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Abstract. Given a connected graph G = (V,E), a set Vr ⊆ V of r special vertices, three distinct base
vertices u1, u2, u3 ∈ V and three natural numbers r1, r2, r3 such that r1 + r2 + r3 = r, we wish to find
a partition V1, V2, V3 of V such that Vi contains ui and ri vertices from Vr, and Vi induces a connected
subgraph of G for each i, 1 ≤ i ≤ 3. We call a vertex in Vr a resource vertex and the problem above
of partitioning vertices of G as the resource 3-partitioning problem. In this paper, we give a linear-time
algorithm for finding a resource tripartition of a 3-connected planar graph G. Our algortihm is based on
a nonseparating ear decomposition of G and st-numbering of G. We also present a linear algorithm to
find a nonseparating ear decomposition of a 3-connected planar graph. This algorithm has bounds on
ear-length and number of ears.
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1 Introduction

Let G = (V,E) be a connected graph of |V | = n
vertices. Among these n vertices of G, some belong
to a special class of vertices that we call resource ver-
tices. Let Vr ⊆ V be the set of resource vertices and
|Vr| = r. Let u1, u2, u3 ∈ V be three designated ver-
tices and r1, r2, r3 be three natural numbers such that
r1+r2+r3 = r. Our goal is to find a partitionV1, V2, V3

of V such that u1 ∈ V1, u2 ∈ V2, u3 ∈ V3, Vi con-
tains ri resource vertices and Vi induces a connected
subgraph of G for each i, 1 ≤ i ≤ 3. We call this par-
titioning of vertices a resource 3-partitioning of G. For
example, Figure 1(a) shows a connected graph G with
n = 15, r = 8 vertices, where each resource vertex is
drawn by white circle. Figure 1(b) illustrates a resource
3-partition of G for r1 = 3, r2 = 2, r3 = 3.

The resource tripartitioning problem is a special case
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Figure 1: A resource 3-partition of a 3-connected planar graph.



of resource k-partitioning problem, for k = 3. A re-
source k-partitioning is defined as partitionV1, V2, . . . , Vk

of V with a set Vr ⊆ V of r resource vertices, base ver-
tices u1, u2, . . . , uk ∈ V, k natural numbers r1, r2, . . . , rk

such that
�k

i=1
ri = r, where ui ∈ Vi, Vi contains ri

resource vertices and Vi induces a connected subgraph
of G for each i, 1 ≤ i ≤ k.

Resource partitioning has significant applications in
various areas. In computer networks, we may consider
printers, routers, scanners etc. as resources. Resources
need to be partitioned to balance loads on these resources
and to prevent network traffic bottleneck. Furthermore,
in multimedia networks, it is desired to assign a server
to a specific group of clients for balancing loads among
the servers. Again, in electrical power distribution sys-
tems, resource partitioning has another real-time ap-
plication to serve consumers better. Here, distributed
resources include a variety of energy sources like tur-
bines, photovoltaics, fuel-cells and storage devices with
various capacities. Distribution of these resources among
the demand centers offers increased reliability, lower
cost of power delivery and additional supply flexibility.
Resource partitioning has its application in the fault-
tolerant routing of communication networks [13, 22]
and in computational aspects, too. For example, in grid
computing we wish to divide a complex task such as
computation of fractals into several subtasks and then
we wish to delegate each of these subtasks to a com-
puting element in the grid such that a computing ele-
ment in the grid might not be overwhelmed with tasks
from various other clients. This concept is applicable
to telecommunication networks, fault tolerant systems,
various producer-consumer problems and so on.

A related problem is a k-partitioning problem in
which we are given a graph G = (V,E), k distinct base
vertices u1, u2, . . . , uk ∈ V , and k natural numbers
n1, n2, . . . , nk such that

�k

i=1
ni = |V |, we wish to

find a partition V1, V2, . . . , Vk of the vertex set V such
that ui ∈ Vi; |Vi| = ni; Vi induces a connected sub-
graph of G for each i, 1 ≤ i ≤ k.

The k-partitioning problem is NP -complete in gen-
eral [7]. Although not every graph has a k-partition,
Györi and Lovász independently proved that every k-
connected graph has a k-partition for any u1, u2, . . . , uk

andn1, n2, . . . , nk [9, 14]. However, their proofs do not
yield any polynomial time algorithm for actually find-
ing a k-partition of a k-connected graph. For the case
k = 2, 3, 4, following algorithms have been known:

(i) There is a linear-time algorithm to find a biparti-
tion of a biconnected graph [19, 20].

