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Abstract. Distance measures play an important role in cluster analysis. There is no single distance
measure that best fits for all types of the clustering problems. So, it is important to find set of distance
measures for different clustering techniques on datasets that yields optimal results. In this paper, an
attempt has been made to evaluate ten different distance measures on eight clustering techniques. The
quality of the distance measures has been computed on basis of three factors: accuracy, inter-cluster
and intra-cluster distances. The performance of clustering algorithms on different distance measures
has been evaluated on three artificial and six real life datasets. The experimental results reveal that the
performance and quality of different distance measures vary with the nature of data as well as clustering
techniques. Hence choice of distance measure must be done on basis of dataset and clustering technique.
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Introduction

Clustering is an important data mining technique where
information about labeling and structure is not avail-
able. It is the process of partitioning a set of data points
into different groups such that the data in each group are
similar to each other. Clustering algorithms are broadly
classified into two groups: hierarchical and partitional
[7]. Hierarchical clustering algorithms recursively find
nested clusters either in agglomerative mode or in divi-
sive mode. The former one starts with each data point
in its own cluster and merges the most similar pair of
clusters successively to form a cluster hierarchy and
the latter starts with all the data points in one cluster
and recursively divides each cluster into smaller clus-
ters [21]. The well-known agglomerative hierarchical

clustering algorithms are single, average, complete and
weighted linkage. On the other hand, partitional clus-
tering groups the data points into some pre-specified
number of clusters without using hierarchical structure.
The most popular partitional clustering techniques are
K-Means, K-Medoid, Fuzzy C-Means and Expectation-
Maximization.

These clustering techniques are based on similarity be-
tween data points, which is determined by a distance
measure. The distance measure plays an important role
in obtaining correct clusters. The selection of right
distance measure affects the results of clustering algo-
rithms. They may affect the shape, volume and orienta-
tion of clusters as some data points may be close to one
another according to one distance measure and far way
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according to another distance [[19, 20]. The motivation
of this paper is to analyze the effect and evaluate the
performance of various distance measures on different
clustering techniques.

In this paper, we study the distance measures from
a new perspective: how they affect the clustering re-
sults. The ten well-known distance measures are dis-
cussed with their relative strengths and weaknesses.
These are: Euclidean, Standardized Euclidean, Manhat-
tan, Mahalanbois, Cosine Similarity, Pearson Correla-
tion, Spearman Correlation, Chebychev, Canberra, and
Bray-Curtis. These are evaluated in conjunction with
eight different clustering techniques over nine different
datasets. The rest of the paper is organized as follows.
Section 2 presents clustering techniques. Section 3 in-
troduces distance measures that used for numerical data
sets in clustering. In Section 4, the effect of distance
measures on clustering techniques is investigated. Fi-
nally, a concluding remark is drawn in Section 5.

2 Clustering Techniques

The clustering algorithms are used to partition the
dataset X = x1,%9,...,%,...,2N, Where z; =
(:z:jl,xjg, - ,de) € R? into a number of clusters,
say K, (Cy,Cy,...,Ck). The parition matrix U (X)
is represented as U = [ug;],k = 1,2,..., K, and
Jj = 1,2...,N, where ug; is membership of dat-
apoint z; to clusters Cy. The uy; = 1if z; €
Cy; otherwise, uy; = 0.

2.1 Hierarchical Clustering Techniques

The agglomerative hierarchical clustering techniques
have been used in this paper. The well- known ag-
glomerative hierarchical techniques are single linkage,
average linkage, complete linkage and weighted link-
age.

The single linkage clustering is based on the local
connectivity criterion [7]]. It is also known as a nearest
neighbor method. It starts by considering each data
point in a cluster of its own. It computes the distances
between two clusters p and ¢ such as [13]]

poooin  {d(wi, o;)} M
Based on these distances, it merges the two closest clus-
ters and replacing them by one merged cluster. The dis-
tances of the remaining clusters from the merged clus-
ter are recomputed as mentioned above. This process
continues until all the data points are in a single clus-
ter. The main advantage of single linkage is that it can
handle non-elliptical shapes. However, it is sensitive to-
wards noise and outliers [[7, [18]].

Dsr(p,q) =

The average linkage clustering has a similar procedure
as the single linkage except the distance computation
between two clusters. It uses the average of pairwise
distance between points in two clusters p and q as:

1
Dar(p,q) = ol o> dia) @
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It is less susceptible to noise and outliers. The one dis-
advantage is its biasing towards globular clusters [18]].
The complete linkage clustering is also called the fur-
thest method. It uses the largest distance between data
points in two clusters p and g as:

max
Ti€P,T;Eq

DC’L(pa q) = {d(xﬁxj)} (3)
It does not account for cluster structure. It cannot de-
tect the non-spherical clusters. The weighted average
linkage method is also known as weighted pair group
method using arithmetic average. The difference be-
tween average and weighted linkage is that the dis-
tances between the newly formed cluster and the rest
are weighted based on the number of data points in each
cluster.

2.2 Partitional Clustering Techniques

The well-known partitional techniques are K-Means
and K-Mediods. The main disadvantages of these tech-
niques are that these are easily trapped in local optima.
The K-Means is well-known partitional clustering al-
gorithm [[7]. It seeks an optimal partition of data by
minimizing the sum-of-squared-error criterion with an
iterative optimization procedure such as [[7, [13]]

N K
JUV) =3 uijllay — vil® @
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where v; is the center of cluster C;. Here, cluster cen-
ters are initialized by randomly chosen data points form
dataset. Each data point is assigned to the nearest clus-
ter using minimum distance criterion. Thereafter, the
cluster centers are updated to the mean of data points
belonging to them. This process is repeated until there
is no change for each cluster. The disadvantage of K-
Means is that it is sensitive towards initialization of
cluster centers.

The K-Medoid algorithm is an adaptation of K-Means
algorithm. Rather than calculating the mean of data
points in each cluster, medoid is chosen for each cluster
at each iteration.

Shelokar et al. [[17] described an ant colony optimiza-
tion methodology for data clustering (ACOC). It mainly
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relies on pheromone trails to guide ants to group data
points according to their similarity and on a local search
that randomly tries to improves the best iteration solu-
tion before updating pheromone trails.

Kumar et al. [9, [10] developed a modified harmony
search based clustering (M HSC) technique. Here
cluster center based encoding scheme is used. Each
harmony vector contains K cluster centers, which are
initialized to K randomly chosen data points from the
given dataset. This process is repeated for each of the
HMS vectors in the harmony memory, where HM S
is the harmony memory size. The data points are as-
signed to different cluster centers based on minimum
Euclidean distance criterion and cluster centers repre-
sented by the harmony vectors are replaced by the mean
data points of respective clusters. The fitness of each
harmony vectors is computed using sum-of-squared-
error criterion and is minimized using modified har-
mony search algorithm. The improvisation process is
used to update the harmony vectors. In M HSC, the
processes of fitness computation and improvisation are
executed for a maximum number of iterations. The best
harmony vector at the end of last iteration provides the
solution to the clustering problem.

