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Abstract. The Binary Decision Diagram (BDD) is used to represent in symbolic manner a set of
states. It is largely used in the field of formal checking. The variable ordering is a very important step
in the BDD optimization process. A good order of variables will reduce considerably the size of a BDD.
Unfortunately, the search for the best variables ordering has been showed NP-difficult. In this article,
we propose a new iterative approach based on a hybrid Genetic Algorithm and Variable Neighborhood
Search Algorithm. The obtained results are very encouraging and show the feasibility and effectiveness
of the proposed hybrid approach.
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1 Introduction

The objective of the checking application and electric
circuits is to detect the errors which they contain or to
show that they function well. One of the methods used
in system checking is the model-checking [17]

One of the difficulties encountered in the domain of
formal verification is the combinatorial explosion prob-
lem. For example in the model checking, the number
of states in the transition graphs can reach prohibitive
level, which makes their manipulation difficult or im-
possible. Consequently, compression methods are used
in order to reduce the size of the state graph. The com-
pression is done by using data structures in order to rep-
resent in a concise manner the set of states. In this case,
the operations are done so on set of states rather than on
explicit states.

The representation by the Binary Decision Dia-
grams BDD [6] is among the most known symbolic no-

tations. The BDD is a data structure used to represent
Boolean functions. The BDD is largely used in several
fields since they offer a canonical representation and an
easy manipulation. However, the BDD size depends on
the selected variable order. Therefore it is important
to find variable order which minimizes the number of
nodes in a BDD. Unfortunately, this task is not easy
considering the fact that there is an exponential num-
ber of possible variable ordering. Indeed, the problem
of variable ordering was shown NP-hard [2]. For that,
several methods were proposed to find the best BDD
variable order and which can be classified in two cate-
gories. The first class tries to extract the good order by
inspecting the logical circuits [10], whereas, the second
class is based on the dynamic optimization of a given
order[11] .

Evolutionary computation has been proven to be an
effective way to solve complex engineering problems.



It presents many interesting features such as adaptation,
emergence and learning. Artificial neural networks, ge-
netic algorithms and artificial immune systems are ex-
amples of bio-inspired systems used to this end. One of
the iterative methods that have been developed recently
to solve this type of problem is Genetic Algorithms GA
[16, 8]. It is a stochastic iterative algorithm which main-
tains a population of individuals. GA adapts nature op-
timizing principles like mechanics of natural selection
and natural genetics. Each individual represents a fea-
sible solution in the problem search space. Basically, a
genetic algorithm consists of three essential selection,
crossover, and mutation. The selection evaluates the fit-
ness of each individual and keeps the best ones among
them. The others are removed from the current pop-
ulation. The crossover merges two individuals to pro-
vide new ones. The operator of mutation allows moving
each solution to one of its neighbours in order to main-
tain a good diversity during the process of optimization.
GA allows guided search that samples the search space.
Although GAs have been showed to be appropriate for
solving BDD ordering problem [9], their computational
cost seems to be a dissuasive factor for their use on large
instances. To overcome this drawback and in order to
get better speed and quality convergence, their implicit
parallelism is exploited.

Metaheuristics are a family of optimization tech-
niques inspired by nature used to solve difficult opti-
mization problems for which we do not know the most
effective method. The heuristic search procedures are
recognized as the neighboring structures (NS), which
transform a solution to one of its neighbourhood by
applying some perturbations. Variable neighbourhood
search (VNS) [14] is a recent metaheuristic for solving
combinatorial optimization problems. The main idea
of VNS is to change systematically the neighbourhood
by simply passing one NS to another while they exe-
cute a search Local. The VNS changes the neighbour-
hood structure where the search is trapped in a local
minimum. VNS offers a multiple neighbourhood struc-
ture with which one recovers the solutions trapped via
the others. The main idea here is to choose heuris-
tics (neighbourhood structures) complementary to each
other [3].

In this context, we propose in this article, a new
iterative approach called GAVNSBDD based on a hy-
brid GA and variable neighbourhood search. For that,
a problem formulation in terms of genetic representa-
tion and evolutionary dynamic borrowing evolutionary
operators were defined. To foster the convergence to
optimality, the VNS has been embedded within the op-
timization process. VNS helps the search process to

avoid local optima and explores the solution space eco-
nomically and effectively without getting trapped into
cycles. The experiences carried out on GAVNSBDD
showed the feasibility and the effectiveness of our ap-
proach.

