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Abstract. The objective of the research reported in this paper is the development of a model for short
term load forecasting for use in an environment characterized by uncertainty. The fundamental require-
ment for the proposed model is the production of robust and accurate performance with minimal com-
putational and data resources. Our solution strategy was developed around a computational intelligence
method which exploits knowledge using fuzzy logic and decision tree based techniques. The model was
developed and evaluated using three years data (i.e. 2004, 2005 and 2006) on electric loads obtained
from the National Control Centre (NCC) Òs.ogbo, Nigeria and was implemented using the Fuzzy Deci-
sion Tree software (FID 4.2). The data was supported by knowledge elicited from experienced power
monitoring staff at NCC. The results showed that the average fractional forecast errors for the proposed
model on selected data from the three years was 0.17 while that of the conventional multiple regression
model was 0.80.
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1 Introduction

The problem of electric power load forecasting (EPLF)
is as old as the electric power technology itself. Unlike
the electric power technology, however, the EPLF prob-
lem continues to grow in complexity as the challenges
of meeting customers’ demands continue to increase in
dimension and dynamics. The dimensions of physi-
cal environment, technology, culture, policy and global
trends towards the need for sustainable energy as well
as related security issues, combine and culminate to de-
termine the amount of electric power that will be con-
sumed. Therefore, the electric load forecast problem
continues to change in form and pattern in an uncertain
manner making its description vague and sometimes in-

tractable. An accurate EPLF system can be a powerful
tool particularly in environment where the power sup-
ply is very limited, such as in many Africa countries.

The result of an accurate load forecast could be used
to provide advance information to consumers about
possible power outage. Such information could help
the consumers to better manage their activities and re-
organized their schedules. For example, under extreme
emergency conditions, shedding of the non-essential
loads (like air conditioning), can be performed in a
timely manner, if the predicted load is known well in
advance. Electric power consumers in the essential
services sector (e.g hospitals) could use the advance
knowledge of possible power outage to put in place con-
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tingency or alternative plans, such as the re-scheduling
of critical operations. In addition, a good short-term
load forecasting (STLF) data could assist the electric
power provider to more accurately determine the unit
price of power supply.
This work makes two important contributions to the

present state of knowledge in the area of electric load
forecasting: (i) the identification and specification of
load forecasting problem in an uncertain domain, and
(ii) the use of Fuzzy Decision Tree (FDT) method for
modeling the load forecasting problem.
In order to present the proper perspective of our ap-

proach, a brief description of the characteristics of the
electric load forecasting problem in an uncertain do-
main is provided in the next subsection. Section 2 con-
tains a review of the literature on the computational ap-
proaches to electric load forecasting while Sections 3,
4 and 5 contain the description of the methodology for
our fuzzy decision based approach. In Section 6, we
discussed the evaluation of our approach and section 7
concludes this paper.

1.1 The STLF problem in uncertain domain

Three types of load forecasting have been identified
in the literature [4, 31]: Short-term, Medium-term and
Long-term. STLF attempt to predict electric load de-
mand in advance from one hour to one week while
medium-term load forecasting attempt to predict for be-
tween one month and one year. Electric power load
forecast for more than one year are usually termed long-
term load forecasting. Our focus here is on the typical
24-Hour STLF problem [8]. STLF is a complex task,
because available generation must match customers’
demands on an instantaneous basis.
In an uncertain environment, such as Nigeria, the

forecast must respond to unforeseen events related to
weather, societal and cultural as well as possible power
generation instability problems. The current practice
of load forecasting in Nigeria, and probably in most
technologically developing countries, is to rely on the
knowledge of experienced power monitoring operators.
In Nigeria, the operators responsible for this task work
at the National Control Centre (NCC) and they use
mostly manual calculations and intuitive methods with
limited data. Based on our interviews with the experi-
enced operators, we found that the electric load forecast
is generally based on the ratio of maximum transformer
loading of each station to the overall transformer load-
ing of all the stations. This value is scaled up by mul-
tiplying it by maximum generated power at a particular
time.
Load components come from the electric power de-