(ii) There is anO(n2) time algorithm to find a 3-partition

of a triconnected graph [20].

(iii) There is a linear-time algorithm to find a 4-partition
of a four connected planar graph with base vertices
located on the same face of the given graph [17].

On the other hand, polynomial-time algorithms have
not been known for the case k ≥ 4. A polynomial-time
algorithm for any k is claimed in [15], but is not cor-
rect [17]. If all the vertices are resource vertices then
resource k-partitioning and k-partitioning problem are
the same. Thus resource k-partitioning problem is also
NP -complete. [18] claims the resource k-partitioning
problem to be NP -hard but their claim is not correct.
The following algorithms are known for finding a re-
source k-partition of a graph for k = 2, 3, 4.

(i) There are linear-time algorithms to find resource
bipartitions of path-reducible graphs, series-parallel
graphs and connected graphs where all resource
vertices are contained in the same biconnected com-
ponent [18].

(ii) There is an O(n2) time algorithm to find vertex-
subset tripartitions (equivalent to resource triparti-
tions [18]) of triconnected and 3-edge-connected
graphs [21].

(iii) There is an O(n) algorithm to find a resource four-
partition of a 4-connected planar graph with four
base vertices located on the same face of a planar
embedding 1.

But there exists no polynomial-time algorithm for
resource k-partitioning of graphs for k > 3. In this pa-
per, we give a linear algorithm for finding a resource
tripartition of a 3-connected planar graph based on a
“nonseparating ear decomposition" of the given graph.
“Nonseparating ear decomposition" is a generalization
of “canonical decomposition" [1]. “Canonical decom-
position" is applied in convex grid drawing of planar
graph [5]. “Canonical decomposition" i.e. “canoni-
cal ordering" has applications in producing straight line
grid drawings with polynomial sizes for planar graphs.
A “canonical decomposition", a “realizer", a “Schny-
der labeling" and an “orderly spanning tree" of a plane
graph play an important role in straight-line drawings,
floorplanning, graph encoding etc. [2, 4, 6, 10, 12].
Miura et. al. proved that a “canonical decomposition",
a “realizer", a “Schnyder labeling", an “orderly span-
ning tree" and an “outer triangular convex grid draw-
ing" are notions equivalent with each other [16]. Hence

1T. Awal, Resource partitioning on planar graphs, M.Sc. En-
gineering Thesis, Department of Computer Science and Engineer-
ing, Bangladesh University of Engineering and Technology, Dhaka,
November 2007.
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“nonseparating ear decomposition" is a generalization
of “canonical decomposition", a “realizer", a “Schnyder
labeling", an “orderly spanning tree" and an “outer tri-
angular convex grid drawing". Using a “nonseparating
ear decomposition" of a 3-connected graphG, Cheriyan
and Maheshwari finds three “independent spanning trees"
rooted at a vertex r in G.

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions. In section 3, we present a
constructive proof for the existence of a nonseparating
ear decomposition through two vertices a, b and avoid-
ing a third vertex c of a triconnected planar graph G
for any a, b, c. In section 4, we present a linear-time
algorithm for finding a resource tripartitioning of a 3-
connected planar graph based on a nonseparating ear
decomposition of G. Finally section 5 is a conclusion.

2 Preliminaries
In this section we define several graph theoretical terms
used in this paper.

Let G(V,E) be a connected simple graph with ver-
tex set V (G) and edge set E(G). We denote by n the
number of vertices in G and by m the number of edges
in G. Thus n = |V (G)|,m = |E(G)|. An edge joining
vertices u, v is denoted by (u, v). The degree of a vertex
v in a graph G, denoted by d(v), is the number of edges
incident to v in G. The connectivity κ(G) of a graph
G is the minimum number of vertices whose removal
results in a disconnected graph or a single-vertex graph
K1. We say that G is k-connected if κ(G) ≥ k. We call
a vertex of G a cut vertex if its removal results in a dis-
connected graph or a single-vertex graph. We call two
vertices of G a separation pair if their removal results in
a disconnected graph or a single-vertex graph. A walk,
v0, e1, v1, . . . , vl−1, el, vl , in a graph G is an alternat-
ing sequence of vertices and edges of G, beginning and
ending with a vertex, in which each edge is incident to
two vertices immediately preceding and following it. If
the vertices v0, v1, . . . , vl are distinct (except possibly
v0, vl), then the walk is called a path and usually de-
noted either by the sequence of vertices v0, . . . , vl or
by the sequence of edges e1, e2 . . . , el. The length of a
path is l which is one less than the number of vertices
on the path. A path or walk is open if v0 �= vl. A
path or walk is closed if v0 = vl. A closed path con-
taining at least one edge is called a cycle. For a path
P, Vin(P ) denotes the internal vertices of P , i.e., all the
vertices except the endpoints. For W ⊆ V , we denote
by G −W the graph obtained from G by deleting all
vertices in W and all edges incident to them.