Consequently, the remainder of the paper is orga-
nized as follows: section 2 presents some basis concepts
of BDD. A brief introduction to variable neighbourhood
search is presented in section 3. The proposed approach
is described in section 4. Section 5 illustrates some ex-
perimental results. Then, we finish by giving conclu-
sion and some perspective.

2 Binary Decision Diagram

A Binary Decision Diagram or BDD is data structure
used for representation of Boolean functions in the form
of rooted directed acyclic graph. A BDD is a rooted
directed acyclic graph G = (V,E) with node set V
containing two kinds of nodes, non-terminal and termi-
nal nodes (Figure1). A non-terminal node v has as tag
a variable index(v) ∈ {x1, x2, . . . , xn} and two chil-
dren low(v) , high(v) ∈ V . The final nodes are called
0-final and 1-final. A BDD can be used to compute
a Boolean function f(x1, x2, . . . , xn) in the following
way. Each input a = (a1, a2, . . . , an) ∈ {0, 1}n de-
fines a computation path through the BDD that starts at
the root. If the path reaches a non-terminal node v that
is labelled by xi, it follows the path low(v) if ai = 0,
and it follows the path high(v) if ai = 1. The label
of the terminal node determines the return value of the
BDD on input a. the BDD is called "ordered" if the dif-
ferent variables appear in the same order on all the ways
from the root (figure 1). It is important to note that for
a given order of variables, the minimal binary decision
graph is single. A BDD can be reduced while using the
two following rules [7, 6, 4]:

• Recognize and share identical sub-trees.

• Erase nodes whose left and right child nodes are
identical.

It is very important to take into account the order of
variables to be used when using the BDD in practice.
The size of a BDD is largely affected by the choice of
the variable ordering (Figure 2).

Unfortunately, there are an exponential number of
possible orders (permutation). It is completely clear
that the problem of variables ordering is NP-difficult.
The use of heuristics is essential to find acceptable solu-
tions within reasonable times. Within this perspective,
we are interested in applying evolutionary computing
principles to solve the variable ordering problem.

�������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������



Figure 1: Binary Decision Diagram for the Boolean function f =
x1x3 + x2x3

Figure 2: Two BDDs representation of the function (x1 ∨ x3) ∧
(x2 ⇒ x4) , in the top the order of variable is: x1, x2, x3, x4; and
in the bottom the order is: x1, x3, x2, x4

3 Variable neighbourhood search

A Variable Neighbourhood Search (VNS) is a recent
metaheuristic based on the idea of a systematic change
in the search space. Basically, a local search algo-
rithm performs exploration in a limited region of in the
candidate solutions space. The effectiveness of VNS
compared to simple local search method is based on
the systematic change of neighbourhood. A simple al-
gorithm VNS starts from an initial solution from the
search space, than enhances it through a two nested loop
in which the core one alters and explores via two main
functions so called shake and local search. Shaking step
is performed by randomly selecting a solution from the
first neighbourhood. This is followed by applying a lo-
cal search algorithm. This procedure is repeated as long
as a new incumbent solution is found [14, 3].

In order to develop a competent VNS algorithm, the
structure of neighbourhood and heuristic functions used
must be selected with great accuracy in order to con-
struct a powerful VNS algorithm. We can use more than
one neighbourhood structure for shake and local search
procedures. The VNS comprises the following steps:

1. Initialization: Find an initial solution x.

2. Repeat: the following steps until the stopping
condition is met:

(a) Shake Procedure: Generate at random a
starting solution x�.

(b) Local Search: Apply a local search from the
starting solution x� using the base neighbour-
hood structure until a local minimum x" is
found.

(c) Improve or not: If x�� is better than x, do
x ← x�.

The integration of the VNS in the genetic algorithm
can be done in two ways. This integration can replace
completely the mutation operation in a simple genetic
algorithm, as we can combine the two operations into
a single operation of mutation. Although this method
has proved effective in solving several difficult prob-
lems, it remains, nonetheless difficult to adapt to the
problem of BDD ordering. This is mainly due to the
large number of parameters to define: initial solution,
local search method, neighbourhood function, number
of neighbours to explore.