mands of houses, shopping centres, markets and admin-
istrative centres. For larger cities, demand may include
residential districts and industrial zones. The load com-
ponent associated with these geographical locations are
often specified in linguistic terms rather than precisely
defined mathematical terms [6]. The fundamental at-
tribute of the STLF problem in this context can be sum-
marized with three terms: uncertain, imprecise and non-
linear. In order to provide a more realistic forecast of
the actual load situation we need to exploit all the infor-
mation provided as much as engineering modeling can
permit.
To this end, the STLF system required in this en-

vironment should be developed with the following at-
tributes in mind: (i) the historical load data avail-
able are not adequate; (ii) load behaviour are highly
prone to sudden and uncertain changes which can-
not be adequately rendered by numerical data as some
salient bahaviour of the STLF problem can only the
expressed linguistically based on personal experience;
(iii) a model that could be used to generate and docu-
ment the STLF process as well as assist in obtaining an
understanding of the dynamics of load in such domain.

2 Related work

Computational approaches to STLF can be grouped into
three major classes: data driven, rule driven and hybrid.

2.1 Data driven approach

In the data driven approach, historical data of electric
load consumption pattern are processed statistically or
modeled using an automatic prediction process. This
approach usually requires a mathematical model that
represents load as a function of different factors such as
time of the day, weather, and customer class. Multiple
linear regression [36], adaptive and/or general exponen-
tial stochastic time series [3, 23] based techniques are
usually employed in this approach. More recently, how-
ever, data driven techniques from soft computing such
as the genetic or evolutionary algorithms (GA) [7] and
Artificial Neural Network (ANN) [5, 33] have become
popular. The large amount of data require to achieve
acceptable performance makes these model unsuitable
for our application.
Another very powerful data driven technique which

has the desirable attribute of explainability is the de-
cision tree, also called the Interactive Dichotomizer 3

(ID3) [24]. Its use in various areas of electric power
related technologies such as modeling [35, 15], predic-
tion [28], control [18, 30], management [16], amongst
others, has been demonstrated. The use of ID3 is mo-
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tivated by five of its important attributes: (i) only a
small set of inputs is required to produce sufficiently
accurate prediction; (ii) ID3 handiness for engineering
decision making; (iii) ID3 is computationally fast and
always provides definite results; (iv) ID3 are simple
and inexpensive to develop; and (v) it is ease to ex-
tract rule from ID3, making it easy to explain the STLF
process. The ID3 technique, however, has some short-
comings which include the binary nature of its knowl-
edge based partitioning and the pruning algorithm com-
plexity. These weaknesses renders it unsuitable for our
application. An alternative tree building method is the
classification and regression trees (CART) [29] algo-
rithm in which the regression technique is used in tree
generation. However, CART has similar shortcomings
to those of the ID3 technique.

2.2 Rule driven approach

In the rule driven (also called rule or knowledge based)
approach, inference are developed around a set of asser-
tions, which collectively form the working memory, and
a set of rules that specify how to act on the assertion set.
A number of STLF system have been developed around
the rule driven approach usually in the context of ex-
pert system or decision support systems [26, 25]. The
following attributes of the rule based approach makes
them attractive for our application: (i) ability to man-
age a few data samples, (ii) availability of experts for
consultation, (iii) rule bases are modular and therefore
facilitates easy modification.
However, the binary nature of rules makes it un-

suitable to model the uncertainty and linguistic con-
cepts that characterizes the STLF domain. To address
this problem, the fuzzy logic techniques has been intro-
duced into the basic rule driven construct. Fuzzy logic
is a generalization of the basic binary logic [8] but un-
like in the binary logic, truth-values are assigned to vari-
ables in the range [0, 1]. Intuitively, a fuzzy set defines
a class which admits the possibility of partial member-
ship in itself. For example, ifX = {x} denotes a space
of objects, the fuzzy set A ∈ X is a set of ordered pairs
A = {x, µA(x)}, where µA(x) is the degree to which
x belongs to A. If the function µA(x) returns the value
0.0 then x does not belong to A at all but if the value
returned is 1.0 then x is totally a member of A. Partial
memberships to A are model by numbers between 0.0
and 1.0, and the closer the number is to 1.0, the more x
belongs to A. For example, µA(x) of 0.5 indicates that
x membership in A is 50%.
Economakos [6] is perhaps the first to address the

problem of electric power load demand forecasting us-
ing the fuzzy logic technique. Since then, a number

of works [14, 1, 19] have reported good results in the
application of fuzzy logic based approach to different
constructs of the STLF problem. Among the advan-
tages of fuzzy logic are the absence of a need for an
explicit mathematical model for mapping inputs to out-
puts. With such generic conditioning rules, properly
designed fuzzy logic systems can be very robust when
used for forecasting. However, the fuzzy logic based
technique, as is the case for all other rule driven ap-
proach, lack some important feature such as weak opti-
mization and low learning and explanation capacity.

