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Abstract. Image compression has emerged as a major research area due to the phenomenal growth
of applications that generate, process and transmit images. Image compression can be sequential or
progressive. Progressive compression techniques generate an embedded bit stream and the fidelity of
the reconstruction depends on the number of bits received and decoded. Natural images contain edges,
geometry, texture and other discontinuities / details that are oriented in various directions. The state-of-
the-art wavelet transform captures point singularities, but not along surfaces with geometric regularity.
The second generation discrete wavelet-bandelet transform is proposed to overcome the drawback of
wavelets in higher dimensions and capture the geometry in images. The redundancy in the wavelet
transform is removed by bandeletization. The wavelet-bandelet coefficients are quantized and encoded
using modified bit plane coding and the results have been compared with the existing bit plane coding
and the set partitioning in hierarchical trees algorithm. Bandelets produce superior visual quality in
the reconstructed image than wavelets. The parameters used for the evaluation of the algorithm are
compression ratio, bits per pixel and peak signal-to-noise ratio.
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1 Introduction

Bandelet transform is an orthogonal, multi-scale trans-
form that captures the geometry in images. When there
are edges in the image, there are sharp transitions across
edges but along the edges there are regular variations,
called geometric flow. The geometry of natural surfaces
can be modeled as a function that is C2 regular (C is a
constant) outside a set of edges that are also regular. In
Figure 1 (a) - (d) shows some examples of images that
are geometrically regular and also contain texture. Tak-
ing advantage of geometrical structures in natural im-
ages improves the efficiency of the compression, since
the human perception is sensitive to curves and other
geometric features.

Wavelet transform compresses the regular parts of

an image well but produces coefficients with high val-
ues near singularities. Fig. 2(a) - (c) shows the dif-
ference between wavelet approximation and a triangu-
lar basis function in capturing an image which is geo-
metrically regular. The bandelet transform applied di-
rectly on the image at a fixed scale is the first generation
mono-resolution discrete bandelet transform (DBT). The
drawback of the DBT is that it is applied on blocks of
the image and produces blocking artifacts at low bit-
rates. The second generation discrete wavelet-bandelet
transform (DWBT) is proposed to overcome the draw-
back of mono-resolution bandelets. The orthogonal wavelet
filter bank, followed by adaptive, geometric, orthogonal
filters is used in obtaining wavelet-bandelet transform.
The second generation bandelets are simpler, orthogo-
nal and do not produce blocking artifacts. The redun-



Figure 1: Images with geometry and texture (a) Geometrically regu-
lar image, (b) Cartoon, (c) Wood texture, (d) Barbara.

dancy in the discrete wavelet transform (DWT) is re-
moved by bandeletization.

Figure 2: (a) Geometrically regular image (b) Triangular approxima-
tion (c) Wavelet approximation

In the existing literature [2], Le Pennec and Mallat
have developed a double layer algorithm using wavelets
and bandelets, and presented with examples. In [3] the
same authors have produced a sparse image representa-
tion using the geometric regularity of images and com-
pared the performance of wavelet and bandelet coders.
Wavelets introduce visible ringing effects, whereas ban-
delets do not. In another paper [4], Le Pennec and
Mallat have done a rigorous analysis of bandelet bases
and presented mathematical proof that the bandelet ap-
proximation satisfies an optimal asymptotic error decay
rate. They have used quantized bandelet coefficients
for coding edges and wavelets for coding smooth re-
gions of the image. Peyre and Mallat have published
several papers [6][7][8][9][10] on bandelets with basic
concepts and rigorous mathematical analysis of the ban-
delet transform and its application to image compres-
sion and denoising. They have demonstrated the supe-
riority of bandelets over wavelets in the visual quality of
reconstructed images. They have also given an insight
into the MATLAB implementation of bandelet trans-

form and the listing of the source code that is available
in MATLAB Central. In [5] Liu et al have applied ban-
delets and SPIHT for Synthetic Aperture Radar (SAR)
image compression using a multi-layered image repre-
sentation.