3 Distance Measures

The distance measure must be determined before the
clustering. It reflects the degree of separation among
target data points and should correspond to the charac-
teristics used to distinguish the clusters embedded in the
dataset [6l 13]. These characteristics are data dependent
in most of cases. There is no single distance measure
that is best for all types of clustering problems. There-
fore, understanding the importance of different distance
measures will help us to choose the best one. Every dis-
tance measure is not a metric. To qualify as a metric,
a measure must satisfy the following four conditions
[7,21].

1. The distance between any two data points must be
non-negative, i.e.,
D(x;,x;) > 0forall z; and

2. The distance between two data points must be zero
if and only if the two data points are identical, i.e.,
D(z;,z;) =0if and only if z; = ;

3. The distance from z; to x; is the same as the dis-

tance from z; to x;, i.e.,
D(a:i,xj) = D(Sﬂj,l‘i)

4. The distance measure must satisfy the triangle in-
equality, which is

D(z;,x;) + D(zj, x) > D(x;, z) forall z;, x;
and xy, .

3.1 Euclidean Distance

The Euclidean distance is most commonly used dis-
tance measure. It is also known as L, norm. The Eu-
clidean distance, D., between two data points x; and
2, is defined as:

d %
De(z,2;) = (Z |z — le|2> ®)
=1

where x;; and x ;; represent the I*" dimension of z; and

x; respectively. It tends to form hyperspherical clus-
ters. It satisfies all the above mentioned four conditions
and therefore is a metric [21]]. The strength of this mea-
sure is that clusters formed are invariant to translation
and rotation in the feature space. This measure has dis-
advantages also. If one of the input attributes has a rel-
atively large range, then it can overcome the other at-
tributes [21]].

3.2 Standardized Euclidean Distance

The standardized Euclidean distance is defined as the
Euclidean distance between the data points divided by
their standard deviation. The squared standardized Eu-
clidean distance between x; and x; is mathematically
described as:

Dse(xi,2;) = (x; — 2;) D" (w; — ;)" (6)

where D is the diagonal matrix with diagonal elements
are given by va?, which represents the variance of vari-
able x; over IV data points. This measure is a metric
as it satisfies the conditions of metric. When squared
standardized Euclidean distance is multiplied by the ge-
ometric mean of the variances, it produces a diagonal
Mahalanobis distance measure. The diagonal Maha-
lanobis distance fails to use the information of the di-
agonal in the covariance matrix [16].

3.3 Manhattan Distance

Manhattan distance between two data points is defined
as the sum of the absolute differences of their coordi-
nates. It is also known as a city block, rectilinear, taxi-
cab or L, distance. It is mathematically defined as:

d

Darn (@i, ;) =Y | — 1) (N

=1

The clusters formed using Manhattan distance tend to
form rectangular shaped clusters. When all the features
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of dataset are binary in nature, the Manhattan distance
acts as a Hamming distance [7]]. It is also a metric.
The advantage of over Euclidean distance is the reduced
computation time [7]. Further it does not depend upon
the translation and reflection of the coordinate system.
The one disadvantage is that it depends upon the rota-
tion of the coordinate system.

3.4 Mahalanbois Distance

Mahalanobis [[12] introduced a new distance measure
named as Mahalanobis distance. It is also known as
quadratic distance. It is based on the correlations be-
tween variables by which different patterns can be iden-
tified and analyzed. The Mahalanobis distance is de-
fined as:

DMa($7;,JJj) = (CCZ — JZj)Vil(l‘i — $j)T (8)

where V' is covariance matrix. If the covariance matrix
is identity matrix, the Mahalanobis distance reduces to
the Euclidean distance. It differs from the Euclidean
distance in that it takes into account the correlations
of the dataset and is scale-invariant. It leads to vio-
lations of the triangle inequality and sensitive towards
sampling fluctuations (Cherry et al., 1982). The Maha-
lanobis distance tends to form ellipsoidal clusters.

3.5 Cosine Distance

Cosine distance is a measure of dissimilarity between
two vectors by measuring the cosine of the angle be-
tween them. It is defined as

T, .
Dcos(l‘iwrj) =1- (|xlxj> (9)

e el

It is bounded between 0 and 1 if and are non-negative.
It is used to measure cohesion within clusters [18]. This
measure is not a distance metric and violates the trian-
gle inequality. It is also invariant to scaling. It is unable
to provide information on the magnitude of the differ-
ences. It is not invariant to shifts.

3.6 Correlation Distance

The correlation distance measure is derived from the
Pearson correlation coefficient [[8]]. The correlation co-
efficient is used to measure the degree of linear depen-
dency between two data points. The correlation based
distance measure is mathematically formulated as:

DCorr(xian) =1- SCR(xivxj) (10)

Sy (mae) (myi)
\/Ejizl("%k)QE:Z:l("%k)2

(1)

Scr(i,z;) =

where m;, = T — Ti, Mk = Tjk — Tj, T; =
ézzzl zi, and T; = 522:1 xj,. This measure is
not a distance metric. It tends to disclose the difference
in shapes rather than to detect the magnitude of differ-
ences between two data points [21]. It is invariant to

both scaling and translation.

3.7 Spearman Distance

The Spearman distance measure is derived from the
Spearman correlation coefficient [S)]. It can be defined
as

DSpear(xiyxj) =1- Sc(afi,afj) (]2)

Se(ws, ;) = S (mi) (m,) 3
Vi m)2 S )2

where mg, = r(zik) — T, ml, = r(z;x) — 7. In

Spearman rank correlation, each data value is replaced
by their rank if the data in each vector is ordered by
its value. Then Pearson correlation between the two
rank vectors is computed instead of the data vectors.
The Spearman rank correlation is an example of a non-
parametric similarity measure. It is robust against out-
liers than the Pearson correlation. The disadvantage is
that there is a loss of information when data are con-
verted to ranks.

3.8 Chebyshev Distance

The Chebyshev distance calculates the maximum of
the absolute differences between the features of a pair
of data points. This distance is named after Panfnuty
Chebyshev. It is also known as tchebyschev distance,
maximum metric, chessboard distance, or metric. It is
mathematically defined as

Dep(zi, xj) = mazi<i<a(|zi — zj1]) (14)

This distance measure is a metric. The advantage is that
it takes less time to decide the distances between data
sets [[15]).

3.9 Canberra Distance

Lance and Williams [11] introduced a Canberra dis-
tance measure. It measures the sum of absolute frac-
tional differences between the features of a pair of data
points. It is mathematically defined as follows:

Z |z — %l|
|| + 2]

This distance measure is a metric. It is sensitive to a
small change when both coordinates are near to zero.

