
Computing a Longest Common Subsequence of two strings when

one of them is Run Length Encoded

SHEGUFTA BAKHT AHSAN1

TANAEEM M. MOOSA2

M. SOHEL RAHMAN2

SHAMPA SHAHRIYAR1

A�EDA Group, Department of CSE
Bangladesh University of Engineering and Technology

1(plaban777,shampa077)@gmail.com
2(tanaeem,msrahman)@cse.buet.ac.bd

Abstract. Given two strings, the longest common subsequence (LCS) problem computes a common

subsequence that has the maximum length. In this paper, we present new and efficient algorithms for

solving the LCS problem for two strings one of which is run length encoded (RLE). We first present

an algorithm that runs in O(gN) time, where g is the length of the RLE string and N is the length of

uncompressed string. Then based on the ideas of the above algorithm we present another algorithm that

runs inO(R log(log g)+N) time, whereR is the total number of ordered pairs of positions at which the

two strings match. Our first algorithm matches the best algorithm in the literature for the same problem.

On the other hand, forR < gN/ log(log)g, our second algorithm outperforms the best algorithms in the

literature.

Keywords: algorithms, longest common subsequence, run length encoded strings.

(Received May 15th, 2011 / Accepted September 1st, 2011)

1 Introduction

The longest common subsequence (LCS) problem is

a classic and well-studied problem in computer sci-

ence with extensive applications in diverse areas rang-

ing from spelling error corrections to molecular biol-

ogy. For example, the task of spelling error correction

is to find the dictionary entry which resembles most a

given word. In order to save storage a file archive of

several versions of a source program is maintained com-

pactly by storing only the original version and the dif-

ferences of subsequent versions with the previous ones.

In molecular biology [19, 1], we want to compare DNA

or protein sequences to learn how homologous they are.

All these cases can be seen as an investigation for the

‘closeness’ among strings. And an obvious measure for

the closeness of strings is to find the maximum num-

ber of common symbols in them preserving the order

of the symbols. This is known as the longest common

subsequence of two strings.

Suppose we are given two strings

X[1..N] = X[1]X[2] . . . X[N] and Y [1..G] =
Y [1]Y [2] . . . Y [G]. Without the loss of general-

ity, we can assume that N ≤ G. A subsequence

S[1..R] = S[1]S[2] . . . S[R], 0 < R ≤ N of X is

obtained by deleting N − R symbols from X . A

common subsequence of two strings X and Y is a

subsequence common to both X and Y . The longest
common subsequence problem for two strings, is to

find a common subsequence in both the strings, having

the maximum possible length. We use lcs(X,Y) and
r(X,Y) to denote a longest common subsequence of
X and Y and its length, respectively.

The classic dynamic programming solution to LCS

problem, invented by Wagner and Fischer [22], has

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 49

O(NG) worst case running time. Masek and Pa-

terson [15] improved this algorithm using the “Four-

Russians" technique [4] to reduce the worst case run-

ning time to O(NG/ logN). Since then, not much

improvement in terms of N,G can be found in the lit-

erature. However, several algorithms exist with com-

plexities depending on other parameters. For exam-

ple, Myers in [17] and Nakatsu et al. in [18] pre-

sented an O(ND) algorithm, where the parameterD is

the simple Levenshtein distance between the two given

strings [13].

Another interesting and perhaps more relevant pa-

rameter for this problem is R, which is the total num-
ber of ordered pairs of positions at which the two strings

match. Hunt and Szymanski [8] presented an algorithm

to solve the LCS problem in O((R + N) logN) time.
They also cited applications, whereR ∼ N and thereby

claimed that for these applications the algorithm would

run in O(N logN) time. Very recently, Iliopoulos and
Rahman [10, 11] presented an efficient algorithm to

solve the LCS problem inO(R log(log(N))+N) time.

1.1 LCS for RLE Strings

In this paper, we are interested to compute an LCSwhen

one of the strings is run length encoded. The motiva-

tion for using compressed strings as input comes from

the huge size of biological sequences. Here we will

be focusing on the run-length encoded [12] strings. In

a string, the maximal repeated string of characters is

called a run and the number of repetitions is called the

run-length. Thus, a string can be encoded more com-

pactly by replacing a run by a single instance of the re-

peated character along with its run-length. Compress-

ing a string in this way is called run-length encoding

and a run-length encoded string is abbreviated as an

RLE string.