In this work, it is proposed to compress the coef-
ficients of the DWBT using modified bit plane coding
(MBPC) and the results have been compared with the
existing bit plane coding (BPC) specified in JPEG2000
given in [13] and also with SPIHT as in [11]. It is
found that the modified algorithm is superior in the re-
constructed image quality compared to the other two
algorithms. In this paper, the proposed algorithm has
been evaluated using images for which this method is
suitable. Section 2 gives an overview of the non-linear
bandelets and the computation of the discrete wavelet-
bandelet transform. Section 3 presents the proposed al-
gorithm and Section 4 compares the results of the pro-
posed algorithm with the existing algorithms. The pa-
per concludes with Section 5.

2 Computation of Wavelet-Bandelet Transform

Bandelet bases are elongated in the direction of geo-
metric flow, adapted for image geometry, with compact
support. The human perception is sensitive to curves
and other geometric features in the image and this is
utilized in compression with bandelets. The geometry
must be estimated from discrete image samples. The
bandelet decomposition is computed with a geometric
orthogonal transform that has basis functions elongated
along the singularity, whereas the orthogonal wavelet
transform has basis functions with a square support.
The second generation bandelets apply bandeletization
on subbands of the wavelet decomposition and removes
the redundancy in the wavelet coefficients. The sub-
bands of the wavelet decomposition are divided into
dyadic squares. This is done by searching for a regu-
larity flow in a direction along which the function is as
regular as possible, as shown in Fig. 3.

To represent the image partition with few parame-
ters and be able to compute an optimal partition with
a fast algorithm, the image is partitioned into squares
of varying dyadic sizes. The dyadic squares image seg-
mentation is obtained by successive quadtree segmen-
tation of square regions into four squares of half width
on each wavelet scale. A square subdivided into four
smaller squares corresponds to a node having four chil-
dren in the quadtree. Fig. 4 gives an example of dyadic
square image segmentation with the corresponding

quadtree. The best geometry or direction is selected
in each square by exhaustively searching all possible di-
rections and computing the Lagrangian for every direc-
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Figure 3: Geometric Flow in Dyadic Squares

Figure 4: Quadtree Segmentation

tion. The Lagrangian optimization function is defined
with the approximation error and bit-rate required for
encoding. The direction that minimizes the Lagrangian
function produces the least approximation error and is
the best direction for the given bit-rate. The bandelet
transform is applied on each leaf of the quadtree in the
specified best direction to produce the bandelet coef-
ficients. This is the DWBT that removes the geomet-
ric redundancy of orthogonal wavelet coefficients. The
bandelet transform coding scheme has an error decay
rate that is asymptotically optimal for geometrically reg-
ular images. The 1D Haar transform applied on the
wavelet coefficients in a specified direction is the warped
Haar transform. This is the bandeletization that removes
the correlation between wavelet coefficients near singu-
larities (anisotropic redundancy). Fig. 5(a) shows the
subband structure resulting from the 2D DWT applied
on the input image. Fig. 5(b) shows the coefficients
within the square S along the direction of geometry (di-
rectional projection). The possible directions within the
square S are shown in Fig. 5(c).

Each sampling location of the regular grid is pro-
jected orthogonal to the geometry direction to get a new
point (Fig. 6(a)). The new points are ordered according
to numbering along the perpendicular axis. The new 1D

Figure 5: (a) 2D DWT (b) Coefficients within square S along geom-
etry (c) Possible directions within S

signal is shown in Fig. 6(b). The 1D wavelet transform
is applied on the projected samples and the resulting
coefficients are thresholded to produce a sparse repre-
sentation, as shown in Fig. 7(a) and (b). The threshold
determines the compression rate of the algorithm. The
bandelet coefficients are quantized and encoded along
with the dyadic segmentation and polynomial flow in-
formation. For a fixed quantization step size, the best
basis that minimizes the distortion-rate is found using
Lagrangian optimization. The number of bits for cod-
ing is the sum of the bits for representing the position
and width of the square, bits for geometric flow and bits
for the quantized bandelet coefficients. The segmenta-
tion of the image support RS, geometric flow in each
region of the support RG and the quantized bandelet
coefficients RB are all encoded and contribute to the
total bit-rate R. The number of bits RS is equal to the
number of nodes in the quadtree. RG is the sum of the
bits in all the squares where a flow is defined.