DCan 177,17] (15)
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3.10 Bray-Curtis Distance

The Bray-Curtis distance is also known as Sorensen dis-
tance [2]. This measure is computed using the absolute
differences divided by the summation. It is defined as
follows:

d
e lma — 2l

DBc TiyXj) =
(6, 23) S (@ + )

This distance measure is not a metric as it does not sat-
isfy the triangle inequality property. The main draw-
back of this measure is that it is undefined if both data
points are near zero values.

(16)

4 Experimental Results

This section provides a description of the datasets and
demonstrate the efficiency of well-known clustering
algorithms based on ten different distance measures.
The results are evaluated and compared using some
widely acceptable performance evaluation metrics such
as accuracy, inter-cluster and intra-cluster distance [4].
Large value of accuracy measure is required for bet-
ter clustering. Smaller value of intra-cluster and large
value of inter-cluster distance is required for better clus-
tering. All the results are evaluated in terms of *'mean’
and ’standard deviation’. The standard deviation is used
as a measure of robustness, which is shown in parenthe-
sis.

4.1 Datasets used

Experiments are carried out with three artificial and six
real-life datasets. A description of datasets is depicted
in Table 1. The artificial datasets are named as Sp_4
_3,Sp_5 _2 and Sp_6 _2. These are taken from [1I].
The six real-life datasets are obtained from UCI ma-
chine learning database [14].

Table 1: Description of Datasets Used

[ Dataset Name [ Instances [ Features [ Classes ]

Sp_5_2 250 2 5
Sp_6_2 300 2 6
Sp_4_3 400 3 4
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Haberman 306 3 2
Bupa 345 6 2
Libras 360 90 15

4.2 Parameter setting for the algorithms

The K-Means and K-Medoid were executed for 100 it-
erations. The parameters of the ACOC are as follows:
evaporation rate = 0.1, number of ants = 20, and maxi-
mum number of iterations = 100 as mentioned in [17]].
The parameters of the MHSC are as follows: harmony
memory size = 15 and maximum number of iterations =
100. The pitch adjustment rate, harmony memory con-
sideration rate and bandwidth are chosen as in [9, [10].
The value of K, number of clusters, for datasets equals
the number of classes of the corresponding datasets as
mentioned in Table 1.

4.3 Experimentation 1: Effect of distance mea-
sures on Hierarchical Techniques

Tables 2-10 show the effect of distance measures on ac-
curacy for Sp_5 _2, Sp_6 _2, Sp_4 _3, Iris, Wine,
Glass, Haberman, Bupa and Libras datasets respec-
tively. The results reported in tables are the average
values obtained over ten runs of algorithms. Figures
1-2 show the effect of distance measures on inter and
intra-cluster distance.

Figure 1: Effect of distance measures on Inter-cluster distance for
hierarchical techniques; (a) Sp_5 _2 (b) Sp_6 _2 (c) Sp_4 _3 (d)
Iris (e) Wine (f) Glass (g) Glass (h) Haberman (i) Bupa.

Figure 2: Effect of distance measures on Intra-cluster distance for
hierarchical techniques; (a) Sp_5 _2 (b) Sp_6 _2 (c) Sp_4 _3 (d)
Iris (e) Wine (f) Glass (g) Glass (h) Haberman (i) Bupa.

For Sph_5 _2 (Table 2), it is found that the single
and weighted linkage with Euclidean distance provide
better accuracy over other distance measures. How-
ever, complete and average linkage with Bray-Curtis
distance attain high accuracy as compared to other
distance measures. From Figure 1(a), it has been
analyzed that the complete, average, and weighted
linkage clustering techniques using correlation distance
produce well separated clusters. The single linkage
clustering with Chebychev distance offers superior
cluster separation over other distance measures. The
complete, average, and weighted linkage clustering
algorithms with Spearman distance produce compact
clusters over other distance measures. The single
linkage with Bray-Curtis distance gives best cluster
compactness (Figure 2(a)).
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Table 2: Effect of distance measures on accuracy of cluster formed
for Sph_5 _2 dataset for Hierachical Clustering Techniques

Table 4: Effect of distance measures on accuracy of cluster formed
for Sph_4 _3 dataset for Hierarchical Clustering Techniques

[ Dist.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

[ Dist.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

Eucl. 0596 | 0948 | 0940 | 0.956
(0.000) | (0.000) | (0.000) | (0.000)
S.Eucl. 0588 | 0848 | 0948 | 0948
(0.000) | (0.000) | (0.000) | (0.000)
Manh. 0356 | 0940 | 0944 | 0.860
(0.000) | (0.000) | (0.000) | (0.000)
Mahal. 0588 | 0928 | 0948 | 0912
(0.000) | (0.000) | (0.000) | (0.000)
Cos. 0464 | 0488 | 0508 | 0.556
(0.000) | (0.000) | (0.000) | (0.000)
Corr. 0400 | 0416 | 0404 | 0408
(0.000) | (0.000) | (0.000) | (0.000)
Spear. 0400 | 0400 | 0400 | 0.400
(0.000) | (0.000) | (0.000) | (0.000)
Cheb. 0420 | 0892 | 0932 | 0.89
(0.000) | (0.000) | (0.000) | (0.000)
Canb. 0216 | 0736 | 0944 | 0812
(0.000) | (0.000) | (0.000) | (0.000)
Bray 0204 | 0964 | 0964 | 0720
(0.000) | (0.000) | (0.000) | (0.000)

Bucl. 1000 | 1.000 | 1.000 | 1.000
(0.000) | (0.000) | (0.000) | (0.000)

S.Eucl. 1.000 | 1.000 | 1.000 | 1.000
(0.000) | (0.000) | (0.000) | (0.000)

Manh. 1.000 | 1.000 | 1.000 | 1.000
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. 0258 | 0520 | 0508 | 0398
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0358 | 0323 | 0338 | 0340
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0300 | 0310 | 0308 | 0.290
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0302 | 0302 | 0302 | 0302
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 1.000 | 1.000 | 1.000 | 1.000
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0495 | 0358 | 0385 0.375
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0748 | 0335 | 0330 | 0345
(0.000) | (0.000) | (0.000) | (0.000)

Table 3: Effect of distance measures on accuracy of cluster formed
for Sph_6 _2 dataset for Hierarchical Clustering Techniques

[ Dist.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

FEucl. 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000)
S.Eucl. 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000)
Manh. 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000)
Mahal. 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000)
Cos. 0.483 0.560 0.577 0.577
(0.000) | (0.000) | (0.000) | (0.000)
Corr. 0.320 0.340 0.340 0.323
(0.000) | (0.000) | (0.000) | (0.000)
Spear. 0.320 0.320 0.320 0.320
(0.000) | (0.000) | (0.000) | (0.000)
Cheb. 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000)
Canb. 0.827 0.760 0.810 0.760
(0.000) | (0.000) | (0.000) | (0.000)
Bray 0.813 0.760 0.760 0.760
(0.000) | (0.000) | (0.000) | (0.000)

For Sph_6 _2 dataset (Table 3), all above-

mentioned hierarchical clustering techniques provide
well-separated and compact clusters with 100 percent
accuracy using five distance measures as Euclidean,
Standard Euclidean, Manhattan, Mahalanobis, and
Chebychev.