In what follows, we use the following convention:

ifX is a (uncompressed) string, then the run length en-

coding of X will be denoted by �X . For example, the
RLE string of X = bdcccaaaaaa is �X = b1d1c3a6.
Note that for �X , we define �X[1] = b1, �X[4] = a6

and so on. The notation |X| is used to denote its usual
meaning, i.e., the length of X; the length of the cor-
responding RLE string �X is denoted by | �X|. We will
use small letters to denote the length of an RLE string;

whereas capital letters will be used to denote the length

of an uncompressed string. For example, if |X| = N ,
then we shall use n to denote the length of X̃ .

Note that, the notion of a match and hence the def-

inition of the set of matches, M, can be extended in a

natural way when one or both of the strings involved

is/are run length encoded. For example, the notion of

Figure 1: The set of matchesM in two different settings. A dot in a

cell indicates a match.

a match (i, j) ∈ M, is extended when one input is an

RLE string as follows: if �Y [i] = aq and X[j] = a then
we say (i, j) ∈ M and run((i, j)) = q. The setM as

well as its size in two different contexts are illustrated

in Figure 1. In particular, Figure 1(a) considers two

normal strings and Figure 1.(b) illustrates the scenario

when one of those is run length encoded. The problem

we handle in this paper is formally defined as follows:

Problem 1. Problem LCS_RLE. Given one uncom-

pressed stringX[1..N] = X[1]X[2] . . . X[N] and one

RLE string �Y [1..g] = �Y [1]�Y [2] . . . �Y [g], we want to

compute a Longest Common Subsequence (LCS) of X
and �Y .

Wewill use LCS_RLE(X, �Y) to denote an LCS of

X and �Y . There has been significant research on solv-
ing the LCS problem involving RLE strings in the liter-

ature. Mitchell proposed an algorithm [16] capable of

computing an LCS when both the input are RLE strings.

Given two RLE strings �X[1..n] and �Y [1..g], Mitchell’s
algorithm runs in O((R + g + n) log(R + g + n))
time. Apostolico et al. [3] gave another algorithm

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 50

for solving the same problem in O(gn log(gn)) time
whereas the algorithm of Freschi and Bogliolo [6] runs

in O(gN + Gn − gn) time. Ann et al. also proposed
an algorithm to compute an LCS of two run length en-

coded strings [2] in O(gn+min{g1, g2}) where g1, g2
denote the number of elements in the bottom and right

boundaries of the matched blocks respectively. The ver-

sion of the problem where only one string is run length

encoded was handled recently by Liua et al. in [14].

Here, the authors proposed an O(gN) time algorithm
to solve the problem.

1.2 Our Contribution

In this paper, we make an effort to solve the LCS

problem efficiently when one of the input strings is

run length encoded. Our main contributions are two

novel efficient algorithms, namely, LCS_RLE-I and

LCS_RLE-II, to solve Problem 1. In particular, we

first present a novel and interesting idea to solve the

problem and present an algorithm that runs in O(gN)
time (LCS_RLE-I). This matches the best algorithm in

the literature [14] for the same problem. Subsequently,

based on the ideas of our above algorithm, we present

another algorithm that runs in O(R log(log(g)) + N)
time (LCS_RLE-II). Clearly, forR < gN/ log(log(g)),
our second algorithm outperforms the best algorithms

in the literature. In this context, Algorithm LCS_RLE-

II is an input sensitive algorithm. In many cases, the

input could be such that R = o(gN). In such cases,
our algorithm will definitely show better behaviour

than the other algorithms. Also, note that, in our set-

ting, Mitchell’s algorithm would run in O((R + G +
n) log(R + G + n)) time, which clearly is worse than
ours. (Notably, Mitchell’s algorithm could also be used

in our setting with an extra preprocessing step to com-

press the uncompressed string. In this case, the cost of

compression must be taken into account.)

With the existence of LCS algorithms in the litera-

ture that can deal with both RLE strings, our algorithms

may seem to be only theoretically interesting. However,

we note the following points in favour of the practical

importance of our algorithms. Firstly, in many practical

instances a much smaller reference pattern is compared

with a large genome. In such cases our version of the

problem may turn out to be more relevant. Secondly,

when we talk about comparing two RLE genomes, we

often ignore the cost of compressing the two genomes.

