
rosky)

Training Validation Testing
Wake 92.56 90.73 88.56

Sleep Stage1 91.42 91.15 89.34

The average accuracy of around 90% is observed for
both the classes. The performance of the same is shown

Figure 5: Performance of training and validation for sleep edf data

in figure 5 and 6. The accuracy remains around 90% for
varying epoch size. The epoch size of 60 is found to be
appropriate.

Figure 6: Performance of training and validation for sleep edf data

4.9 Parameter Tuning

The first part of training which included CNN based
representation learning was trained using ADAM op-
timizer with a learning rate as 10-4, beta1 as 0.9, and
beta2 as 0.999. The second part of the training which
is done using sequence residual learning is also with
ADAM optimizer, but with learning rates as lr1 and lr2
as 10-6 and 10-4 respectively.
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4.10 Performance metrics

The network was evaluated for different performance
measures viz. each class accuracy, overall accuracy,
each class precision (PR), each-class recall (Re), and
each class F1 score(F1) and sensitivity(S). To compute
per class metrics we considered a single class as a pos-
itive class and remaining classes as a negative class.
Table 4 consists of the confusion matrix and Table 5
contains the results of different evaluation parameters.
These results are for recorded sleep edf and Neurosky
sensor readings. We could use the same model without
changing the parameters for both sleep edf and Neu-
rosky data. The results show similar performance for
both.

Table 4: Confusion Matrix

Data Sets Classes Wake Sleep Stage1
Sleep edf Wake 3326 274

Sleep stage1 186 3414
Neurosky sensor

Data Wake 1084 114

Sleep stage1 66 389

Table 5: Performance parameters

Data Sets Classes PR RE F1-score SP
Sleep edf Wake 92.38 94.70 92.98 92.57

Sleep stage1 94.83 92.57 93.67 94.70
Neurosky

sensor Wake 90.48 94.26 92.33 77.33

Sleep stage1 85.49 77.33 81.20 94.42

4.11 Performance Comparison with existing ap-
proaches

Also, when the test results are compared with the exist-
ing state of art methods that use only one channel data,
our results are convincing for both sleep edf and Neu-
rosky sensor test data. The comparison is shown in ta-
ble 6 for the overall accuracy and overall F1 score com-
pared with existing methods. The results of sleep edf
gave better accuracy compared to Neurosky sensor data
as the sleep edf data used for training was large com-
pared to the Neurosky data. The results are 90.25% and
83.67% for sleep edf and Neurosky sensor data respec-
tively which is higher compared to existing methods.

4.12 Discussion

The model was verified for training for both Neurosky
and Sleep edf data. The performance was evaluated for

Table 6: Comparison with existing approaches

Authors
Data set

and
Electrodes

Overall
Accuracy

Overall
F1 score

O. Tsinalis,
P. M. Matthews,

Y. Guo,
S. Zafeiriou.[21]

Sleep edf
Fpz-Cz 74.8 69.8

A. R. Hassan,
A. Subasi[23]

Sleep-edf
Pz-Oz 90.8 80.0

A. Supratak,
H. Dong, C.

Wu, and Y. Guo[24]

Sleep-edf
Fpz-Cz 82.0 76.9

O. Tsinalis,
P. M. Matthews,

Y. Guo, [22]

Sleep edf
Fpz-Cz 78.9 73.9

Mikito Ogino,
Yasue Mitsukura[25]

Neurosky
Mindwave

mobile
Fp1-A1

72.7 NA

CNN-BiLSTM
(Proposed method)

Sleep edf
Fpz-Cz 90.25 93.32

CNN-BiLSTM
(Proposed method)

Neurosky
Mindwave

mobile
Fp1-A1

83.67 81.76

overall accuracy, per class accuracy and other perfor-
mance metrics. Results showed that the accuracy was
around 90% when trained on the laboratory machines,
as discussed in the earlier sections. Also, as the algo-
rithm was expected to work in the real-world environ-
ment, the trained model was tested on a embedded hard-
ware and real-time signals. Hence, the trained model
was ported to hardware, in our case it is ARM-based
SBC and tested for real-time signals of Neurosky mind-
wave sensor. The results of the tests are as shown in
table 7 and 8. The test data was provided from the Neu-
rosky sensor used in a virtual simulation environment.
The model behaved with a test accuracy of 80.95%,
which is slightly low compared to the testing and vali-
dation results on the desktop PC. The results are in the
acceptable range and hence the model can be used for
real-time testing of driverâs alertness. The model works
independently with a response time of 30ms.

Table 7: Confusion matrix for Neurosky test data with ARM SBC

Data Sets Classes Wake Sleep Stage1
Neurosky data Wake 108 17

Sleep stage1 7 34
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Table 8: Evaluation of Performance parameters for test data with
ARM SBC

Classes PR RE F1-score SP Acc
Wake 86.4 93.1 89.62 66.66 86.40

Sleep stage1 82.92 66.6 73.90 93.10 80.95

5 Conclusion

The proposed CNN and Bi-LSTM based deep learning
model automatically learns the driver’s alertness using
single-channel EEG. The model is trained end-to-end
using the backpropagation technique. A two-level train-
ing approach is used to train the model to overcome the
class imbalance problem and to encode temporal infor-
mation into the model. The model learns time-invariant
features using convolution neural networks and transi-
tion rules related to stages using bidirectional LSTMs
from the EEG epochs. The model was evaluated us-
ing two different types of data sets i.e sleep edf and
for the Neurosky mindwave senor data. The implemen-
tation of the algorithm was done on ARM-based SBC
and tested for Neurosky sensor data. The trained CNN-
LSTM based model gave an accuracy of 93.3% and the
test model gave an accuracy of 89.4% when tested with
real-time signals using the Neurosky mind wave elec-
trode. As the model learns automatically without using
hand-engineered features, it is expected to be the better
approach for detecting driver alertness for automotive
applications.
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