Let s and t be any two vertices of a connected graph
G. An st-numbering of G is a numbering of its ver-

tices by integers 1, 2, . . . , n such that a vertex s receives
number 1, a vertex t receives number n and every other
vertex of G is adjacent to at least one lower-numbered
vertex and at least one higher-numbered vertex. An in-
teresting property of st-numbering of a graph is shown
in the following fact.

(st1) If a graph G has an st-numbering π = v1, v2, . . . ,
vn, then both the subgraphs ofG induced by v1, v2,
. . . , vi and vi+1, vi+2, . . . , vn are connected for each
i, 1 ≤ i ≤ n.

Not every connected graph has an st-numbering but the
following Lemma [8] holds.

Lemma 2.1 Let G be a biconnected undirected graph
and (s, t) be any edge ofG. ThenG has an st-numbering
π = v1, v2, . . . , vn such that v1 = s and vn = t, and π
can be found in linear time.

An ear decomposition of a biconnected graph G is
a decomposition G = P0 ∪ P1 ∪ . . . ∪ Pk, where Pk

is a path or cycle and Pi, 0 ≤ i ≤ k − 1, is a path
with only its two distinct end vertices in common with
Pk ∪ Pk−1 ∪ . . . ∪ Pi+1. An ear is a path. An open
ear is a path with two distinct end vertices. We call an
ear a trivial ear if the length of the ear is one. We call
an ear a non-trivial ear if the length of the ear is greater
than one. Let a, b, c be three vertices in G and Pi be
open paths on G. We denote by Gi the subgraph of G
induced by the edges of P0 ∪ P1 ∪ . . . ∪ Pi, by Ḡi the
subgraph of G induced by the edges of Pi+1 ∪ Pi+2 ∪
. . .∪Pk . So Gk = G. Then P0, P1, . . . , Pk is a nonsep-
arating ear decomposition (nsed) through vertices a, b
and avoiding vertex c if the following five conditions
hold.

(nsed1) If (a, b) ∈ E(G), then Pk is a cycle containing
the edge (a, b). Otherwise, Pk is a path in G with
the vertices a, b as endpoints.

(nsed2) The first non-trivial ear has only one internal
vertex and the internal vertex is c.

(nsed3) For each i, 0 ≤ i < k, Pi is a path connecting
2 distinct vertices of Ḡi and Vin(Pi)

�
V (Ḡi) =

φ.

(nsed4) For each i, 0 ≤ i ≤ k,Gi is connected.

(nsed5) For each i, 1 ≤ i ≤ k, each internal vertex of
Pi has a neighbor in Gi−1.

Let augmented graph,G∗

i = (V (Ḡi), E(Ḡi)∪{(a, b)})
and augmented Pk, P

∗

k = (V (Pk), E(Pk) ∪ {(a, b)}).
For both of P ∗

k and G∗

i , (a, b) /∈ E(G) and (a, b) be-
comes an outer edge of Ḡi. Note that P ∗

k is a cycle and

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

A Linear Algorithm for Resource Tripartitioning Triconnected Planar Graphs                                                 41

INFOCOMP, v. 9, n. 2, p. 39–48, jun. 2010



P ∗

k ∪Pk−1 ∪ . . .∪Pi is biconnected for each i, 0 ≤ i ≤
k.

(a) (b)

cc

aa bb
Pk

PiPi Pi+1Pi+1

P0P0
P1

P1

Pk−1Pk−1

Gi

Ḡi
G∗

i

P ∗

k

Figure 2: Nonseparating Ear Decomposition.