Now, if we count the cost of compression, then our

algorithms (and the algorithm of Liua et al. in [14])

may turn out to be more favourable in different practi-

cal settings. Finally, our work can be seen as a building

block for an efficient algorithm for the version where

both strings are RLE. Indeed, we believe that combin-

ing some of the tricks of Mitchell [16] with our work,

we would be able to get an algorithm for two RLE

strings that runs faster than Mitchell’s algorithm.

1.3 Roadmap

The rest of the paper is organized as follows. In

Section 2, we present an O(gN) algorithm, namely
LCS_RLE-I, to solve Problem LCS_RLE. LCS_RLE-I

provides the base of our second algorithm, LCS_RLE-

II, described in Section 3. We achieve O(R log log g +
N) running time for LCS_RLE-II. Finally, we briefly
conclude in Section 4.

2 A New Algorithm

In this section, we present Algorithm LCS_RLE-I

which works in O(gN) time. Since our algorithm de-

pends on some ideas of Algorithm LCS-I of [10, 11],

we give a very brief overview of LCS-I in the following

subsection.

2.1 Review of LCS-I

Note that, LCS-I solves the classic LCS problem for

two given strings X and Y . For the ease of exposition,
and to remain in line with the description of [10, 11],

while reviewing LCS-I (in this section) we will assume

that |X| = |Y | = N . Recall that, we say a pair

(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ G, defines a match, if
X[i] = Y [j]. The set of all matches, M, is defined as

follows:

M = {(i, j) | X[i] = Y [j], 1 ≤ i ≤ N, 1 ≤ j ≤ G}.

Observe that |M| = R. From the definition of LCS

it is clear that if (i, j) ∈ M, then we can calculate

T [i, j], 1 ≤ i, j ≤ N by employing the Equation 1

from [20, 9].

T [i, j] =

Undefined if (i, j) /∈M,

1 if (i = 1 or j = 1) and (i, j) ∈M

max 1≤�i<i
1≤�j<j

(�i,�j)∈M

{(T [�i, �j])}+ 1 if (i, j �= 1) and (i, j) ∈M.
(1)

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 51

Here we have used the tabular notion T [i, j] to de-
note r(Y [1..i], X[1..j]). We use the notationMi to de-

note the set of matches in Row i. Also, for the sake
of better exposition we impose a numbering on the

matches of a particular row from left to right as fol-

lows. If we have Mi = {(i, j1), (i, j2), . . . , (i, j�)},
such that 1 ≤ j1 < j2 < . . . < j�, then, we say that
number((i, jq)) = q and may refer to the match (i, jq)
as the qth match in Row i. Note that, number((i, jq))
may or may not be equal to jq .

In what follows, we assume that we are given the set

M in the prescribed order assuming a row by row op-

eration. LCS-I depends on the following facts, problem

and results.

Fact 1. ([9, 20]) Suppose (i, j) ∈ M. Then for all

(i�, j) ∈ M, i� > i, (resp. (i, j�) ∈ M, j� > j),
we must have T [i�, j] ≥ T [i, j] (resp. T [i, j�] ≥
T [i, j]). �

Fact 2. ([9, 20]) The calculation of the entry

T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n, is independent of

any T [�, q], (�, q) ∈ M, � = i, 1 ≤ q ≤ N . �

Problem 2. Range Maxima Query Problem. We are

given an array A = a1a2...an of numbers. We need to

preprocess A to answer the following form of queries:

Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤
n, the goal is to find the index k (or the valueA[k] itself)
with maximum value (ties can be broken arbitrarily, e.g.

by taking the one with larger (smaller) index) A[k] for

k ∈ I . The query is denoted by RMQA(is, ie)

Theorem 1. ([7, 5]) Range Maxima Query Problem

can be solved in O(n) preprocessing time and O(1)
time per query. �

Now, assume that we are computing the match

(i, j). LCS-I maintains an array H of length N , where,
for the current value of i ∈ [1..N] we have, H[�] =
max1≤k<i,(k,�)∈M(T [k, �]), 1 ≤ � ≤ N . The ‘max’
operation, here, returns 0, if there does not exist any

(k, �) ∈ M within the range. Now, given the updated

array H , LCS-I computes T [i, j] by using the con-
stant time range maxima query as follows: T [i, j] =
RMQH(1, j − 1) + 1. Because of Fact 1, LCS-I is
able to maintain the array H on the fly using another

array S, of length N , as a temporary storage. After cal-
culating T [i, j], such that (i, j) ∈ Mi, LCS-I stores

S[j] = T [i, j]. It continues to update S (and not H)
as long as the computation continues in the same row.