2.3 Hybrid approach

The shortcomings of the data driven and rule driven ap-
proaches motivates the development of the hybrid meth-
ods. In the hybrid based approach, techniques from the
data driven and rule driven approaches are integrated
based on their strength or the attributes desired from
their application. Researchers have integrated tech-
niques such as the ANN and fuzzy [34], fuzzy and re-
gression [4] fuzzy and genetic algorithm [4, 2], ANN
and genetic [17, 11], as well as genetic and decision
tree [32], amongst others, in order to exploit and com-
bine the capabilities of the composite techniques in their
method.

Two techniques come out clearly, as having the ca-
pability to model some aspect of the STLF problem we
specified in section 1.1: the ID3 and the fuzzy logic
techniques. One of the strengths of the ID3 over the
other data driven approaches is the ease with which they
can be extended to symbolic or non-numerical domains.
Exploiting this attribute, uncertainty can be represented
symbolically using the fuzzy logic paradigm and inte-
grate it into the ID3 paradigm. The fusion of the fuzzy
logic (FL) with decision trees (ID3) enable us to com-
bine the uncertainty handling and approximate reason-
ing capabilities of the FL with the comprehensibility
and ease of application of the Dtree techniques in the
modeling of our STFL problem. This way, we are able
to model domain attributes using pre-defined linguistic
variables which enhances the representative power of
the decision tree.

The techniques of the fuzzy decision tree method
has been developed and well reported in the literature
[20, 37]. In [27], for example, the fuzzy decision tree
method was used in the modeling economic dispatch
problem including environmental constraints. To the
best of our knowledge, this work is the first to exploit
it in the proposed STLF domain. In the next section
we discuss the development of the fuzzy decision tree
based STLF system.
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3 Research Methodology

Fuzzy decision trees (FDT) represent classification
knowledge more naturally to the way of human think-
ing and are more robust in tolerating imprecise, con-
flicting, and missing information [37]. FDT aim at high
comprehensibility, normally attributed to ID3, with the
gradual and graceful behaviour attributed to fuzzy sys-
tems [12]. The development of Fuzzy Decision Trees
(FDT) differs from traditional decision trees in two re-
spects: it uses splitting criteria based of fuzzy restric-
tions and its inference procedures are different [37, 12].
We are adopting the following three steps, adapted from
[37], for developing our FDT: (i) Fuzzifying the train-
ing data; (ii) Inducing and pruning the generated tree;
and (iii) Applying fuzzy rules represented by the tree
for forecasting.

4 Fuzzifying the training data

The analysis presented here are based on the three years
hourly electric load data obtained from NCC for 2004,
2005 and 2006. These are about the only adequate data
that can be used in this work. The data covered the
two seasons (Rain and Harmattan) experienced in Nige-
ria and covers from January to December of each year.
The data for the hourly weather conditions for the three
years were obtained from the Nigerian Meteorological
Agency (NIMET).

Based on a careful analysis of the data and infor-
mation elicited from the domain experts and the liter-
ature, we identified two classes of factors that influ-
ences short term electric load demand: (i) the environ-
mental or physical factors such as weather, and (ii) the
social or human factor. The social factors considered
here are: (a) population, (b) user-type, (c) social-event,
and (d) day-type. The environmental factors are more
amenable to numerical rendering and modeling since
they have some definitive numerical measure. However,
recent occurrences characterized by global warming is
making it difficult to predict them in a definitive man-
ner. The social event are uncertain and very difficult
to model by crisp computation framework. The mem-
bership functions for the variables in this category are
determined based on experts’ opinion or common per-
ceptions. In the next subsection, we provide a detailed
description of each of the variables used in our STLF
model as well as the design of the membership function
used to modeled their universe of discourse (UoD).

After exploring the UoD of the variables using the
MatLab software, we selected the trapezoidal member-
ship function due to its simplicity and ease of imple-
mentation. We, therefore, designed suitable member-

ship functions and the set of linguistic terms for each
of the variables in our model. The membership func-
tions used in our model, as implemented in the FID 4.2
software, are shown in Figure 1.