Figure 2 shows a nonseparating ear decomposition
through a, b and avoiding c, Pk is drawn by thick lines.
Figure 2(a) showsGi and Ḡi, the white vertices are con-
tained both in Gi and Ḡi. Figure 2(b) shows Gi, G

∗

i and
P ∗

k , the white vertices are contained both in Gi and G∗

i .
A graph is planar if it can be embedded in the plane

so that no two edges intersect geometrically except at a
vertex to which they are both incident. A plane graph is
a planar graph with a fixed embedding. A plane graph
divides the plane into connected regions called faces.
We regard the contour of a face as a clockwise cycle
formed by the edges on the boundary of the face. We
denote the contour of the outer face of graphG byCo(G).
We write Co(G) = w1, w2, . . . , wh, w1 if the vertices
w1, w2, . . . , wh on Co(G) appear clockwise in this or-
der, as illustrated in Figure 3. We call a vertex an outer
vertex and an edge an outer edge, if the vertex and edge
respectively lie on Co(G). We call a path P in a bicon-
nected plane graph G a chord-path of G if P satisfies
the following conditions.

(i) P connects two outer vertices wp, wq, p < q;

(ii) {wp, wq} is a separation pair of G;

(iii) P lies on an inner face; and

(iv) P does not pass through any outer edge and any
outer vertex other than the ends wp and wq .

w1

w2

w3

w4

w5

w6
w7 w8

w9

w10

w11

P1
P2

P3

P4

Figure 3: A plane graph with chord-paths P1, P2, P3, P4

The plane graph G in Figure 3 has four chord-paths
P1, P2, . . . , P4 drawn by thick lines. A chord-path P is

minimal if none of wp+1, wp+2, . . . , wq−1 is an end of a
chord-path. Thus the definition of a minimal chord-path
depends on which vertex is considered as the starting
vertexw1 of Co(G). P1 and P3 in Figure 3 are minimal,
while P2 and P4 are not minimal. Let {v1, v2, . . . , vp},
p ≥ 3, be a set of three or more outer vertices consec-
utive on Co(G) such that d(v1) ≥ 3, d(v2) = d(v3) =
. . . = d(vp−1) = 2, and d(vp) ≥ 3. Then we call the
set {v2, v3, . . . , vp−1} an outer chain of G. The graph
in Figure 3 has two outer chains {w4, w5} and {w8}.
We call an outer chain {v2, v3, . . . , vp−1} of G a good
outer chain if the outer chain does not contain any ver-
tex of V (Pk). An outer chain {v2, v3, . . . , vp−1} of G
is a bad outer chain if the outer chain contains a vertex
of V (Pk). We call an outer edge (u,w) of G a good
outer edge if (u,w) /∈ E(P ∗

k ), d(u) ≥ 3 and d(w) ≥ 3
in G, and u ∈ V (Gi) or w ∈ V (Gi).

We say that a plane graph G is internally tricon-
nected if G is biconnected and, for any separation pair
{u, v} of G, u and v are outer vertices and each con-
nected component of G− {u, v} contains an outer ver-
tex. In other words, G is internally 3-connected if and
only if it can be extended to a 3-connected graph by
adding a vertex in an outer face and connecting it to
all outer vertices. If a biconnected plane graph G is
not internally 3-connected, then G has a separation pair
{u, v} of one of the three types illustrated in Figure
4. If an internally 3-connected plane graph G is not
3-connected, then G has a separation pair of outer ver-
tices and hence G has a chord-path when G is not a
single cycle.

II
I

u
u

u

v v
v

Figure 4: Biconnected graphs which are not internally 3-connected

A resource bipartitioning of a connected graph G
of |V | = n vertices can be defined as follows. Let
Vr ⊆ V be the set of resource vertices and |Vr| = r. Let
u1, u2 ∈ V be two designated vertices and r1, r2 be two
natural numbers such that r1 + r2 = r. Our goal is to
find a partition V1, V2 of V such that u1 ∈ V1, u2 ∈ V2,
Vi contains ri resource vertices and Vi induces a con-
nected subgraph of G for each i, 1 ≤ i ≤ 2. The re-
source bipartitioning problem is a special case of re-
source k-partitioning problem, for k = 2. We have the
following lemmas on resource bipartitioning.

Lemma 2.2 A resource bipartition of a biconnected graph
G can be found in linear time [21, 18].
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Lemma 2.3 Let s, t be the two base vertices in a con-
nected graph G. If G ∪ {(s, t)} is biconnected, then a
resource bipartition of G can be found in linear time.