From Table 4, Figures 1(c) and 2(c), it is observed

that all above-mentioned hierarchical clustering tech-
niques provide well-separated and compact clusters
with 100 percent accuracy using four distance mea-
sures (Euclidean, Standard Euclidean, Manhattan, and
Chebychev) for Sph_4 _3 dataset.

Table 5: Effect of distance measures on accuracy of cluster formed
for Iris dataset for Hierarchical Clustering Techniques

[ Dist.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

Eul. 0.680 | 0840 | 0907 | 0.900
(0.000) | (0.000) | (0.000) | (0.000)

S.Eucl. 0660 | 0787 | 0687 | 0567
(0.000) | (0.000) | (0.000) | (0.000)

Manh. 0673 | 0893 | 0900 | 0953
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. 0353 | 0413 | 0347 | 0607
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0660 | 0840 | 0660 | 0.960
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0660 | 0853 | 0947 | 0.687
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0673 | 0673 | 0673 0.673
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 0.680 | 0813 | 0733 0.740
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0627 | 0960 | 0627 | 0687
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0660 | 0893 | 0693 0.827
(0.000) | (0.000) | (0.000) | (0.000)

For Iris dataset (Table 5), the single linkage with
Euclidean or Chebyshev distance attains better accu-
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racy than the other distance measures. However, it
produces well-separated clusters with Mahalanobis dis-
tance (Figure 1(d)). From Figure 2(d), it has been found
that single linkage gives compact clusters with four dis-
tance measures (Standard Euclidean, Cosine, Correla-
tion, and Bray-Curtis). The complete linkage with Can-
berra distance provides higher accuracy than the other
distances. It offers best cluster separation and compact-
ness with Spearman distance (Figures 1(d) and 2(d)).
The average linkage clustering with Correlation dis-
tance attains best accuracy. However, it gives well-
separated clusters with Mahalanobis and compact clus-
ters with Cosine distance. The weighted linkage using
Cosine distance offeres best accuracy among other dis-
tance measures. It provides compact and best cluster
separation with Spearman distance.

Table 6: Effect of distance measures on accuracy of cluster formed
for Wine dataset for Hierarchical Clustering Techniques

[ D.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

Eucl. 0427 | 0674 | 0612 | 0562
(0.000) | (0.000) | (0.000) | (0.000)

S.Eucl. | 0376 | 0837 | 0388 0.618
(0.000) | (0.000) | (0.000) | (0.000)

Manh. | 0399 | 0674 | 0545 0.635
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. | 0388 | 0371 0.388 0371
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0410 | 0562 | 0448 0.483
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0388 | 0685 | 0472 | 0.545
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0387 | 0612 | 0612 | 0589
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 0427 | 0657 | 0612 | 0545
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0387 | 0652 | 0646 | 0.646
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0399 | 0719 | 0725 | 0573
(0.000) | (0.000) | (0.000) | (0.000)

For Wine dataset, the single linkage with Eu-
clidean or Chebychev distance produces well-separated
clusters having optimal accuracy. It gives compact
clusters with Bray-Curtis or City-Block distance
(Figure 2(e)). The complete linkage with Standard
Euclidean distance attains higher accuracy as compared
to other distance measures. It produces well-separated
clusters with Correlation distance (Figure 1(e)). The
single and complete linkage produce compact clusters
with Bray-Curtis distance. The average linkage with
Bray-Curtis attains higher accuracy. The average
linkage provides well-separated cluster with Euclidean
or Chebychev distance and compact clusters with
Mahalanobis distance. The weighted linkage with

Canberra distance provides better accuracy than the
other distance measures. It produces compact and
well-separated clusters with City-Block distance.

Table 7: Effect of distance measures on accuracy of cluster formed
for Glass dataset for Hierarchical Clustering Techniques

[ D.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

Bucl. 0365 | 0486 | 0379 | 0388
S.Eucl. | 0365 | 0407 | 0379 | 0374

Manh. | 0369 | 0491 0374 | 0388
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. | 0369 | 0421 0374 | 0379
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0369 | 0514 | 0477 | 0397
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0369 | 0514 | 0500 | 0407
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0365 | 0486 | 0477 | 0477
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 0365 | 0495 | 0477 | 0.500
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0346 | 0463 | 0.365 0.365
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0369 | 0491 0374 | 0388
(0.000) | (0.000) | (0.000) | (0.000)

For Glass dataset, the single linkage clustering
provides higher accuracy over five distances (Man-
hattan, Mahalanobis, Cosine, Correlation and Bray-
Curtis). The complete linkage attains good accuracy
with Cosine and Correlation distances. The average
linkage with Correlation distance produces superior ac-
curacy. The weighted linkage provides better accu-
racy using Chebyshev distance. The single, complete,
and weighted linkage with Standard Euclidean distance
gives well-separated clusters (Figure 1(f)). The av-
erage linkage provides well-separated clusters using
City-Block or Bray-Curtis distance. The single link-
age with Canberra distance generates compact clusters.
The complete and weighted linkage with Standard Eu-
clidean distance gives clusters with good compactness
(Figure 2(f)). The average linkage gives better compact
clusters with Mahalanobis distance.

For Haberman dataset (Table 8), the single link-
age produces similar accuracy, inter-cluster distance
and intra-cluster distance for all ten distance measures.
Complete linkage attains best accuracy with Standard
Euclidean distance. The average linkage with three dis-
tances (i.e. Euclidean, Spearman and Correlation) pro-
vide good accuracy. The complete and average linkage
give well-separated and compact clusters with Spear-
man or Correlation distance (Figures 1(g) and 2(g)).
The weighted linkage with five distance (Euclidean,
Mahalanobis, Spearman, Correlation and Bray-Curtis)
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Table 8: Effect of distance measures on accuracy of cluster formed
for Haberman dataset for Hierarchical Clustering Techniques

[ D.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

FEucl. 0.739 0.556 0.739 0.739
(0.000) | (0.000) | (0.000) (0.000)

S.Eucl. 0.739 0.748 0.735 0.735
(0.000) | (0.000) | (0.000) | (0.000)

Manbh. 0.739 0.742 0.735 0.627
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. 0.739 0.745 0.735 0.739
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0.739 0.732 0.732 0.732
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0.739 0.739 0.739 0.739
(0.000) | (0.000) | (0.000) (0.000)

Spear. 0.739 0.739 0.739 0.739
(0.000) | (0.000) | (0.000) (0.000)

Cheb. 0.739 0.552 0.735 0.637
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0.739 0.569 0.582 0.582
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0.739 0.732 0.735 0.739
(0.000) | (0.000) | (0.000) | (0.000)

provides similar accuracy. It produces compact clusters
with Canberra distance and well-separated clusters with
two distances (Spearman and Correlation).