Figure 1: Trapezoidal membership function template

Given the points P1, P2, P3 and P4 as shown in
Figure 1, the template for the trapezoidal membership
function for the linguistic variable v is defined by the
equation:

µv(x) =






P2−x
P2−P1

P1 ≤ x < P2

1.0 P2 ≤ x < P3

P4−x
P4−P3

P3 ≤ x ≤ P4

. (1)

The membership functions of our model are ex-
plained in details in the following subsections.

4.1 Weather

The weather is identified by two seasons: Harmattan
and Rain which is characterized by three variables: (i)
Temperature, Humidity and Wind-speed. The Harmat-
tan season usually occurs between the end of November
and lasts until late January or early February. It is usu-
ally very dry, cool and windy. The Rainy season, on the
other hand, is usually wet, hotter and less winding than
the Harmattan season. Between these two extremes,
however, there are a range of weather situations which
can be described by various degree of strengths of the
combinations of the variables identified. For example,
the weather in May will have attribute values closer to
that of a rainy season while that in October will have at-
tribute values closer to the Harmattan season based on
their proximity to the seasons at the two extremes iden-
tified. We describe these variables in more details in the
following subsections.
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4.1.1 Temperature

The temperature variable has direct impact on the
daily electric load peak. Three linguistic terms are
defined over the UoD for this variable, these are: cold,
mild and hot. These instances are defined based on
temperature measurements on the degree centigrade
scale. Based on the available data, we assigned
20.000C and 40.000C as the minimum and maximum
temperatures, respectively. Each of the linguistic
variables are defined by trapezoidal membership
functions specified by four data points {P1, P2, P3, P4}
with values: Cold= {20.00, 20.00, 24.00, 32.00};
Mild= {24.00, 28.00, 32.00, 36.00}, and Hot

={28.00, 36.00, 40.00, 40.00}.

4.1.2 Wind-Speed

The wind speed variable identifies the current of air
and its UoD is defined in the numerical space as-
signed the values 0.00 through 10.00 for the mini-
mum and maximum, respectively. Each value for the
Wind speed is normalized in the range [0.00, 1.00].
Two linguistic terms were defined over the UoD,
namely: (i) Windy and (ii) not winding (Nwindy).
The trapezoidal membership functions defined for
each of the linguistic terms have four data point val-
ues: Nwindy = {0.00, 0.00, 0.40, 0.60} and Windy =
{0.40, 0.60, 1.00, 1.00}.

4.1.3 Humidity

The humidity variables is expected to measure the de-
gree of dampness of the weather and its UoD is defined
over the numerical space assigned the values 80.00
through 90.00 for the minimum and maximum, respec-
tively. Two linguistic terms were defined over the UoD,
namely: (i) Humid and (ii) not humid (Nhumid). The
trapezoidal membership functions defined for each of
the linguistic term having the following four data point
values: Nhumid = {80.00, 80.00, 84.00, 86.00} andHu-

mid= {84.00, 86.00, 90.00, 90.00}.

4.2 User-Type

The users are defined by the electric power equip-
ments that they use. For the commercial and do-
mestic users, these equipment will included electric
cooker, microwave oven, air conditioner, heater and
iron, fridge and freezer as well as fan, radio, televi-
sion, video and computer. Most user will also have
electric bulbs for lighting points. In addition to these,
industrial users will have heavy equipments which have
very high electric power consumption capacity. To

model the user type variables, we define a UoD with
numerical values ranging from 0.00 to 120.00. Each
group of power equipment are then assigned numeri-
cal values in this range depending on their power con-
sumption capacity. We defined three linguistic terms,
{Light, Mid, Heavy} over the UoD and associate each
of the terms with numerical values defined by trape-
zoidal membership functions with data points spec-
ified as follows: light = {0.00, 0.00, 24.00, 72.00};
Mid = {24.00, 48.00, 72.00, 96.00} and Heavy =
{48.00, 96.00, 120.00, 120.00}.