Proof. We can find a resource bipartition of the bi-
connected graph G ∪ {(s, t)} in linear time by Lemma
2.2. As the vertices (s, t) would belong to two different
partitions, clearly a resource bipartition of G ∪ {(s, t)}
is a resource bipartition of G. Q.E .D.

In section 3, we provide the constructive proof of the
existence of a nonseparating ear decomposition through
two vertices a, b and avoiding a third vertex c of a tri-
connected planar graph G for any a, b, c.

3 Nonseparating Ear Decomposition
In this section, we show a constructive proof for the ex-
istence of a nonseparating ear decomposition through
two vertices a, b and avoiding a third vertex c of a tri-
connected planar graph G for any a, b, c.

Lemma 3.1 Let u1, u2, . . . ul be the outer facial ver-
tices of an internally 3-connected planar graph G and
S = {up+1, up+2, . . . , uq−1} be an outer chain of G,
then G− S is internally triconnected.
Proof. Let up, uq be the two ends of a minimal chord-
path P of G such that p < q. Assume for the sake of
contradiction that G − S is not internally triconnected.
Then G− S has either a cut-vertex or a separation pair
{u, v}. We first consider the case where G − S has a
cut-vertex v. Then v must be an outer vertex of G − S
and v �= up, uq. Otherwise, G would not be internally
triconnected. Then the minimal chord-pathP must pass
through v, as illustrated in Figure 5, contrary to the def-
inition of a chord path.

v

up
uq

P

Figure 5: P passes through an outer vertex in Ḡi

We now consider the case where G − S has a sep-
aration pair {u, v} having one of the three types shown
in Figure 4. Then {u, v} would be a separation pair of
G having one of the three types illustrated in Figure 4.
HenceG would not be internally triconnected, a contra-
diction. Q.E .D.

Theorem 3.2 Let a, b, c be any three vertices in a tri-
connected planar graph G. Then G has a nonseparat-
ing ear decomposition through a, b and avoiding c and
it can be found in linear time.

Proof. Without loss of generality we may assume that
c is on the outer boundary of G. If (a, b) ∈ E(G), then
letPk be an inner facial cycle passing through (a, b) and
not passing through c. If (a, b) /∈ E(G) and both of a, b
are outer vertices of G, then let Pk be the outer facial
path from a to b not passing through c. If (a, b) /∈ E(G)
and at least one of a, b is an inner vertex of G, then let
Pk be the path from a to b that does not contain any
outer edge and go through c. Since G is 3-connected,
Pk exists in all of the three cases mentioned above and
(nsed1) holds for Pk.

Let e1, e2, . . . , el be the neighbours of c where l =
d(c). We set P0, P1, . . . , Pl−3 as (c, e1), (c, e2), . . .,
(c, el−2) respectively. We setPl−2 = (el−1, c, el). Pl−2

is the first non-trivial ear and it has exactly one internal
vertex which is c. Hence (nsed2) holds. SinceP0, P1, . . . ,
Pl−2 are open ears and Vin(Pl−2)

�
V (Ḡl−2) = φ,

(nsed3) holds for Pj , 0 ≤ j ≤ l − 2. As for each
j, 0 ≤ j ≤ l − 2, Gj is connected, (nsed4) holds for
Pj , 0 ≤ j ≤ l − 2. As P0, P1, . . . , Pl−3 are trivial ears
and the internal vertex c of Pl−2 has at least a neigh-
bour e1 in Gl−3, (nsed5) holds for Pj , 0 ≤ j ≤ l − 2.
Clearly Ḡj or G∗

j is internally triconnected for each
j, 0 ≤ j ≤ l − 2.

Assume for inductive hypothesis that the earsP0, P1,
. . . , Pi for l − 2 ≤ i ≤ k − 2 have been chosen appro-
priately so that (nsed2) holds for the first non-trivial ear
Pl−2 and (nsed3), (nsed4), (nsed5) hold for each index
j, 0 ≤ j ≤ i. FurthermoreG∗

j or Ḡj is internally tricon-
nected for each index j, 0 ≤ j ≤ i. We now show that
there is an ear Pi+1 in Ḡi such that (nsed3), (nsed4),
(nsed5) hold and G∗

j or Ḡj is internally triconnected
for the index j = i + 1. Let u1, u2, . . . ul be the outer
facial vertices of Ḡi or G∗

i . We have the following cases
to consider.
Case 1: Ḡi or G

∗

i is 3-connected.