Table 9: Effect of distance measures on accuracy of cluster formed
for Bupa dataset for Hierarchical Clustering Techniques

[ D.Meas. | S.Lin. | C.Lin. | ALin. [ W.Lin. ]

Eucl. 0577 | 0577 | 0557 0.577
(0.000) | (0.000) | (0.000) | (0.000)

S.Eucl. | 0577 | 0559 | 0571 0.577
(0.000) | (0.000) | (0.000) | (0.000)

Manh. | 0571 0574 | 0562 | 0557
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. | 0577 | 0545 | 0577 | 0577
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0577 | 0551 0562 | 0.565
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0577 | 0.551 0574 | 0.551
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0577 | 0507 | 0571 0.571
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 0577 | 0554 | 0557 0571
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0577 | 0522 | 0562 | 0554
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0577 | 0559 | 0565 0.554
(0.000) | (0.000) | (0.000) | (0.000)

The results obtained for the Bupa dataset (Table 9)
show that the single linkage clustering produces sim-
ilar accuracy for nine distance measures except Man-
hattan. It produces well-separated clusters using Maha-
lanobis distance and compact clusters using three dis-

tances named as Euclidean, Bray-Curtis, and Cheby-
shev (Figures 1(h) and 2(h)). The complete linkage
using Euclidean distance produces accurate and com-
pact clusters. It provides well-separated clusters with
Bray-Curtis. The average linkage using Mahalanobis
distance produces accurate and compact clusters. It
provides well-separated clusters with City-Block. The
weighted linkage attains best accuracy value on Eu-
clidean, Standard Euclidean, and Mahalanobis dis-
tances. It generates compact clusters with Mahalanobis
distance and well-separated clusters with Cosine dis-
tance.

Table 10: Effect of distance measures on accuracy of cluster formed
for Libras dataset for Hierarchical Clustering Techniques

[ D.Meas. [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]

Bul. 0072 | 0253 0244 | 0.183
(0.000) | (0.000) | (0.000) | (0.000)

S.Eucl. | 0.075 0.158 0.078 0.256
(0.000) | (0.000) | (0.000) | (0.000)

Manh. 0078 | 0.147 | 0286 | 0267
(0.000) | (0.000) | (0.000) | (0.000)

Mahal. | 0069 | 0075 0069 | 0.069
(0.000) | (0.000) | (0.000) | (0.000)

Cos. 0078 | 0119 | 0189 | 0.100
(0.000) | (0.000) | (0.000) | (0.000)

Corr. 0.106 | 0094 | 0164 | 0.108
(0.000) | (0.000) | (0.000) | (0.000)

Spear. 0069 | 0275 | 0256 | 0.266
(0.000) | (0.000) | (0.000) | (0.000)

Cheb. 0.067 | 0261 0.158 0.197
(0.000) | (0.000) | (0.000) | (0.000)

Canb. 0072 | 0.068 0.068 0.150
(0.000) | (0.000) | (0.000) | (0.000)

Bray 0072 | 0244 | 0139 | 0.128
(0.000) | (0.000) | (0.000) | (0.000)

For Libras dataset results given in Table 10, show
that the single linkage clustering using correlation
distance provide good accuracy. The single linkage
gives well-separated clusters using Cosine.  The
Complete linkage attains high accuracy over Spearman
distance. The average and weighted linkage cluster-
ing with Manhattan distance gives better accuracy
than the other distances. The complete and average
linkage techniques produce well-separated clusters
with Bray-Curtis distance (Figure 1(i)). The weighted
linkage technique with Chebyshev distance generates
separated clusters. Form Figure 2(i), it has been found
that Mahalanobis distance provides compact clusters
for all hierarchical techniques.

The aforementioned results indicate that the differ-
ent distance measures with clustering techniques
show different cluster quality value. The summa-
rized results for hierarchical clustering techniques in
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terms of accuracy, Inter — cluster Distance, and
Intra — cluster Distance are tabulated in Tables 11,
12 and 13.

Table 11: Best distance measures corresponding to datasets and hier-
archical clustering techniques in terms of Accuracy

[ Dataset [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]
Sp_5_2 FEucl. Bray Bray FEucl.
Sp_6_2 S5 S5 S5 S5
Sp_4_3 FEucl. Fucl. Fucl. Fucl.

S.Eucl. | S.Eucl. | S.Eucl. | S.Eucl.
Mahal. | Mahal. | Mahal. | Mahal.
Cheb. Cheb. Cheb. Cheb.
Iris FEucl. Canb. Corr. Cos.
Cheb.
Wine FEucl. S.Eucl. Bray Canb.
Cheb.
Glass Mahal. Cos. Corr. Cheb.
Manh. Corr.
Corr.
Bray
Cos.
Haber. All S.Eucl. Corr. Spear
Spear Bray
FEucl. Mahal.
FEucl.
Corr.
Bupa All Eucl. Mahal. Eucl.
except S.Eucl.
Manh. Mahal.
Libras Corr. Spear Manh. Manh.
CMC Corr. Canb. Cheb. Corr.

Table 12: Best distance measures corresponding to datasets and hier-
archical clustering techniques in terms of Inter-cluster Distance

[ Dataset [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]
Sp_5_2 Cheb Corr. Spear Corr.
Sp_6_2 S5 S5 S5 S5
Sp_4_3 Mahal. FEucl. FEucl. Fucl.

S.Eucl. | S.Eucl. | S.Eucl.
Mahal. | Mahal. | Mahal.
Cheb. Cheb. Cheb.
Iris Mahal. Spear Mahal. Spear
Cheb.
Wine FEucl. Canb. FEucl. Manh.
Cheb. Cheb.
Glass S.Eucl. | S.Eucl. | Manh. | S.Eucl.
Bray
Haber All Corr. Corr. Corr.
Spear Spear Spear
Bupa Mahal. Bray Manh. Clos.
Libras Cos. Bray Bray Cheb.

Table 13: Best distance measures corresponding to datasets and hier-
archical clustering techniques in terms of Intra-cluster Distance

[ Dataset [ S.Lin. [ C.Lin. [ A.Lin. [ W.Lin. ]
Sp_5_2 Bray Spear Spear Spear
Sp_6_2 S5 S5 S5 S5
Sp_4_3 Fucl. Fucl. Fucl. FEucl.

S.Eucl. | S.Eucl. | S.Eucl. | S.Eucl.
Mahal. | Mahal. | Mahal. | Mahal.
Cheb. Cheb. Cheb. Cheb.
Iris S.Eucl. Spear Cos. Spear
Cos.
Corr.
Wine Manh. Bray Mahal. | Manh.
Bray
Glass Canb. S.Eucl. | Mahal. | S.Eucl.
Haber. All Corr. Corr. Canb.
Spear Spear
Bupa Eucl. Eucl. Mahal. | Mahal.
Bray
Cheb.
Libras Mahal. | Mahal. | Mahal. | Mahal.

