

J. ANANAVATI, Fine-tuning Performance of Java Applications

INFOCOMP, v. 18, no. 1, p. 09-19, Dec 2019

Fine-tuning Performance of Java Applications

J. NANAVATI

SEMCOM, Vallabh Vidyanagar, Gujarat, India

Email: jaynanavati@gmail.com

Telephone: +91-9924471070

Abstract - The interpretation of the term ‘Performance’ of Java applications may vary. This paper primarily

discusses problems of crawling of application and too much memory consumption, and fine-tuning performance

of Java applications by altering parameters such as changing the code, finding the behaviour of the application in

terms of the ratio of young to old objects, tuning the JVM accordingly and altering the GC parameters.

Keywords: Java Application Performance, Fine-tuning performance, OutOfMemoryError, JVM, GC

“(Received October 23rd 2019 / Accepted November 23rd, 2019)”

1. Introduction

The Java Virtual Machine has two primary jobs:

1. To Execute Code

2. To Manage Memory

Memory management by JVM includes acquiring

memory from the operating system, managing

memory in heap and stack, compaction of the heap

and removal of garbaged objects.

Figure 1 - Memory Management by JVM

Figure 2 - Garbage Collection by JVM

Objects inside the square are reachable from the

thread root set, while objects outside the square are

not.

The garbage collection process takes place as

follows:

1. The root set is traced to identify objects which

are not referenced at all.

2. The garbaged objects from step-1 are placed in

the finalizer.

3. The finalize() method for each of the garbaged

object is executed.

4. Memory is freed up.

2. Generational Garbage Collection

Generational garbage collection scheme is used in

the Java 2 VMs. The Java Heap is separated into two

regions:

mailto:jaynanavati@gmail.com

J. ANANAVATI, Fine-tuning Performance of Java Applications

INFOCOMP, v. 18, no. 1, p. 09-19, Dec 2019

 New Objects

 Old Objects

The New Objects region is further divided into three

smaller regions:

1. Eden, where objects are allocated.

2. Survivor semi-spaces: From and To.

In the Eden area, the track of memory allocated to

objects is kept with the help of pointer increment.

In case the Eden area is full, the reachability test is

performed by the GC and all the live objects are

copied from the Eden to the To region.

Further, To becomes From i.e. the labels on the

regions are interchanged. Now, the objects are there

in the From area.

Figure 3 - Generational garbage collection
scheme

Objects get created in New generation and then

move to Survivor Spaces (SS) at every GC run. If

these objects succeed in survival for long (enough to

be considered old), they move to the Tenured

generation.

The number of times an object needs to survive GC

cycles to be considered old enough, can be

configured.

Figure 4 – GC Cycles

By default, Java has 2 separate threads for GC,

one each for young (minor GC) and old

generation (major GC). Garbage among the

young generation is cleaned up by the minor GC

whereas the major GC cleans up the garbage in

the old generation. The JVM increases the

current memory to facilitate creation of new

object in case the major GC too fails to free

required memory. This whole cycle can go on till

the current memory reaches the MaxMemory for

the JVM (default is 64MB for client JVM), after

which JVM throws OutOfMemory Error.

3. JVM Process Memory

Managed Heap (Java Heap, PERM, Code

Cache) + Native HEAP + Thread Memory

<= 2GB (on windows)

Here,

Java Heap: This part of the

memory is used when you

create new java objects.

PERM: For reflective calls etc.

Code Cache: Contains JIT code and hotspot code.
Thread Memory = Thread Stack Size*No. of threads.
Native Heap: Used for native allocations.
Thread Memory: Used for thread allocations.

4. Problems

The following problems are often seen during

execution of a Java application:

1. Crawling application

2. Too much memory consumption

The number and size of the live objects that are

in the JVM at any given point of time governs

the memory footprint of the application. This can

be either due to valid objects that are required to

stay in memory, or because programmer forgot

to remove the reference to unwanted objects

(typically known as 'Memory leaks' in the

context of Java.

As the memory footprint exceeds the threshold
limit, the JVM throws the

java.lang.OutOfMemoryError.

J. ANANAVATI, Fine-tuning Performance of Java Applications

INFOCOMP, v. 18, no. 1, p. 09-19, Dec 2019

4.1 Java.lang.OutOfMemoryError

Can occur due to 3 possible reasons:

1. JavaHeap space low to

 create new objects.