We only consider the case where Ḡi is 3-connected,
since the proof for the case where G∗

i is 3-connected
is similar. Since Ḡi is 3-connected, every vertex of Ḡi

has degree at least three. There is at least a vertex u
on Co(Ḡi) such that u ∈ V (Gi) and u has a neighbour
w on Co(Ḡi) such that (u,w) /∈ E(Pk). Otherwise, at
least one of a, b would be an inner vertex of G and Pk

would contain an outer edge of G (see Figure 6(a)) or
both of a, b would be outer vertices of G and Pk would
contain an inner edge of G (see Figure 6(b)), a contra-
diction. Then (u,w) is a good outer edge of Ḡi, as il-
lustrated in Figure 7. We set Pi+1 = (u,w). As (u,w)
is a trivial open ear, (nsed3) holds for Pi+1. As (u,w) is
a good outer edge of Ḡi, Gi+1 remains connected and
hence (nsed4) holds for Pi+1. As (u,w) is a trivial ear,
(nsed5) also holds for Pi+1. Clearly Ḡi+1 is internally

__________________________________________________________________________________________________________
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triconnected.

(b)(a)

Gi Gi

ḠiḠi

c c

a abb

Pk Pk

Figure 6: Pk is not set according to the rules in base case

Gi

Ḡi

c

a
b

Pk

Figure 7: Ḡi or G∗i is 3-connected.

Case 2: (a, b) /∈ E(G) and Ḡi or G∗

i is not 3-
connected.
We first consider the case where (a, b) /∈ E(G) and Ḡi

is not triconnected. Since i + 1 ≤ k − 1, Ḡi is not a
single cycle and hence there is a chord-path of Ḡi. Let
up, uq be the two ends of a minimal chord-pathP of Ḡi

such that p < q. As {up, uq} is a separation pair of Ḡi,
then q ≥ p + 2. We have the following two subcases to
consider.
Case 2a: Pk is not on Co(Ḡi).

We have the following two subcases to consider.
(i) Ḡi has an outer chain {up+1, up+2, . . . , uq−1}.

If {up+1, up+2, . . . , uq−1} is a good outer chain,
we choose Pi+1 = (up, up+1, up+2, . . . , uq−1, uq). As
up �= uq and Vin(Pi+1)

�
V (Ḡi+1) = φ, (nsed3) holds

for Pi+1. As G is triconnected and each internal vertex
of Pi+1 has degree two in Ḡi, each of the internal ver-
tices of Pi+1 has a neighbor in Gi. So Gi+1 is also con-
nected. Thus (nsed4) and (nsed5) hold for Pi+1. From
Lemma 3.1 Ḡi+1 is internally triconnected.

We thus assume that {up+1, up+2, . . . , uq−1} is a
bad outer chain of Ḡi. In this case Ḡi − {up, uq} has 2
components. There is at least a vertex v in Ḡi−{up, uq}
in the component not containing u ∈ {up+1, up+2, . . . ,
uq−1} such that v ∈ V (Gi) and d(v) ≥ 3 in Ḡi. Oth-
erwise, G would not be triconnected or d(v) = 2 in
Ḡi and v would be contained in a good outer chain,
a contradiction. The vertex v has a neighbour w ∈

V (Ḡi) − {up+1, up+2, . . . , uq−1} such that d(w) ≥ 3
in Ḡi and (v, w) /∈ E(Pk). Otherwise, d(w) = 2 in Ḡi

and w would be contained in a good outer chain, a con-
tradiction. Then (v, w) is a good outer edge of Ḡi, as
illustrated in Figure 8. We set Pi+1 = (v, w). Clearly
(nsed3), (nsed4), (nsed5) hold for Pi+1, and Ḡi+1 re-
mains internally triconnected.
(ii) Ḡi has no outer chain.

c

a

b vw

up

uq

up+1

uq−1

Gi

Pk

Ḡi

Figure 8: {up+1, up+2, . . . , uq−1} is a good outer chain of Ḡi.