4.3 Day-Type

From interview with the operators at the NCC and re-
view of the literature, the following day types were
identified: (i) Weekdays (Monday through Friday); (ii)
Saturday and (iii) Sunday. These day types are as-
signed values ranging from 0.00 to 10.00 represent-
ing the minimum and maximum values, respectively.
Three linguistic terms were defined over its UoD which
includes: Week-Day (WD), Saturday (Sat) and Sun-
day (Sun). The trapezoidal membership functions de-
fined for each variable has the data points: WD=
{0.00, 0.00, 2.00, 6.00}; Sat = {2.00, 4.00, 6.00, 8.00},
and Sun = {4.00, 8.00, 10.00, 10.00}.

4.4 Population

This variable expresses an estimate of the total num-
ber of people resident in the particular geographical
locations. The population estimate variable becomes
important as the censors figures that were provided
are not adequate and sometimes contradicts the evi-
dence. In order to keep the model as simple as possible,
we partitioned the population UoD into two: loosely

and densely representing loosely populated and densely
populated areas, respectively. The trapezoidal member-
ship function defined over the UoD have the following
data point values: loosely:{0.00, 0.00, 0.40, 0.60 and
densely = {0.40, 0.60, 1.00, 1.00}.

4.5 Social-Event

Two input variables, namely Day-type and Population

are influenced by the social events taking place at any
particular time. There are a number of festivals and
events, e.g. sporting and game events, that influences
the pattern and amount of power consumption at any
point in time. For example, during the Christmas and
new year period, people tend to move from densely pop-
ulated cities to scarcely populated villages to celebrate
the occasion. This movement is also a function of the
day in which the holiday falls. If the holiday falls into
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the weekend days, i.e. Saturday and Sunday, the vol-
ume of the movements will be more than when it falls
on weekdays such as Monday. We however, analyzed
the social events separately from day type and popu-
lation because each social event has different intensity
and overall affect on the other two variables. To this
end, the UoD defined for the different types of the so-
cial events were assigned values ranging from 0.00 to
25.00.
Values are assign to social events based on their es-

timated intensity and effect on electric power consump-
tion. For example, the Christmas and New Year days
are assigned values 10.00; Easter, Eidel Efik (Eid1) and
Eidel Fiktri (Eid2) are assigned value 8.00. Days such
as the Independence Day, Children’s day and Workers’
day are assigned numerical values 5.00. To compute the
social event for a particular case we added the numer-
ical values associated to all social events on that day.
For example, if the Eidel Efik day falls on the Christ-
mas day then the value of the social events would be
18.0 = 8.00 + 10.00.
Three linguistic terms, Low, Mid and High,

were defined over the UoD and the trapezoidal
membership functions for the terms have data
point values: Low = {0.00, 0.00, 5.0, 15.00};
Mid={5.00, 10.00, 15.00, 20.00}, and High =
{10.00, 20.00, 25.0, 25.00}.

4.6 Output variable definition

When these rules are fuzzified, the result will produce
the forecasted amount of electric load (FLoad) to be
consumed at a particular instance. From an analy-
sis of the load distribution data provided we assigned
the minimum and maximum loads of 2000 MW and
4000 MW , respectively. The forecast load was scaled
and categorized using numerical values ranging from
0.00 (for the minimum) to 15.00 (for the maximum).
Typical forecast load assignments are shown in the sam-
ple data in Table 1.
All values were normalized in the interval [0, 1] for

our FDT implementation.

5 Inducing and Pruning the Fuzzy Decision

Tree

The procedure for building the FDT is similar to that
for the ID3 in that it comprise three elements: (i) selec-
tion of splits at every new node of the tree, (ii) a rule for
determining when a node should be considered as the
terminal and (iii) a rule for assigning labels to identi-
fied terminal nodes. The main difference between FDT
and ID3 is that training examples are assigned to nodes

Table 1: Output variable analysis

Temp Hum WindS Season User-
Type

Social-
Event

Day-
Type

Popu-
lation

FLoad

Hot Yes T H H H H H 15
Hot Yes F H H H M H 14
Hot No T M H M H H 13
Hot No F H L H H H 12
Mild Yes T L H H H H 11
Mild Yes F M H M M H 10
Mild No T L L L L L 1
Mild No F L L M L L 2
Cold Yes T L M L M L 3
Cold Yes F L L L L H 4
Cold No T L M M M L 5
Cold No F L M M M H 6
Hot Yes F H L H L L 7
Mild No F L M M M H 8
Hot No F H M M H L 9

in FDT technique based on the degree to which they
belong to the classification at a node. Also the fuzzy
norms are used to deal with conjunction in the propo-
sition for building FDT. If, however, the node mem-
bership is computed incrementally, the computational
complexities for the two methods are the same [12].