 Increase by -Xmx
(java.lang.OutOfMemoryError: Java heap space).
java.lang.OutOfMemoryError: Java heap space

MaxHeap=30528 KB TotalHeap=30528 KB

FreHeap=170 KB UsedHeap=30357 KB

2. Permanent Generation

low. Increase by
XX:MaxPermSize=256m

(java.lang.OutOfMemoryError: PermGen space)

java.lang.OutOfMemoryError: PermGen space

MaxHeap=65088 KB TotalHeap=17616 KB Fr

eeHeap=9692 KB UsedHeap=7923 KB

3. java.lang.OutOfMemoryError: Out of

swap space ...

5. Solutions

 For memory leak issues,

o Change the code.

o Define how fast your application code has

to be, e.g., by specifying a maximum

response time for all API calls or the

number of records that you want to import

within a specified time frame. After

you’ve done that, you can measure which

parts of your application are too slow and

need to be improved. You can take a look

at your code and start with the part that

looks suspicious or where you feel that it

might create problems. Or you use a

profiler and get detailed information about

the behavior and performance of each part

of your code.

o Use primitive data types instead of objects

of wrapper classes.

o Use StringBuilder to concatenate Strings

programmatically.

 Find the behavior of your app in terms of the

ratio of young to old objects, and then tune the

JVM accordingly.

o -ms, -Xms : sets the initial heap size (young

and tenured generation ONLY, NOT

Permanent)

If the application starts with a large memory

footprint, then you should set the initial heap

to a large value so that the JVM does not

consume cycles to keep expanding the heap.

o -mx, -Xmx : sets the maximum heap size

(young and tenured gen ONLY,NOT Perm)

(default: 64mb)

This is the most frequently tuned parameter to

suit the max memory requirements of the app. A

low value overworks the GC so that it frees space

for new objects to be created, and may lead to

OOM.

A very high value can starve other apps and

induce swapping. Hence, Profile the memory

requirements to select the right value.

o -XX:PermSize=256 -XX:MaxPermSize=256m

o MaxPermSize default value (32MB for -

client and 64MB for -

server)

o Tune this to increase the Permanent

generation max size.

 Fine-tune with GC parameters.

o -Xminf [0-1], -XX:MinHeapFreeRatio [0-

100] : sets the percentage of minimum free heap

space - controls heap expansion rate

o -Xmaxf [0-1], -XX:MaxHeapFreeRatio [0-

100] : sets the percentage of maximum free heap

space - controls when the VM will return unused

heap memory to the OS

o -XX:NewRatio : sets the ratio of the old

and new generations in the heap. A

NewRatio of 5 sets the ratio of new to

old at 1:5, making the new generation

occupy 1/6th of the overall heap

defaults: client 8, server 2

o -XX:SurvivorRatio : sets the ratio of the

survisior survivor space to the eden in the new

object area. A SurvivorRatio of 6 sets the ratio

of the three spaces to 1:1:6, making each

survivor space 1/8th of the new object region

6. Conclusion

There can be various bottlenecks for the entire

application, and JVM may be one of the reasons.

However, other reasons such as JVM not tuned

optimally to suit your application, Memory

J. ANANAVATI, Fine-tuning Performance of Java Applications

INFOCOMP, v. 18, no. 1, p. 09-19, Dec 2019

leakages, JNI issues etc may also can not be ruled

out. They need to be diagnosed, analyzed and then

fixed.

References

[1] Java Performance Tuning, Jack Shirazi p. 67-75

ISBN: 978-0-596-00377-7

[2] Java Performance: The Definitive Guide, Scott

Oaks, p. 18-24 ISBN: 978-4-149-35845-7

[3] Java Performance Companion, Charlie Hunt,

ISBN: 978-0-133-79682-7

[4] Systems Performance: Enterprise and the

Cloud, Brendan Gregg, ISBN: 978-1-333- 9009-4
[5] Java Performance and Scalability: A

Quantitative Approach,Henry H. Liu, ISBN:

[6] The Well-Grounded Java Developer, Benjamin

J Evans, Martijn Verburg, ISBN: 978-1- 617-29006-

0
[7] Java Performance, Binu John, Charlie Hunt,

ISBN: 978-0-137-14252-1

[8] https://www.javatpoint.com/Garbage-

Collection (Last visited on 6/4/2019)

[9] https://www.journaldev.com/4098/java-

heap-space-vs-stack-memory (Last visited on

6/4/2019)

[10] https://www.yourkit.com/docs/kb/sizes.jsp

(Last visited on 8/4/2019)

http://www.javatpoint.com/Garbage-Collection
http://www.javatpoint.com/Garbage-Collection
http://www.javatpoint.com/Garbage-Collection
http://www.journaldev.com/4098/java-heap-space-vs-stack-memory
http://www.journaldev.com/4098/java-heap-space-vs-stack-memory
http://www.yourkit.com/docs/kb/sizes.jsp