4.4 Experimentation 2: Effect of distance mea-
sures on Partitional Techniques

Tables 14-22 show the effect of distance measures on
accuracy for Sp_5 _2, Sp_6 _2, Sp_4 _3, Iris, Wine,
Glass, Haberman, Bupa and Libras datasets respec-
tively. The results reported in tables are the average
values obtained over ten runs of algorithms. Figures
3-4 show the effect of distance measures on inter and
intra-cluster distance.

Figure 3: Effect of distance measures on Inter-cluster Distance for
partitional techniques; (a) Sp_5 _2 (b) Sp_6 _2(c) Sp_4 _3(d) Iris
(e) Wine (f) Glass (g) Glass (h) Haberman (i) Bupa.

Figure 4: Effect of distance measures on Intra-cluster Distance for
partitional techniques; (a) Sp_5 _2 (b) Sp_6 _2(c) Sp_4 _3(d) Iris
(e) Wine (f) Glass (g) Glass (h) Haberman (i) Bupa.

For Sph_5 _2 dataset (Table 14), MHSC and K-
Medoid attain best accuracy with Euclidean distance.
The K-Means clustering algorithm with Chebychev
distance attains best accuracy. The ACOC algorithm
provides higher accuracy with Bray-Curtis distance.
The K-Medoid and ACOC with Spearman distance
produce compact and well-separated clusters (Figure
3(a)). The K-Means with Spearman distance gives well
separated clusters. The MHSC with Canberra distance
offers superior cluster separation over other distance
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Table 14: Effect of distance measures on accuracy of cluster formed
for Sph_5 _2 dataset for Partitional Clustering Techniques

[ Dist.Meas. [ KM [ KMD [ ACOC [ MHSC ]

FEucl. 0.958 0.907 0.940 0.956
(0.0144) | (0.137) | (0.013) | (0.074)

S.Eucl. 0.965 0.867 0.948 0.948
(0.018) | (0.146) | (0.011) | (0.078)

Manh. 0.863 0.815 0.944 0.860
(0.101) | (0.086) | (0.008) | (0.086)

Mahal. 0.959 0.895 0.948 0912
(0.012) | (0.117) | (0.008) | (0.095)

Cos. 0.583 0.529 0.508 0.556
(0.039) | (0.035) | (0.006) | (0.104)

Corr. 0.400 0.409 0.404 0.408
(0.000) | (0.017) | (0.004) | (0.107)

Spear. 0.400 0.400 0.400 0.400
(0.000) | (0.000) | (0.011) | (0.066)

Cheb. 0.978 0.855 0.932 0.896
(0.006) | (0.140) | (0.009) | (0.048)

Canb. 0.943 0.851 0.944 0.812
(0.021) | (0.068) | (0.011) | (0.050)

Bray 0.887 0.895 0.964 0.720
(0.107) | (0.062) | (0.006) | (0.011)

measures. The MHSC gives compact clusters with

Euclidean distance (Figure 4(a)).

Table 15: Effect of distance measures on accuracy of cluster formed
for Sph_6 _2 dataset for Partitional Clustering Techniques

[ Dist.Meas. | KM [ KMD | ACOC | MHSC ]
Eucl. 0794 | 0.941 0.213 0.804
(0.143) | (0.109) | (0.008) | (0.056)
S.Eucl. 0739 | 0.803 0.209 0.803
(0.135) | (0.136) | (0.007) | (0.076)
Manbh. 0792 | 0873 0.209 0.829
(0.146) | (0.137) | (0.005) | (0.007)
Mabhal. 0799 | 0915 0.205 0.803
(0.139) | (0.118) | (0.007) | (0.039)
Cos. 0578 | 0546 | 0.202 0.768
(0.054) | (0.054) | (0.016) | (0.083)
Corr. 0.325 0300 | 0.205 0.648
(0.012) | (0.014) | (0.012) | (0.090)
Spear. 0.333 0.333 0.204 0.678
(0.000) | (0.000) | (0.008) | (0.079)
Cheb. 0850 | 0.787 0.204 0.790
(0.124) | (0.202) | (0.009) | (0.056)
Canb. 0.851 0.825 0.201 0.890
(0.123) | (0.154) | (0.006) | (0.116)
Bray 0.885 | 0.793 0.199 0.991
(0.122) | (0.187) | (0.005) | (0.012)

For Sph_6 _2 dataset (Table 15), K-Means pro-
duces compact and accurate clusters with Bray-Curtis
distance. A careful look at Figure 3(b) reveals that K-
Means with Canberra distance provide well-separated
clusters. From Figures 3(b) and 4(b), it has been seen

that K-Medoid with Euclidean distance gives well-
separated and compact clusters having accuracy higher
than the other distance measures. The ACOC technique
with Euclidean distance attains better accuracy. How-
ever, it produces well-separated and compact clusters
with Mahalanobis and Cosine distance respectively.
The MHSC with Bray-Curtis produces well-separated
and compact clusters having higher accuracy when
compared with other measures.

Table 16: Effect of distance measures on accuracy of cluster formed
for Sph_4 _3 dataset for Partitional Clustering Techniques

[ Dist.Meas. [ KM [ KMD [ ACOC | MHSC |
Fudl. 0.909 0.957 0.286 0.973
(0.168) | (0.121) | (0.008) | (0.077)
S.Eucl. 0.825 0.828 0.286 0.950
(0.187) | (0.184) | (0.008) | (0.091)
Manbh. 0.382 0.778 0.279 0.871
(0.025) | (0.184) | (0.007) | (0.146)
Mahal. 0.520 0.526 0.278 0.771
(0.022) | (0.018) | (0.011) | (0.143)
Cos. 0413 0.415 0.270 0.702
(0.042) | (0.055) | (0.008) | (0.139)
Corr. 0.301 0.295 0.269 0.710
(0.004) | (0.004) | (0.006) | (0.109)
Spear. 0.293 0.295 0.272 0.657
(0.000) | (0.000) | (0.006) | (0.164)
Cheb. 1.000 0.826 0.285 0.892
(0.000) | (0.186) | (0.007) | (0.156)
Canb. 0.652 0.744 0.283 0.827
(0.217) | (0.208) | (0.009) | (0.179)
Bray 0.604 0.818 0.288 0.656
(0.008) | (0.077) | (0.009) | (0.081)

For Sph_4 _3 dataset (Table 16), K-Means with
Chebychev distance offers highest accuracy over other
distance measures. The K-Means with Chebychev
distance generates well-separated and compact clus-
ters. The K-Medoid provides better accuracy with
compact clusters using Euclidean distance. While, it
generates well-separated clusters using Bray-Curtis
distance (Figure 3(c)). The ACOC technique with
Bray-Curtis distance generates accurate, compact and
well-separated clusters. The MHSC with Euclidean
distance produces accurate, well-separated, and com-
pact clusters as compared to other distance measures.