A number of heuristics have been proposed for
building and pruning fuzzy decision trees [37, 22]. We
are adapting the method developed in [12] due to its
simplicity and the availability of software for its imple-
mentation. The algorithm for building the tree is pre-
sented as follows:

Fuzzy decision tree build algorithm

Start With the entire exampleE
E = GetData();
TreeBuilt = False

While !TreeBuilt {

XRoot = W

While !EndofNodes() {
Compute the example counts as:

PN
k

=
�|E|
j=1

fk+1(XNj , µvc
k
(yj))

andPN =
�|Dc|
k=1

PN
k

Compute the standard information content as:

IN = −
�|Dc|
k=1

(
PN
k
PN

× log
PN
k
PN

).

∀Node i {

search the set of remaining attributes from V − VN by:

computing I
SN
Vi

selecting attribute Vi such that the information gainG
N
i is maximal

}

If( (XNj > 0.0 has unique classification) OR (VN = V )){

TreeBuilt = True

}
}

SplitN into |Di| sub nodes by making,

childN|vip get samples defined byX
N|vip and

computing new memberships using the fuzzy restrictions

leading toN|vip using the equation

X
N|vip
j

= f1(f0(ej, v
i
p), X

N
j )

}

In addition to the algorithm, the parameters, vari-
ables, and functions used in our FDT design are listed
and described in Table 2.

The training data were generated from the hourly
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Table 2: FDT variables and parameters
Variable/ parameter Description

1 V =
{V1, V2, V4, V5, V6, V7}

The set of seven fuzzy input vari-
ables defined in section 4.

2 D = Di1, D
i
2, D

i
3 The set of terms defined over vari-

able Vi .

3 vip The fuzzy term p for variable Vp ,

e.g. µ
Temp
Low

.

4 ui ∈ Ui The crisp data in the UoD for vari-
able Vi .

5 Dc The fuzzy terms for the Fload deci-
sion variable.

6 E = {ej |ej =

u1j , u
2
j , . . . , u

n
j , yj}

The training example database, each
item in the database is viewed as an
event.

7 W = {wj} The confidence weight.

8 wj The weight of ej ∈ E.

9 N Nodes in the fuzzy decision tree.

10 FN The set of fuzzy restrictions on the
path leading toN .

11 VN The set of attributes appearing on
the path leading toN .

12 XN = XNj The set of memberships inN for all
the training examples.

13 N|vip The particular child of nodeN cre-
ated by using Vi to splitN .

14 SN
V

The set of N ’s children when
Vi ∈ V − VN is used for the
split.

15 PN The total example count for node N.

16 IN Information measure for node N.

17 PN
k

The example count for decision
vc
k

∈ Dc in nodeN .

18 GNi = IN − I
SN
VI The information gain when using

Vi inN .
19 µ(.) : X → [0.0, 1.0] A mapping from X to

[0.0, 1.0].

electric load for 2004 and 2005while selected data from
2004 and 2005, as well as the data for 2006 were used
as a test data. The entire database (E) of events for the
STLF experiment is divided into two disjoint sets: (i)
the training and (ii) test sets. The training set is fur-
ther divided into two other disjoint sets. One of these
sets was used for building the tree while the other was
used for pruning the resulting tree. The procedure for
building the FDT utilises the training data set and the
tree nodes are successfully added in a top-down fash-
ion, until the stopping criteria are met. The resulting
tree is optimized by a pruning procedure which acts in
a bottom-up version, to remove irrelevant parts of the
tree.
To deal with missing values, an example is split

into all children if the need feature value is not avail-
able. The attribute utilization is then reduce based on
the percentage of the examples with unknown values.

If Puiunknown denotes the total count of examples in node
N with unknown values for Vi, then the split function
fr() at splitting point r is defined as:

fr(ei, [Vi is v
i
p]) =






1.0
|Di|

if ui
j unknown,

µvip
(ui

j) otherwise
.

Note that |Di| is the cardinality of set Di, which

is the number of elements in the set. In our model,
the cardinality for the linguistic terms Temp, User-type,

Social-Event and Day type is 3 while those of Popula-

tion, WindS and Hum is 2. The FDT pruning algorithm
as implemented in the FID 4.2 software [12, 22] was
used.