As soon as the processing of a new row begins, it up-

dates H with new values from S. Due to Fact 1, LCS-I
does not need to reset S after H is updated (by it) for

the next row. Now, for the constant time range maxima

query, an O(N) time preprocessing is required as soon
as H is updated. But due to Fact 2, it is sufficient to

perform this preprocessing once per row. So, the com-

putational effort added for this preprocessing is O(N2)
in total. Therefore, LCS-I runs in O(N2) time.

2.2 LCS_RLE-I

In this section we present our first algorithm, namely

LCS_RLE-I, to solve the LCS problem when one of the

strings is an RLE string. Recall that, the notion of a

match (i, j) ∈ M, is extended when one input is an

RLE string as follows: if �Y [i] = aq and X[j] = a then
we say (i, j) ∈ M and run((i, j)) = q. Following
the idea of [10, 11], in the LCS_RLE-I algorithm, we

maintain the arrays H and S and use them exactly the

same way as they are used in LCS-I. We will be using

another array K for the efficient implementation of our

algorithm and its use will be clear as we proceed.

Now consider that we have completed the compu-

tation for the matches belonging to Row i − 1 (i.e.,
Mi−1). Now we start Row i. Given the updated

array H , assume that we are processing the match

(i, j). Also assume that when the the computation

of the match (i, j) would be complete, i.e. T [i, j]
is completely computed, we would have the result of

LCS_RLE(�Y �aq, X �), where �Y �aq and X � are pre-

fixes of �Y and X respectively. Then, clearly, the match

is due to the letter a. Now, if q = 1, then to com-
pute T [i, j], we simply need to perform: T [i, j] =
RMQH(1, j − 1) + 1. We also need to update S array
to store the new value of T [i, j] as the current highest
value of the jth column, i.e., we perform S[j] = T [i, j].
In what follows, we refer to the above operations as the

baseOperation.

If q > 1, then, we require two steps. Firstly, we
perform the baseOperation. Then, in the second step
(referred to as the weightOperation), we consider q
previous matches (if fewer matches are available we

need to consider all of them) in Row i, including the
current one. Now, note carefully that T -values for these
matches have already been computed and reflected in

the S array. We copy S to K and S array is never

changed by any weightOperation. For Row i, we call
K[k] to be a match position if (i, k) ∈ Mi and K[k]
and k are referred to as the corresponding K-value and

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 52

K-index (similar notations are also defined for the ar-
rays H and S). Now, we add a weight to each of the
correspondingK-values: the weight is 0 for the current
match, 1 for the previous match, 2 for the match before
it and so on. Now observe that T [i, j] will be the max-
imum of these values. This is because the kth element
of this “window" from right, corresponds to matching k
a’s from the run aq with rightmost k a’s from X � and

then matching the remaining substring with �Y �.

We will use an array K to do this computation ef-

ficiently. Now recall that we are handling the match

(i, j) ∈ Mi. We can implement the weightOperation
by adding the appropriate weights at the corresponding

match positions of K and then performing the query

RMQK(u, j), such thatK[u] is amatch position (due
to (i, u)) and q = number((i, j))− number((i, u)) +
1. In what follows we will refer to the above range

(i.e., the range [u..j]) as the weighted query window.
However, in this strategy, we may need to adjust the

weights every time we compute a new match since for

each match the weighted query window may change.
However, this would be costly. In what follows, we dis-

cuss how to do this more efficiently.

Rather than adding the appropriate weight, for a
particular row, we will add relative weight to all the
match positions of K. This would ensure that the

position of the maximum value remains the same, al-

though the value may not. To get the correct value, we

will finally deduct the appropriate difference from the

value. We do it as follows. After the baseOperation,
we copy the array S to array K. Then, to a match

(i, �), 1 ≤ � ≤ |Mi|we add |Mi|−number((i, j))+1
as the relative weight. In other words we give weight
1 to the rightmost match, 2 to the next one and so on

and finally, |Mi| to the first match.

Now recall that we are considering the match

(i, j) ∈ Mi, i.e., we are computing T [i, j]. As-

sume that number((i, j)) = |Mi| − k + 1, i.e.,
this is the kth match position from right. As be-

fore, we execute the query RMQK(q, j), such that
K[u] is a match position (due to (i, u)) and q =
number((i, j)) − number((i, u)) + 1. However, this
time we need to do some adjustment as follows. It is

easy to realize that each of the values of the matched

positions in K[u..j], is k higher than the actual value.
So, to correct the computation we perform T [i, j] =
RMQK(q, j)− k.