Figure 6: (a) Projection of coefficients (b) Resulting 1D signal of
projected coefficients

Figure 7: (a) 1D warped Haar transform coefficients (b) Bandelet
coefficients

Similar to the compression in wavelet bases, it is
required to quantize uniformly the bandelet coefficients
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with a quantization step T . The reconstructed image fR

is given by,

fR =
�

v

QT (�f, bv�)bv (1)

where f is the original image, bv is the bandelet ba-
sis and R is the number of bits needed to specify fR.
QT is a uniform quantizer defined by,

QT (x) = qT, if

�

q −
1

2

�

T � x �

�

q +
1

2

�

T (2)

The distortion of this coding scheme is Db(R) = �f −
fR�

2 and for a given bit budget R it is necessary to find
the best bandelet basis that gives the lowest distortion.

3 Proposed Algorithm

This section presents the algorithm proposed in this work
for progressive image compression with bandelets. It
includes the following key steps:

(a) Discrete Wavelet Transform
(b) Bandeletization
(c) Quantization (with modified step size)
(d) Bit Plane Coding
The input image is transformed using the DWT for

three levels of decomposition. The bandelet transform
is applied on each subband, producing a sparser repre-
sentation. This is the second generation wavelet-bandelets
that acquires the texture information / geometry present
in the image. Texture or geometry refers to patterns in
the image that are oriented at various directions. As
there are three levels of decomposition involved, three
step sizes are allotted to the quantizer, one for each
level. The quantizer step sizes based on the JPEG2000
standard is given below:

q(i, j) = sign[p(i, j)]�
|p(i, j)|

Δb
+ e� (3)

Δb = bss ×

�
1

Gb
, Gb = 22×level (4)

where p(i, j) is the input coefficient, q(i, j) is the quan-
tized coefficient, bss is the base step size, Δb is the step
size for subband b, e is a constant and level is the level
of decomposition.

The third level, which contains the maximum (most
important) information in the image, is allotted the small-
est step size and it is progressively increased at the lower
levels. This quantization makes the compression lossy,
but the computational complexity of the coding process
is significantly reduced and the compression achieved

is more. In the modified algorithm, the step size is cho-
sen as constant for the subbands at all the levels. This
improves the quality of the reconstructed image with
DWBT as compared to the JPEG2000 standard. The
parameters [1][12] used in the evaluation of the algo-
rithm are: compression ratio (CR), bits per pixel (bpp)
and peak signal-to-noise ratio (PSNR). CR is defined as
the ratio of number of bits representing the image with-
out compression to the number of bits representing the
image with compression. bpp is defined as the average
number of bits used to represent each pixel in the image.
PSNR is defined as the ratio of the square of the peak
value of the image to the mean squared error, expressed
in decibels (dB). Mean squared error is defined as the
average value of the square of the difference between
the original pixel values and the reconstruction values.

The original images that have been used for perfor-
mance evaluation are given in Fig. 8(a) and (b). The
results of encoding by applying DWT and DWBT with
BPC specified in JPEG2000 standard and the proposed
algorithm is compared in Table 1 and Table 2 for the
images Barbara and Ridge on Eros respectively.