3.1 Initial solution

It has been shown that the effectiveness of approaches
based on the principle of local search depends deeply on
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the quality of the initial solution. In our approach, the
initial solution is obtained from the genetic algorithm
and passed as a parameter to the operator of VNS. So,
the solutions passed to the VNS procedure are mainly
dependent on the quality of the current individual pop-
ulation in the genetic algorithm.

3.2 Neighbourhood function

The choice of the neighbourhood is very important in
this type of local search method; it must be a compro-
mise between efficiency and quality. The complexity of
solving approach based on VNS depends mainly on the
size of the current solution neighbourhood and the val-
uation method of each of these neighbours to determine
which minimizes the cost function. It has been demon-
strated that almost 90% of the execution time is spent
in neighbourhood’s evaluation. Therefore, it is interest-
ing to use if possible neighbourhoods with constraints
to reduce the runtime complexity. The best neighbour
generated belonging to the first neighbourhood is se-
lected and the total number of neighbourhoods to gen-
erate for each iteration is well defined. The mechanism
for the generating of neighbouring solutions is based
on choosing a first point to move, then a second point
which will be the target of movement. We selected a
number of neighbourhoods equal to two, the point of
movement is selected from the first neighbourhood de-
fined by the VNS or we undertake a systematic change
in the neighbourhood.

4 The Proposed Approach

The development of the suggested approach called
GAVNSBDD is based basically on a genetic represen-
tation of the research space associated with the problem
and an evolutionary dynamic used to explore this space
by operating on the genetic representation by using evo-
lutionary operations.

4.1 The fitness function

To select the best individuals of the current population,
we must first evaluate these individuals to compute their
efficiency or adaptation. The fitness in our case is the
number of nodes in the resulting BDD. The best indi-
vidual is one who gives a minimum number of nodes;
the greater the size of the BDD is minimal, the resulting
solution is optimal. In order to compute the fitness of
variable order, we must first construct the correspond-
ing BDD and then we compute the number of nodes
in the resulting BDD. The implementation of the fit-
ness function must be especially optimized because it
will be executed many times during the execution of

the genetic algorithm. Consequently, the algorithm con-
vergence depends largely on the runtime of the fitness
function.

4.2 Genetic representation of variable order

The problem of variable ordering can be mathemati-
cally formulated as follow
Given a set of variables V = {x1, x2 . . . , xn}, the prob-
lem of BDD variables ordering can be defined by spec-
ifying implicitly a pair (Ω, SC) where is the set of all
possible solutions that is potentials variables order and
SC is a mapping Ω −→ � called score of the variable
ordering. This score is the BDD size. Each solution
is viewed as permutation of the V variables. Conse-
quently, the problem consists to define the best permu-
tation of V that gives the minimal BDD size. In our
approach, the variable order is represented as integer
vector (figure 3) satisfying the following criteria:

• For N variable, the size of the vector is N .

• There is no repetitive variable in this vector

Figure 3: Genetic representation of the variable ordering

4.3 Initial Population

The initial population is an important factor in evolu-
tionary algorithms. The generation process of individu-
als in this population must be carefully selected in order
to provide to the genetic algorithm a set of potential and
diverse individuals. The goal is to construct a number
of different variable orders to be used by the genetic al-
gorithm. In our case, the initial population was created
randomly. However, it is important to use heuristics to
construct initial solutions of good quality and thus to
reduce the convergence time. Another side, the pop-
ulation size has a great impact on the performance of
evolutionary algorithms. A large population represents
a large space search of solutions, but increases the com-
putational cost. On the other hand, a small population
size can lead to local solutions. View we have used a lo-
cal search method in the core of genetic algorithm, it is
preferably to reduce the population size. We have found
that a population between 10 and 30 can give good re-
sults.
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4.4 Genetic operators

Seclection: The selection is to select individuals that
have the best fitness to construct the intermediate popu-
lation in order to apply the evolutionary operators. Each
individual is selected with a probability related to its
fitness. Thus, individuals with high affinity value have
more chance of being selected for the next generation.
Selection strategies that we can use in genetic algo-
rithms such as [8]:

• The roulette wheel selection.

• The opposite roulette wheel selection.

• The tournament selection.

• Selection by rank.

In our approach, we have used the roulette wheel se-
lection. The basic motivation for adopting this fitness
proportional rule is to preserve diversity of good and
bad individuals in the pool, so that it can contain a large
space search of potential solutions and to avoid being
trapped in local minimum.