The analysis of the algorithm is similar to that of

LCS-I algorithm of [10, 11]. As we need to do at

most two RMQ preprocessing per row, overall it will

cost O(Ng) time (using O(N) time preprocessing al-
gorithm). We need two RMQ queries per match which

amounts to O(R) (using constant time RMQ query)

time. Note that, in the worst caseR = O(Ng). Finally,
it is easy to see that, the setM in the prescribed order

can be computed easily in O(Ng) time. Therefore, we
get the following theorem.

Theorem 2. LCS_RLE-I solves Problem LCS_RLE in

O(Ng) time. �

2.3 An Illustrative Example

In this section, we will give a partial example on

how the LCS_RLE-I algorithm works for X =
ABBCCCAAAA and �Y = C3A3. We assume that

we have already completed processing the matches be-

longing to Row 1 (i.e. M1). After calculating Row 1,

values of S array are shown in Table 1 and the T -values
of Row 1 are shown in Table 2

value 0 0 0 0 1 2 3 0 0 0 0

index 0 1 2 3 4 5 6 7 8 9 10

Table 1: S array after calculating Row 1

C3 0 0 0 0 1 2 3 0 0 0 0

A B B C C C A A A A

index 0 1 2 3 4 5 6 7 8 9 10

Table 2: T -values of Row 1 after processing all the matches of Row

1

Now we will calculate Row 2. We have, M2 =
{(2, 1), (2, 7), (2, 8), (2, 9), (2, 10)}. Here, we have to
perform both baseOperation and weightOperation.
The values of S array After baseOperations for all the
matches ofM2 are shown in Table 3

value 0 1 0 0 1 2 3 4 4 4 4

index 0 1 2 3 4 5 6 7 8 9 10

Table 3: S array after baseOperations of all the matches of Row 2

To calculate weightOperation, we will copy the S
array into the K array and add relative weight as shown

in Table 4 and Table 5.

value 0 1 0 0 1 2 3 4 4 4 4

weight 0 5 0 0 0 0 0 4 3 2 1

index 0 1 2 3 4 5 6 7 8 9 10

Table 4: K-Array before addition of relative weight

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 53

value 0 6 0 0 1 2 3 8 7 6 5

index 0 1 2 3 4 5 6 7 8 9 10

Table 5: K-Array after addition of relative weight

After calculating the matches of Row 2, values of S
Array and T Array are shown in Table 6 and Table 7

respectively.

value 0 1 0 0 1 2 3 4 5 6 6

index 0 1 2 3 4 5 6 7 8 9 10

Table 6: S array after calculating Row 2

A3 0 1 0 0 0 0 0 4 5 6 6

C3 0 0 0 0 1 2 3 0 0 0 0

A B B C C C A A A A

index 0 1 2 3 4 5 6 7 8 9 10

Table 7: T -values of Row 2 after processing all the matches of Row

2

3 LCS_RLE-II

In this section, we use the ideas of LCS_RLE-I to

present our second algorithm, LCS_RLE-II, which runs

in O(R log(log(g)) + N) time. To achieve this run-
ning time, we will use an elegant data structure (referred

to as the vEB tree henceforth) invented by van Emde

Boas [21] that allows us to maintain a sorted list of in-

tegers in the range [1..n] in O(log(log(n))) time per
insertion and deletion. In addition to that it can return

next(i) (successor element of i in the list) and prev(i)
(predecessor element of i in the list) in constant time.

We follow the same terminology and assume the

same settings of Section 2 to describe LCS_RLE-

II. So, assume that we are considering the match

(i, j) ∈ Mi and recall that when the the computa-

tion of the match (i, j) would be complete, i.e. T [i, j]
is completely computed, we would have the result

of LCS_RLE(�Y �ap, X �). Note carefully that the

baseOperation is basically the operation required to
compute a normal LCS. We can use the LCS algo-

rithm of [10] or [11] just to do the baseOperation
for each match. Then, for each match we would

only need O(log(log(g))) time [11, 10], requiring

a total of O(R log(log(g))) time to perform all the

baseOperations.
Now, we focus on the weightOperations. Our

goal is to completely avoid any RMQ preprocess-

ing. We need to modify the weightOperation as

follows. We will use the vEB tree for this purpose.