Figure 8: Original Test Images: (a) Barbara (b) Ridge on EROS

The reconstructed images for the above compres-
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Table 1: Comparison of the proposed algorithm results with DWT /
BPC, DWBT / BPC, Barbara, PSNR(dB)

bpp DWT/ DWBT/ DWBT/
BPC BPC MBPC

0.1 23.53 23.84 24.33
0.2 25.31 25.68 26.46
0.3 26.38 27.11 28.53
0.4 29.16 28.62 30.19
0.5 30.52 30.33 31.44
0.6 31.54 31.36 32.81
0.7 32.83 32.83 34.41
0.8 34.59 34.00 35.34
0.9 35.35 35.31 36.03
1.0 36.13 36.12 36.62

Table 2: Comparison of the proposed algorithm results with DWT /
BPC, DWBT / BPC, Ridge on EROS, PSNR(dB)

bpp DWT/ DWBT/ DWBT/
BPC BPC MBPC

0.1 30.32 30.77 31.05
0.2 33.49 33.70 34.34
0.3 35.68 35.78 36.75
0.4 37.62 37.51 38.18
0.5 39.13 39.08 39.39
0.6 40.24 40.00 40.98
0.7 41.22 41.15 42.12
0.8 42.20 42.21 42.54
0.9 43.28 43.36 42.54
1.0 44.15 44.35 42.54

sion algorithms are compared in Table 3 and Table 4.
The improvement in PSNR of second generation

bandelets over wavelets is evident from the results
tabulated. The DWBT with BPC produces PSNR that
is higher by 0.1 to 0.5 dB than DWT with BPC. The
improvement produced depends on the bit-rate and the
test image. At some of the bit-rates, the DWBT / BPC
algorithm produces smaller PSNR than the DWT / BPC
algorithm. But the bandelets are superior in acquiring
the texture information in images, as shown in the vi-
sual reconstructions tabulated. The results of progres-
sive compression with the modified algorithm validates
the superiority of bandelets over wavelets. The recon-
structed images for the above algorithm also demon-
strate the efficiency of bandelets in acquiring the texture
information in the image as compared to wavelets. The
modified algorithm with DWBT increases the PSNR of
the reconstructed images in the range of 0.5 to 1.5 dB.
This is validated by the quality of the reconstructions.
The CR attained by the three algorithms for the two test
images are given in Table 5. The results tabulated below
show the higher compression capability of the proposed
algorithm with bandelets. For both the test images, CR
is highest for the proposed algorithm compared to DWT
or DWBT with BPC. The results validate the suitability
of bandelets for compressing images with texture / ge-

Table 3: Comparison of reconstructed images with DWT / BPC,
DWBT / BPC and DWBT / MBPC, bior4.4 wavelet, Barbara,
PSNR(dB)

bpp DWT/ DWBT/ DWBT/
BPC BPC MBPC

0.1

0.2

0.3

0.4

0.5

ometry.

4 Comparison of Proposed Algorithm with
SPIHT

The SPIHT algorithm has been applied on the wavelet-
bandelet coefficients to obtain a progressive reconstruc-
tion of the input image and it has been compared with
the reconstruction using wavelets. Since the bandelet
transform is applied on every subband of the wavelet
decomposition, the tree structure of wavelets is preserved
in the second generation bandelets also. So the SPIHT
algorithm will be suitable for compressing the coeffi-
cients produced. The geometry in the image will be re-
flected in all the subbands at the same spatial location.
The results of applying SPIHT on DWT coefficients has
been compared with DWBT in Table 6 and Table 7 and
the corresponding reconstructed images are presented
in Table 8 and Table 9.

The PSNR values of the reconstructed images with
DWT and DWBT compressed with SPIHT indicate that
DWBT is marginally better than DWT, especially for
low bit-rates. The quality of the reconstructed images is
also superior in case of DWBT than DWT with SPIHT
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Table 4: Comparison of reconstructed images with DWT / BPC,
DWBT / BPC and DWBT / MBPC, bior4.4 wavelet, Ridge on EROS,
PSNR(dB)

bpp DWT/ DWBT/ DWBT/
BPC BPC MBPC

0.1

0.2

0.3

0.4

0.5

Table 5: Comparison of CR for DWT / BPC, DWBT / BPC,
DWBT / MBPC

Image DWT/ DWBT/ DWBT/
BPC BPC MBPC

Barbara 4.23 4.13 4.94
Ridge on 6.93 6.67 8.96
EROS

Table 6: Comparison of DWT / SPIHT with DWBT / SPIHT and
DWBT / MBPC, Barbara, PSNR(dB)