For Iris dataset, the K-Means clustering algorithm
provides better accuracy with Chebychev distance. The
K-Medoid technique with Manhattan distance attains
best accuracy. Both K-Means and K-Medoid produce
compact and well-separated clusters with Spearman
distance. The ACOC with Spearman distance attains
better accuracy. It produces compact clusters with
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Table 17: Effect of distance measures on accuracy of cluster formed
for Iris dataset for Partitional Clustering Techniques

[ Dist.Meas. [ KM [ KMD [ ACOC [ MHSC ]

FEucl. 0.844 0.718 0.396 0.867
(0.131) | (0.190) | (0.013) (0.047)

S.Eucl. 0.844 0.713 0.392 0.882
(0.131) | (0.196) | (0.009) (0.068)

Manh. 0.767 0.841 0.395 0.885
(0.166) | (0.133) | (0.009) (0.055)

Mahal. 0.778 0.526 0.389 0.868
(0.036) | (0.161) | (0.021) (0.061)

Cos. 0.803 0.828 0.382 0.848
(0.235) | (0.167) | (0.011) (0.138)

Corr. 0.801 0.839 0.385 0.891
(0.221) | (0.176) | (0.008) (0.072)

Spear. 0.667 0.667 0.415 0.716
(0.000) | (0.000) | (0.033) | (0.132)

Cheb. 0.887 0.768 0.385 0.871
(0.000) | (0.174) | (0.009) (0.032)

Canb. 0.867 0.774 0.366 0.883
(0.148) | (0.191) | (0.005) (0.067)

Bray 0.798 0.798 0.364 0.862
(0.165) | (0.180) | (0.007) (0.066)

Bray-Curtis and well-separated clusters with Canberra
distance (Figures 3(d) and 4(d)). The MHSC technique
provides well-separated and accurate clusters using
Correlation distance. While, it offers compact clusters
with Euclidean distance.

Table 18: Effect of distance measures on accuracy of cluster formed
for Wine dataset for Partitional Clustering Techniques

[D-Meas. | KM | KMD | ACOC | MHSC |
Eucl. 0669 | 0631 0.432 0.691
(0.059) | (0.080) | (0.021) | (0.054)
S.Eucl. | 0669 | 0704 | 0399 0.671
(0.059) | (0.008) | (0.015) | (0.061)
Manh. | 0669 | 0650 | 0422 0.663
(0.066) | (0.078) | (0.028) | (0.060)
Mahal. | 0609 | 0459 | 0.368 0.638
(0.119) | (0.036) | (0.066) | (0.059)
Cos. 0685 | 0657 | 0.409 0.689
(0.018) | (0.000) | (0.021) | (0.048)
Corr. 0685 | 0669 | 0415 0.665
(0.012) | (0.013) | (0.012) | (0.058)
Spear. 0664 | 0608 | 0389 0.655
(0.034) | (0.088) | (0.023) | (0.073)
Cheb. 0652 | 0684 | 0419 0.678
(0.069) | (0.054) | (0.021) | (0.056)
Canb. 0.891 | 0.621 0413 0.689
(0.129) | (0.077) | (0.008) | (0.042)
Bray 0717 | 0719 | 0419 0.678
(0.003) | (0.007) | (0.008) | (0.072)

For Wine dataset, the K-Means technique attains
higher accuracy with Canberra distance. It produces

well-separated clusters with Chebychev distance and
compact clusters with Bray-Curtis distance (Figures
3(e) and 4(e)). K-Medoid attains optimal accuracy
using Bray-Curtis distance. It gives well-separated
clusters with Spearman distance and compact clusters
with Mahalanobis distance. The ACOC technique
with Euclidean distance provides better accuracy than
the other measures. It provides compact clusters with
Bray-Curtis and well-separated clusters with Canberra
distance. The MHSC technique with Euclidean dis-
tance offers accurate and well-separated clusters. It
produces compact clusters with Cosine distance.

Table 19: Effect of distance measures on accuracy of cluster formed
for Glass dataset for Partitional Clustering Techniques

[D-Meas. | KM | KMD | ACOC | MHSC |
Eucl. 0508 | 0463 0329 0.494
(0.036) | (0.053) | (0.019) | (0.036)
S.Eucl. | 0506 | 0473 0331 0.489
(0.045) | (0.039) | (0.025) | (0.025)
Manh. | 0512 | 0476 | 0341 0451
(0.031) | (0.021) | (0.015) | (0.031)
Mahal. | 0415 | 0398 | 0244 0.485
(0.039) | (0.024) | (0.017) | (0.064)
Cos. 0517 | 0474 | 0337 0.502
(0.034) | (0.028) | (0.017) | (0.027)
Corr. 0519 | 0485 | 0342 0.501
(0.024) | (0.033) | (0.015) | (0.032)
Spear. 0.481 0457 | 0339 0.494
(0.035) | (0.014) | (0.007) | (0.034)
Cheb. 0496 | 0445 0.330 0.499
(0.028) | (0.049) | (0.016) | (0.032)
Canb. 0416 | 0408 | 0.360 0.394
(0.068) | (0.036) | (0.014) | (0.054)
Bray 0519 | 0485 | 0345 0476
(0.029) | (0.018) | (0.013) | (0.042)

For Glass dataset, the K-Means and K-Medoid
provides best accuracy with Correlation and Bray-
Curtis distances. K-Means, K-Medoid, and ACOC
techniques attain well-separated and compact clusters
with Canberra distance (Figures 3(f) and 4(f)). ACOC
technique provides good accuracy over Canberra
distance. The MHSC technique gives accurate clusters
with Cosine distance and well-separated clusters with
Spearman distance. It produces compact clusters with
Mahalanobis distance.

For Haberman dataset (Table 20), the K-Means
using Spearman distance gives accurate and well-
separated clusters. It generates compact clusters with
Chebychev distance (Figure 4(g)). K-Medoid using
Spearman distance produces accurate, compact, and
well-separated clusters. ACOC attains best accuracy
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Table 20: Effect of distance measures on accuracy of cluster formed
for Haberman dataset for Partitional Clustering Techniques

[D-Meas. | KM | KMD | ACOC | MHSC |
Eucl. 0509 | 0594 | 0672 0.554
(0.011) | (0.104) | (0.014) | (0.040)
S.Eucl. | 0514 | 0547 | 0561 0.542
(0.008) | (0.075) | (0.015) | (0.036)
Manh. | 0579 | 0575 0.683 0.532
(0.107) | (0.094) | (0.014) | (0.024)
Mahal. | 0522 | 0546 | 0523 0.548
(0.020) | (0.085) | (0.015) | (0.033)
Cos. 0513 | 053 | 0713 0.583
(0.003) | (0.016) | (0.011) | (0.087)
Corr. 0509 | 0.531 0711 0.558
(0.000) | (0.018) | (0.012) | (0.062)
Spear. 0.647 | 0.664 | 0.647 0.581
(0.000) | (0.006) | (0.014) | (0.078)
Cheb. 0534 | 0529 | 0676 0.529
(0.011) | (0.029) | (0.011) | (0.024)
Canb. 0527 | 0529 | 0699 0575
(0.001) | (0.038) | (0.010) | (0.063)
Bray 0509 | 0550 | 0.724 0.534
(0.000) | (0.087) | (0.006) | (0.027)

on Bray-Curtis distance. It generates well-separated
clusters with Correlation and compact clusters with
Spearman distance. The MHSC technique provides
higher accuracy over cosine distance. It gives well-
separated clusters with Spearman and compact clusters
with City-Block distance (Figures 3(g) and 4(g)).