Recall that we want to find the maximum value of

K in the weighted query window. Furthermore,

note that, only the matched positions of K in the

weighted query window are important in the calcu-

lation. So instead of maintaining the array K, we main-
tain a vEB tree where always the appropriate num-

ber (q in this case) of matches (with values after the
addition of the relative weights) are kept. And as

the computation moves from one match to the next,

to maintain the appropriate weighted query window,
only one element (corresponding to a match) is added

to the vEB tree and at most one element is deleted.

(We do not need to delete any element if the current

weighted query window has fewer matches than q.)

When we need the maximum value of the

weighted query window, we just find the maxi-

mum from the vEB tree which can also be found in

O(log(log(g))) time (by inserting a fictitious element
having infinite value and then deleting it after comput-

ing its predecessor). As we need to insert and delete

constant number of elements from the vEB tree for each

match, this can be done in O(R log(log(g))) time on
the whole. Like before, we would need to deduct the

appropriate value ((|Mi| + 1 − number((i, j)) in this
case) from the returned maximum to do the proper ad-

justment. Algorithm 1 presents the idea (only the com-

putation of the values) more formally. Notably, we must

maintain appropriate pointers to recover the actual LCS

after the computation is done.

Finally, the computation of the set M in the pre-

scribed order can be done following the preprocessing

algorithm of [10, 11] which runs in O(R log(log(g)) +
N) time. So, we have the following theorem.

Theorem 3. LCS_RLE-II solves Problem LCS_RLE in

O(R log(log(g)) +N) time.

4 Conclusion

In this paper, we have studied the longest common sub-

sequence problem for two strings, where one of the

input strings is run length encoded. We have pre-

sented two novel algorithms, namely LCS_RLE-I and

LCS_RLE-II to solve the problem. We have first pre-

sented LCS_RLE-I combining some new ideas with the

techniques used in [11, 10]. LCS_RLE-I runs inO(gN)
time, which matches the best algorithm in the literature.

Then we present an input sensitive algorithm, namely,

LCS_RLE-II that runs in O(R log(log(g)) + N) time.
Observe that in the worst case, R = O(gN) and hence
the worst case running time of LCS_RLE-II is slightly

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 54

Algorithm 1 LCS_RLE-II: Computation of Row i
(Only the computation of value is shown)

1: for each (i, j) ∈ Mi in the left to right order do

2: Perform baseOperation and update S array ac-
cordingly

3: end for

{Now we perform the weightOperation for every
match ofMi. Assume that each vEB element is a

tuple (value, pos)}
4: vEBTree = null

5: for each (i, j) ∈ Mi in the left to right order do

6: relativeWeight = |Mi|−number((i, j))+1
7: vebTree.Insert((S[j]+relativeWeight,j))

8: if |vebTree| > q then
9: Delete the earliest inserted element from veb-

Tree {The earliest inserted element can be ef-

ficiently found by maintaining a normal linked

list between the inserted elements}

10: end if

11: S[j] = vebTree.Maximum() − (|Mi| + 1 −
number((i, j)))

12: T [i, j] = S[j]
13: end for

worse than the best algorithm in the literature. How-

ever, in many cases R = o(gN), and our algorithm
would show superior behaviour in these cases. In par-

ticular, ifR < gN/ log(log(g)), LCS_RLE-II will out-
perform the best algorithms in the literature. Addition-

ally, if we run Mitchell’s algorithm (the best algorithm

in the literature for two RLE strings) in our setting, the

running time would beO((R+G+n) log(R+G+n)),
which clearly is worse than ours. Also, employing some

of the insights of Mitchel [16], we believe, our work can

be extended to the version where both the input are RLE

strings.

Finally, all the works in the literature so far on

LCS computation considering RLE strings focused

only on theoretical complexity results of the devised al-

gorithms. Theoretical improvement in these algorithms

were achieved in most cases by using complex data

structures (e.g., in our case, vEB tree and RMQ data

structures). In practice, such algorithms, despite having

better theoretical bounds, may turn out to be worse in

performance. Hence, an interesting research direction

could be to implement the algorithms in the literature

along the new ones proposed here and to compare them

against each other from a practical point of view. No-

tably, we have already started working in this direction

and hope to present the findings in a forthcoming paper.