Mutation operator: this operator performs permuta-
tion between two variables (figure4). It allows moving
from the current solution to one of its neighbors. It con-
sists first in selecting pairs of two variables are chosen
randomly according to a defined probability, and then
swap these two variables as in figure 4 . This operator
allows exploring new solutions and thus enhances the
diversification capabilities of the search process.

Figure 4: Mutation Operator

Crossover operators: Crossovers are important for
promoting the exchange of high quality blocks within
the population (figure 5). They exchange subparts

of two chromosomes. We have used Partial Mapped
Crossover (PMC). The PMC was recommended by
Goldberg and Linge[13] . It passes ordering and value
information from the parent orders to the offspring or-
ders. A portion of one parent’s string is mapped onto
a portion of the other parent’s string and the remaining
information is exchanged.

Figure 5: Cross-over Operator

4.5 Local search procedure

To improve the efficiency of the exploration process, we
incorporated a local search method in evolutionary dy-
namics. This form of hybridization has proved advan-
tageous in the context of BDD problems. Indeed, the
performances of the local search method allow deeper
exploration of certain solution space identified as par-
ticularly promising. On the other hand, the diversify
ability of the genetic algorithm allows the periodic shift
of the solution search to regions rarely visited so far.
The proposed hybrid approach is based on genetic algo-
rithm enhanced by the local search method called vari-
able neighbourhood search.

The local search method used in the VNS procedure
is the Tabu Search (TS) [1, 12]. TS is among the most
popular and robust local search methods. TS is found
to be practical in many hard combinatorial optimization
problems. The general procedure of TS is given in the
figure6 . The main idea underlying is to diversify the
search and avoid becoming trapped in local by forbid-
ding or penalizing moves which take the solution, in the
next iteration, to point in the solution space previously
visited. For this, the algorithm creates a memory list of
undesirable moves called "tabu list".

However, Tabu restrictions may be overruled under
certain conditions, in which, a Tabu move leads to a bet-
ter solution, this principle is called aspiration criterion.
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Our approach is flexible, so we can used other stochas-
tic local search algorithms.

Figure 6: Tabu Search procedure

4.6 Outline of the proposed framework

Now, we describe how the representation scheme in-
cluding genetic representation and evolutionary opera-
tors has been embedded within a variable neighbour-
hood search algorithm and resulted in a hybrid stochas-
tic algorithm performing BDD variable ordering.

Our approach is an evolutionary algorithm based on
a genetic core. The approach consists of a population of
individuals where each individual represents a specific
variable orders. To find the best solution, the optimiza-
tion process of our algorithm consists of a set of steps.
The first step is to create the initial population generated
randomly. At each iteration of the algorithm, we apply
the classical operators: selection, crossover, mutation,
fitness evaluation, etc. To increase the performance op-
timization of our approach, we have incorporated vari-
able neighbourhood search (VNS) in the genetic core.
In more details, the proposed approach can be described
as follow:

Input:A set of variable ord

1. Construct the initial Population of Chromosomes
POP

2. Evaluate the population

3. save the best solution

4. Repeat

5. Apply a crossover operation on POP according to
crossover probability.

6. Apply a mutation operation on POP according to
the probability pm.

7. Apply the variable neighbourhood search.

8. Evaluate the new population.

9. Update the best solution

10. Apply selection and reduce and merge operators

11. Until a termination-criterion is reached

Output:the best variable order.