bpp DWT/ DWBT/ DWBT/
SPIHT SPIHT MBPC

0.1 20.59 20.72 24.33
0.2 24.02 24.06 26.46
0.3 26.42 26.71 28.53
0.4 28.30 28.47 30.19
0.5 30.67 30.45 31.44
0.6 32.14 31.99 32.81
0.7 33.38 33.16 34.41
0.8 34.67 34.40 35.34
0.9 35.72 35.61 36.03
1.0 36.63 36.55 36.62

algorithm. At higher bit-rates, DWT gives a higher
PSNR than DWBT. Comparing SPIHT and the modi-
fied bit plane coding with DWBT it is found that for
most of the images, the modified algorithm is superior

Table 7: Comparison of DWT / SPIHT with DWBT / SPIHT and
DWBT / MBPC, Ridge on EROS, PSNR(dB)

bpp DWT/ DWBT/ DWBT/
SPIHT SPIHT MBPC

0.1 24.10 26.48 31.05
0.2 31.06 31.92 34.34
0.3 34.33 34.76 36.75
0.4 36.44 36.74 38.18
0.5 38.17 38.38 39.39
0.6 39.40 39.59 40.98
0.7 40.45 40.73 42.12
0.8 41.48 41.78 42.54
0.9 42.29 42.55 42.54
1.0 43.07 43.34 42.54

Table 8: Reconstructed Images for DWT / SPIHT with DWBT /
SPIHT and DWBT / MBPC, bior4.4 wavelet, Barbara, PSNR(dB)

bpp DWT/ DWBT/ DWBT/
SPIHT SPIHT MBPC

0.1

0.2

0.3

0.4

0.5

to SPIHT. Therefore, for a given bit-rate and PSNR,
modified BPC produces higher compression than SPIHT.
The visual quality of the reproduced images also corre-
late with the PSNR values obtained.

The quadtree decomposition and the direction infor-
mation have to be encoded separately and transmitted
along with the compressed DWBT coefficients. This
incurs an additional overhead in bits that is not required
in wavelets. This is one of the disadvantages of the ban-
delet transform but it is more than compensated by the
superior visual quality of images with textures. Each
split in the quadtree requires one bit and the directions
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Table 9: Reconstructed Images for DWT / SPIHT with DWBT
/ SPIHT and DWBT/MBPC, bior4.4 wavelet, Ridge on EROS,
PSNR(dB)

bpp DWT/ DWBT/ DWBT/
SPIHT SPIHT MBPC

0.1

0.2

0.3

0.4

0.5

have to be encoded in a lossless manner. Since the ge-
ometry varies from image to image, the number of over-
head bits are also variable. The bits required for cod-
ing quadtree decomposition and direction information
is only a fraction of that required for coding the quan-
tized DWBT coefficients comparatively.

5 Conclusion

The results of applying DWT and DWBT compressed
with BPC, SPIHT and the proposed MBPC algorithm
on two test images have been compared. It is found that
the second generation DWBT acquires the texture in-
formation in the images better than DWT. The DWBT
coefficients are quantized and encoded using the pro-
posed MBPC and the results are found to be superior
to the bit plane coding algorithm as well as SPIHT.
The PSNR values are higher for DWBT-MBPC as also
the visual quality of reconstruction compared to DWT-
BPC, DWBT-BPC and DWBT-SPIHT. The quadtree de-
composition and the direction information have to be
encoded in a lossless manner and transmitted along with
the compressed coefficients. This additional overhead

in bits is not required in wavelets and it is one of the dis-
advantages of the bandelet transform. It is compensated
by the superior visual quality of images with textures
/ geometry. Wavelets introduce visible ringing effects
whereas they are concealed in bandelets.
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