Acknowledments

The authors would like to thank the annonymous re-

viewers and the editor for constructive comments and

suggestions which improved the presentation of the pa-

per a lot. This research work constitues part of the B.Sc.

Engineering thesis of Ahsan and Shahriyar under the

supervision of Rahman. Moosa is currently working at

Google Inc., USA.

References

[1] Altschul, S. F., Gish, W., Miller, W., Meyers,

E. W., and Lipman, D. J. Basic local align-

ment search tool. Journal of Molecular Biology,

215(3):403–410, 1990.

[2] Ann, H.-Y., Yang, C.-B., Tseng, C.-T., and Hor,

C.-Y. A fast and simple algorithm for computing

the longest common subsequence of run-length

encoded strings. Inf. Process. Lett., 108(6):360–

364, 2008.

[3] Apostolico, A., Landau, G. M., and Skiena, S.

Matching for run-length encoded strings. J. Com-

plexity, 15(1):4–16, 1999.

[4] Arlazarov, V., Dinic, E., Kronrod, M., and

Faradzev, I. On economic construction of the tran-

sitive closure of a directed graph (english transla-

tion). Soviet Math. Dokl., 11:1209–1210, 1975.

[5] Bender, M. A. and Farach-Colton, M. The lca

problem revisited. In LATIN, pages 88–94, 2000.

[6] Freschi, V. and Bogliolo, A. Longest common

subsequence between run-length-encoded strings:

a new algorithm with improved parallelism. Inf.

Process. Lett., 90(4):167–173, 2004.

[7] Gabow, H., Bentley, J., and Tarjan, R. Scaling

and related techniques for geometry problems. In

STOC, pages 135–143, 1984.

[8] Hunt, J. W. and Szymanski, T. G. A fast algorithm

for computing longest subsequences. Commun.

ACM, 20(5):350–353, 1977.

[9] Iliopoulos, C. S. and Rahman, M. S. Algo-

rithms for computing variants of the longest com-

mon subsequence problem. Theor. Comput. Sci.,

395(2-3):255–267, 2008.

[10] Iliopoulos, C. S. and Rahman, M. S. New ef-

ficient algorithms for the lcs and constrained lcs

problems. Inf. Process. Lett., 106(1):13–18, 2008.

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

Shegufta Bakht Ahsan et al. Computing a Longest Common Subsequence of two strings when one of them is Run Length Encoded 55

[11] Iliopoulos, C. S. and Rahman, M. S. A new

efficient algorithm for computing the longest

common subsequence. Theory Comput. Syst.,

45(2):355–371, 2009.

[12] K. Sayoood, E. F. E. Introduction to Data Com-

pression. Morgan Kaufmann Publishers Inc, 2000.

[13] Levenshtein, V. Binary codes capable of correct-

ing deletions, insertions, and reversals. Problems

in Information Transmission, 1:8–17, 1965.

[14] Liu, J. J., Wang, Y.-L., and Lee, R. C. T. Find-

ing a longest common subsequence between a

run-length-encoded string and an uncompressed

string. J. Complexity, 24(2):173–184, 2008.

[15] Masek, W. J. and Paterson, M. A faster algorithm

computing string edit distances. J. Comput. Syst.

Sci., 20(1):18–31, 1980.

[16] Mitchell, J. A geometric shortest path problem,

with application to computing a longest common

subsequence in run-length encoded strings. Tech-

nical Report Department of Applied Mathematics,

SUNY Stony Brook, 1997.

[17] Myers, E. W. An o(nd) difference algorithm and

its variations. Algorithmica, 1(2):251–266, 1986.

[18] Nakatsu, N., Kambayashi, Y., and Yajima, S. A

longest common subsequence algorithm suitable

for similar text strings. Acta Inf., 18:171–179,

1982.

[19] Pearson, W. and Lipman, D. Improved tools

for biological sequence comparison. Proceedings

of National Academy of Science, USA, 85:2444–

2448, 1988.

[20] Rahman, M. S. and Iliopoulos, C. S. Algorithms

for computing variants of the longest common

subsequence problem. In ISAAC, pages 399–408,

2006.

[21] van Emde Boas, P. Preserving order in a forest in

less than logarithmic time and linear space. Infor-

mation Processing Letters, 6:80–82, 1977.

[22] Wagner, R. A. and Fischer, M. J. The string-to-

string correction problem. J. ACM, 21(1):168–

173, 1974.

INFOCOMP, v. 10, no. 3, p. 48-55, September of 2011.