5 Implementation and Evaluation

Our approach is implemented with Visual C ++ 2008
and tested on a PC with a 3.0 GHZ processor and
512 MB of memory. We have used the Paradiseo
platform [5] to implement our approach. In addition,
we have used the package Buddy [15], which con-
tains a set of tools for creating and handling BDDs.
For the performance evaluation of our approach, we
have used several set of tests created with the gates
NOT,AND,XOR,NAND. The Building of com-
plex circuits is made by using the ITE operator. An
operator, ite, is defined as follows: for logic functions
f, g, and h, ite(f, g, h) = f.g+ ∼ f.h(∼ not). The ite
operator can be used to realize all Boolean operations
with two variables. For example, f + g = ite(f, 1, g) ,
f.g = ite(f, g, 0), . . . etc. We compared the results
found by our approach with those of two programs
based on a pure genetic algorithm and a pure VNS us-
ing Friedman statistic tests. The Friedman test is used
test whether the difference between the medians of the
methods is not significant. Test results are shown in
tables 1,2,3,4. In each table, the second column shows
the type of multifunction operator implemented by ITE,
the third column contains the size of the BDD obtained
from the method GABDD based on pure genetic algo-
rithm, the fourth column shows the size of the BDD ob-
tained from the method VNSBDD based on pure VNS
and the last column shows the size of the BDD obtained
from the method GAVNSBDD based on hybrid method
between GA and VNS. In all experiments, the parame-
ters that we used in our method are: the population size
is 10, the mutation rate is 0.1, the taboo list is static ar-
ray of size 10, the number of the generated neighbours
is 2 and the number of iterations in the genetic algo-
rithm core is 100. In GABDD method, it was used the
following parameters: the population size is 10, the mu-
tation rate is 0.01, and the number of iterations is 1000.

The results of our method illustrate clearly the ef-
fectiveness of merging the genetic algorithm and VNS
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algorithm to perform the binary decision diagram or-
dering problem. The Freidman test (figure7) confirms
that our approach ranks high in this experiment. How-
ever the performance of the pure genetic algorithm
GABDD is a poor compared to GAVNSBDD or VNS-
BDD. Moreover, Friedman’s test shows that the re-
sults obtained by the pure VNS approach are near to
those of the hybrid method GAVNSBDD, this reflects
the good method that uses VNS to change systemati-
cally the neighbourhood to find the optimal solution.
The effectiveness of our approach is explained by the
good combination between diversification and intensi-
fication which leads the algorithm to effectively explore
the search space and locate a good solution.
The search for the optimal solution is not performed
randomly but it runs iteratively by gradually improving
the solution until the stop criterion is satisfied. Figures
8 and 9 show how the algorithm converges to the op-
timal solution. In the first figure (obtained by a test of
two functions each of 20 variables), our method starts
with an initial solution equal to 766 then it is gradually
improved, sure there are mediocre solutions but it’s part
of the evolution process which leads to better solutions.
The algorithm then converges gradually to reach a solu-
tion equal to 200 which is the optimal solution found.

Table 1: Results: BDD functions with 20 variables

Initialsolution GA V NS GAV NS

FxorG 766 491 483 190
FandG 882 360 299 206
ForG 828 282 242 219

Table 2: Results: BDD functions with 30 variables

Initialsolution GA V NS GAV NS

FxorG 1846 1443 811 617
FandG 1175 750 448 244
ForG 1918 1565 695 444

Table 3: Results: BDD functions with 40 variables

Initialsolution GA V NS GAV NS

FxorG 8437 3183 2713 1208
FandG 2629 2097 2000 1704
ForG 1394 883 2557 889

Table 4: Results: BDD functions with 60 variables

Initialsolution GA V NS GAV NS

FxorG 34555 24787 15010 21041
FandG 21342 13898 21038 18727
ForG 22838 17394 21300 15198

Figure 7: Freidman test The nearest to zero is the best program

Figure 8: The behaviour of the best fitness ( two functions of 20
varibales)

Figure 9: The behaviour of the best fitness (two functions of 40 vari-
ables)
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6 Conclusion

In this work, we have proposed a new approach called
GAVNSBDD to deal with the BDD variable problem.
GAVNSBDD is based on a hybridizing of genetic algo-
rithm and variable neighbourhood search method. The
experimental studies prove the feasibility and the effec-
tiveness of our approach. We have shown that the uses
of variable neighbourhood search can help the genetic
algorithm to find better solutions. In the future, we try
to use other search local strategies more adapted to the
BDD problem like sifting technique. In order to accel-
erate our approach, we may apply parallelization tech-
niques. Finally, the performance of the algorithm may
be improved by using a clever startup solution.

References

[1] Blum, C., Roli, A., and Sampels, M. Hybrid
metaheuristics (editorial). Journal of Mathemat-
ical Modelling and Algorithms,Special issue on
Hybrid Metaheuristics, 5(1), April 2006.

[2] Bollig, B. and Wegener, I. Improving the variable
ordering of OBDDs is NPcomplete. IEEE Trans.
on Comp, 45(9):993–1002, 1996.

[3] Brimberg, J., Mladenović, N., Urošević, D., and
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