5.1 Model Implementation

The Fuzzy Decision Tree model was implemented us-
ing the FDT 4.2 software developed by [13]. Three
files, namely: the event file, the attribute file and the
parameter template file were generated.
The event or data file contains the training exam-

ple data (TE). The values of each variable ( whether
numeric, linguistic, or missing), for each case of event
are generated and the decision value (numeric or lin-
guistic) as well as the corresponding weight (W) value
(weight of the event) are assigned. A sample set of data
extracted from our data file is shown in Table 3. The at-
tribute file contains data relating to the attributes of our
STLF model. This includes definitions of partitioning
sets and the corresponding names as well as attributes
of predefined partitions, with some restrictions on the
partitioning preprocessing. The file also contains the
definition of the decision class. The parameter file con-
tains default values which we modified to customize the
options for STLF problem.
A sample of rules obtained using the above proce-

dure are shown below:
IF Temperature is mild (300C) and User-Type is

mid (60) and Social-Event is mid (12.5) and Wind-
Speed is notwindy (0.5) and Humidity is nothumid (85)
and Day-Type is Saturday (5) and Population is loosely
(0.5) THEN Fload is 3067MW (8)

IF Temperature is cold (220C) and User-Type is
heavy (86) and Social-Event is low (8.5) and Wind-
Speed is windy (0.6) and Humidity is humid (87) and
Day-Type is weekday (2) and Population is Loosely
(0.2) THEN Fload is 2399MW (2.99)

6 Model results, evaluation and brief discus-

sion

In order to evaluate our model, we compared its pre-
diction results (“Fload”) with the actual load (“A”) de-
mand as well as the results obtained from conventional
multiple regression (“F”) [9, 10] method. It is impor-
tant to note that the actual load is not the full load that
consumers demanded but the load consumed from the
amount of energy provided. The January 1st 2004 and
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Table 3: Sample data

TE Popn Temp Hum WS UT SE DT-
WD

Classi-
fiation

W

1 A 0.10 1.00 0.10 0.40 0.60 0.70 0 1
2 B 0.20 0.10 0.20 0.60 0.40 0.70 0 1
3 A 0.30 0.10 0.30 0.40 0.50 0.80 0 1
4 B 0.40 0.20 0.40 0.50 0.20 0.90 0 1
5 A 0.50 0.50 0.50 0.20 0.10 1.00 1 1
6 B 0.60 1.00 0.60 0.10 0.10 0.10 1 1
7 B 0.70 0.10 0.70 0.20 0.20 0.10 1 1
8 B 0.80 0.50 0.80 0.30 0.30 0.20 0 1
9 A 0.90 0.10 1.00 0.40 0.40 0.40 Yes 1
10 B 1.00 0.20 0.10 0.50 0.50 0.60 0 1
11 A 0.10 0.30 0.50 0.60 0.60 0.40 0 1
12 A 0.10 0.40 0.10 0.70 0.70 0.50 0 1
13 B 0.20 0.50 0.50 0.80 0.80 0.20 1 1
14 B 0.50 0.60 0.30 1.00 1.00 Sat No 1
15 A 1.00 0.70 0.60 0.10 0.10 1.00 1 1
16 A 0.10 0.80 0.70 0.50 0.50 0.10 1 1
17 B 0.50 0.90 0.80 0.10 0.10 0.50 1 1
18 B 0.10 Humid 0.90 0.50 0.50 0.10 0 1
19 A 0.50 NHumid Windy 0.30 0.30 0.50 0 1
20 B 0.30 0.10 0.10 0.60 0.60 0.30 0 1
21 A 0.60 0.60 0.90 0.70 0.70 0.60 1 1
22 B 0.70 0.40 0.50 0.80 Heavy 0.50 No 1
23 A 0.80 0.50 0.70 0.90 0.10 0.70 1 1
24 B 0.90 0.70 0.30 Heavy 0.20 0.30 1 1
25 A Cold 0.90 0.80 0.80 0.30 0.80 1 1
26 B Mild 0.80 0.20 0.20 0.40 0.20 1 1
27 A 0.60 0.50 0.40 0.40 0.50 0.40 0 1
28 A 0.40 0.10 0.60 0.60 0.60 0.60 1 1
29 A 0.50 0.30 0.40 0.40 0.70 0.40 0 1
30 A 0.70 0.20 0.50 0.50 0.80 0.50 1 1
31 B 0.90 Nhumid 0.20 0.20 1.00 0.20 0 1
32 A 0.80 Humid 0.40 Low 0.10 0.40 1 1
33 B 0.50 0.10 0.60 0.50 0.50 0.60 0 1
34 B 0.10 0.90 0.40 0.60 0.10 0.40 0 1
35 B 0.30 0.50 0.50 0.70 0.50 0.50 0 1
36 A 0.20 0.70 0.20 0.80 0.30 0.20 0 1
37 B Cold 0.30 0.50 0.90 0.60 0.50 1 1
38 B Mild 0.80 0.60 1.00 0.70 0.60 1 1
39 A 0.10 0.20 0.70 0.10 0.70 0.70 1 1
40 B 0.90 0.40 0.80 0.10 0.80 0.80 0 1
41 A 0.50 0.60 0.90 0.20 0.90 0.90 1 1
42 B 0.70 0.40 1.00 0.40 1.00 1.00 1 1
43 B 0.30 0.50 0.10 0.60 0.10 0.10 0 1
44 A 0.80 0.20 0.10 0.40 0.10 0.10 1 1
45 A 0.20 0.10 0.20 0.50 0.20 0.20 1 1
46 B 0.40 0.20 0.40 0.20 0.40 0.40 0 1
47 B 0.60 0.30 0.60 0.60 0.60 0.60 0 1
48 B 0.40 0.40 0.40 0.40 0.40 0.40 0 1
49 B 0.50 0.50 0.50 0.50 0.50 0.50 1 1
50 A 0.20 0.60 0.20 0.20 0.20 0.20 0 1