Table 21: Effect of distance measures on accuracy of cluster formed
for Bupa dataset for Partitional Clustering Techniques

[D-Meas. | KM | KMD | ACOC | MHSC |
Eudl. 0.551 0529 | 0.564 0.538
(0.000) | (0.004) | (0.018) | (0.019)
S.Eucl. | 0551 0.531 0.532 0.527
(0.001) | (0.002) | (0.018) | (0.022)
Manh. | 0548 | 0536 | 0567 0.544
(0.000) | (0.013) | (0.017) | (0.018)
Mahal. | 0534 | 0544 | 0518 0.547
(0.029) | (0.025) | (0.013) | (0.025)
Cos. 0507 | 0510 | 0567 0.539
(0.000) | (0.000) | (0.011) | (0.020)
Corr. 0536 | 0530 | 0575 0.536
(0.000) | (0.001) | (0.007) | (0.017)
Spear. 0622 | 0622 | 0579 0.617
(0.002) | (0.002) | (0.009) | (0.012)
Cheb. 0542 | 0539 | 0574 0.536
(0.000) | (0.031) | (0.011) | (0.033)
Canb. 0530 | 0.545 0.578 0.552
(0.000) | (0.000) | (0.007) | (0.028)
Bray 0510 | 0522 | 0576 0.539
(0.000) | (0.000) | (0.009) | (0.021)

For the Bupa dataset (Table 21), K-Means, K-

Medoid, and ACOC produces accurate clusters with
compactness using Spearman distance. K-Means gives
well-separated clusters using Standard Euclidean dis-
tance. K-Medoid and ACOC generate well-separated
clusters with Spearman and Bray-Curtis distances
respectively. The MHSC algorithm provides better
accuracy with Spearman distance. It gives compact
clusters with Canberra and well-separated clusters with
Cosine distance (Figures 3(h) and 4(h)).

Table 22: Effect of distance measures on accuracy of cluster formed
for Libras dataset for Partitional Clustering Techniques

[D-Meas. | KM | KMD | ACOC | MHSC |
Bucl. 0.188 | 0.191 0.071 0.157
(0.048) | (0.048) | (0.007) | (0.044)
S.Eucl. | 0207 | 0134 | 0064 0.159
(0.065) | (0.094) | (0.013) | (0.048)
Manh. | 0175 | 0.151 0.079 0.140
(0.070) | (0.062) | (0.009) | (0.058)
Mahal. | 0084 | 0066 | 0.063 0.145
(0.028) | (0.009) | (0.004) | (0.039)
Cos. 0235 | 0198 | 0074 0.155
(0.079) | (0.044) | (0.011) | (0.049)
Corr. 0259 | 0182 | 0075 0.159
(0.049) | (0.047) | (0.007) | (0.062)
Spear. 0224 | 0117 | 0078 0.152
(0.037) | (0.051) | (0.007) | (0.029)
Cheb. 0248 | 0186 | 0078 0.121
(0.064) | (0.037) | (0.011) | (0.046)
Canb. 0183 | 0178 | 0078 0.147
(0.052) | (0.060) | (0.007) | (0.052)
Bray 0175 | 0182 | 0071 0.193
(0.059) | (0.094) | (0.009) | (0.047)

For Libras dataset results given in Table 22, show

that the K-Means using Correlation distance attains
best accuracy. However, it gives compact clusters with
Bray-Curtis and well-separated clusters with Canberra
distance. K-Medoid provides accurate clusters on Co-
sine distance and compact clusters with Mahalanobis.
It generates well-separated clusters with Euclidean dis-
tance. ACOC provides accurate clusters on Manhattan
distance and compact clusters with Chebyshev. How-
ever, it generates well-separated clusters with Spearman
distance. The MHSC technique attains high accuracy
over Bray-Curtis distance. It gives well-separated and
compact clusters with City-Block distance (Figures 3(i)
and 4(i)).
The aforementioned results indicate that the different
distance measures with clustering techniques show dif-
ferent cluster quality value. The summarized results for
partitional techniques are tabulated in Tables 23, 24 and
25.
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Table 23: Best distance measures corresponding to datasets and par-
titional clustering techniques in terms of Accuracy

[ Dataset | KM | KMD [ ACOC | MHSC ]

Sp_5_2 | Cheb. Eucl. Bray. Eucl.
Sp_6_2 Bray Eucl. Eucl. Bray
Sp_4_3 Eucl. FEucl. Bray Eucl.
Iris Cheb. | Mahal. Spear Corr.
Wine Canb. Bray FEucl. Fucl.
Glass Corr. Corr. Canb. Cos.
Bray Bray

Haber. Spear Spear Bray Cos.
Bupa Spear Spear Spear Spear
Libras Corr. Cos. Manh. Bray

Table 24: Best distance measures corresponding to datasets and par-
titional clustering techniques in terms of Inter-cluster Distance

[ Dataset | KM | KMD | ACOC [ MHSC |
Sp_5_2 Spear Spear Spear Canb.
Sp_6_2 Canb. FEucl. Mahal. Bray
Sp_4_3 Cheb. Bray Bray FEucl.

Iris Spear Spear Canb. Corr.
Wine Cheb. Spear Canb. Eucl.
Glass Canb. Canb. Canb. Spear
Haber. Spear Spear Corr. Spear
Bupa S.Eucl. | Spear Bray Cos.
Libras Canb. Fucl. Spear Manh.

Table 25: Best distance measures corresponding to datasets and par-
titional clustering techniques in terms of Intra-cluster Distance

[ Dataset [ KM [ KMD [ ACOC [ MHSC ]

Sp_5_2 Corr. Spear Spear FEucl.
Sp_6_2 Bray FEucl. Cos. Bray
Sp_4_3 Cheb. FEucl. Bray Fucl.
Iris Spear Spear Bray FEucl.
Wine Bray | Mahal. Bray Cos.
Glass Canb. Canb. Canb. Mahal.
Haber. Cheb. Spear Spear Manh.
Bupa Spear Spear Spear Canb.
Libras Bray | Mahal. Cheb. Manh.

5 Conclusion

In this paper, performance of ten commonly used dis-
tance measures in clustering techniques has been eval-
vated. The eight well-known clustering algorithms are
evaluated on ten different datasets. The experimental
results are evaluated in terms of accuracy, inter-cluster
and intra-cluster distances. It has been observed that
there is no single best distance measure for all datasets,
or for all quality measures. The appropriateness of a
distance measure is dependent on nature of data and
clustering technique. On basis of our experimentation,
we have reported a set of suitable distance measures

for a particular combination of distance and clustering
techniques.
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