March 2nd 2005 data are from our training sets while
those for January 1st 2006 and September 4th 2004 are
from the test set.
We compared the forecasts produced by our model

with those produced by the experts who use manual
techniques in their prediction. The fractional errors
were computed by the formula:

Fractional Error(n) =
Forecasted Load(n) − Actual Load(n)

Actual Load(n)
(2)

For January 1st 2004, the average fractional error
obtained using the proposed model was 0.11, while that
of the conventional multiple regression model (MRM)
was 0.45. For March 2nd 2005, the average fractional
errors obtained using the proposed model was 0.14,
while that of the conventional model was 1.10. For Jan-
uary 1st 2006, the average fractional error obtained us-
ing the proposed model was 0.21, while that of the con-
ventional (MRM) was 0.78. For September 4th 2005,
the average fractional error obtained using the proposed

model was 0.22, while that of the conventional (MRM)
was 0.88. The variables F-Error represents the forecast
load error for the conventional (MRM) while FLoad-

Error represents the forecast load error for our FDT
based model. The results are presented graphically in
Figures 2 and 3. Our results agreed with what obtains
in the literature [21].

(a) January 1st 2004

(b) March 2nd 2004

Figure 2: Fractional errors for January and March 2004 evaluation
experiments

7 Summary and Conclusion

The aim of this communication is to present the appli-
cation of FDT technique in the computational modeling
and simulation of the STLF problem in an uncertain do-
main. We stated that the load components, as exhibited
by the Nigerian electric power environment, are impre-
cisely defined and their variations are not known ex-
actly. Thus the knowledge about this STLF problem
is rather vague as it does not depend on any formal
crisp system but on the experiences of the expert elec-
tric power load operators. We also showed that model-
ing such problem using the Fuzzy Decision Tree (FDT)
method seems to produce relatively accurate prediction
when compared with the conventional (MRM). Our ap-
plication of the FDT method in the context of STLF is
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(a) January 1st 2005

(b) September 4th 2005

Figure 3: Fractional errors for January and September 2005 evalua-
tion experiments

novel.
The proposed model can be the basis for implement-

ing a commercial software for electric load forecasting.
We, however, think that, for a more thorough testing,
electric load of a longer period than the 3 year used in
this work should be carried out. Another area of fur-
ther research would be the development of an online
software that embodies the FDT model for short-term
electric load forecasting. Such system will be expected
to have a real-time data logging module that could help
in reducing the non-availability of adequate data for use
in load forecasting.
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