$\ba

c

up uq

up+1 uq−1

Gi

Figure 9: {up+1, up+2, . . . , uq−1} is not an outer chain of Ḡi

In this case every vertex in {up+1, up+2, . . . , uq−1}
has degree at least three in Ḡi. Otherwise, Ḡi would
have an outer chain. Furthermore, there is at least a ver-
tex u ∈ {up+1, up+2, . . . , uq−1} such that u ∈ V (Gi).
Otherwise, {up, uq} would be a separation pair of G
and G would not be triconnected. If u has a neighbour
w on Co(Ḡi) such that d(w) ≥ 3 in Ḡi and (u,w) /∈
E(Pk), we set Pi+1 = (u,w). Then (u,w) is a good
outer edge of Ḡi and (nsed3), (nsed4), (nsed5) hold for
Pi+1, and Ḡi+1 remains internally triconnected. If u
has no such neighbour w, then there is at least a ver-
tex v in Ḡi−{up, uq} in the component not containing
u ∈ {up+1, up+2, . . . , uq−1} such that v ∈ V (Gi) and
d(v) ≥ 3 in Ḡi. Otherwise, G would not be tricon-
nected or d(v) = 2 in Ḡi and v would be contained
in a good outer chain, a contradiction. The vertex v
has a neighbour w ∈ V (Ḡi)−{up+1, up+2, . . . , uq−1}
such that d(w) ≥ 3 in Ḡi and (v, w) /∈ E(Pk). Oth-
erwise, d(w) = 2 in Ḡi and w would be contained in
a good outer chain, a contradiction. Then (v, w) is a
good outer edge of Ḡi. We set Pi+1 = (v, w). Clearly
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(nsed3), (nsed4), (nsed5) hold for Pi+1, and Ḡi+1 re-
mains internally triconnected.
Case 2b: Pk is on Co(Ḡi) or Co(G

∗

i ).
If removal of Pi has left Pk on Co(Ḡi), we augment

Ḡi to G∗

i as stated before. Otherwise, Pk has already
been on Co(Ḡi) and Ḡi has already been augmented to
G∗

i . Hence it is sufficient to consider only the case for
G∗

i . We have the following subcases to consider.
(i) G∗

i has an outer chain {up+1, up+2, . . . , uq−1}.
In this case {up+1, up+2, . . . , uq−1} is a good outer

chain. Otherwise, Pk is not on Co(Ḡi). We choose
Pi+1 = (up, up+1, up+2, . . . , uq−1, uq). Clearly (nsed3),
(nsed4), (nsed5) hold for Pi+1, and Ḡi+1 remains inter-
nally triconnected.
(ii) G∗

i has no outer chain.
In this case every vertex in {up+1, up+2, . . . , uq−1}

has degree at least three in G∗

i . Otherwise, G∗

i would
have an outer chain. Furthermore, there is at least a ver-
tex u ∈ {up+1, up+2, . . . , uq−1} such that u ∈ V (Gi).
Otherwise, {up, uq} would be a separation pair of G
andG would not be triconnected. Clearly u has a neigh-
bourw ∈ {up, up+1, up+2, . . . , uq−1, uq} such that (u,w)
/∈ E(Pk). Then (u,w) is a good outer edge of G∗

i . We
set Pi+1 = (u,w). Clearly (nsed3), (nsed4), (nsed5)
hold forPi+1, and Ḡi+1 remains internally triconnected.

Now it remains to consider the case where (a, b) /∈
E(G) andG∗

i is not triconnected. In this case, we choose
Pi+1 similar to the subcase (2b) with the exception that
we do not need any augmentation.
Case 3: (a, b) ∈ E(G) and Ḡi is not 3-connected.

In this case we choosePi+1 similar to the case where
(a, b) /∈ E(G) and G∗

i is not triconnected.
Thus the existence of a nonseparating ear decompo-

sition of G through a, b and avoiding c for any a, b, c is
proven. An algorithm for finding a nonseparating ear
decomposition based on the proof above can be imple-
mented. We have to keep track of outer chains, mini-
mal chord-paths and candidate degree three vertices of
Ḡi. Each face is traversed at most a constant number
of times. So run time is linear. Hence the Theorem 3.2
follows. Q.E .D.

We call the algorithm obtained from this construc-
tive proof for the existence of a nonseparating ear de-
composition of G through a, b and avoiding c for any
a, b, c Algorithm Find_Decomposition.

Lemma 3.3 Let a, b, c be three vertices in a triconnected
planar graph G and n,m denote the number of vertices
and the number of edges in G respectively. Then the
nonseparating ear decomposition of G through a, b and
avoiding c produced by Algorithm Find_Decomposition
has the following properties.

(a) if (a, b) ∈ E(G), then

(i) length of any ear is at least one and at most
the length of the longest facial cycle of G.

(ii) the number of ears is m− n + 1.

(b) if (a, b) /∈ E(G), then

(i) length of any ear is at least one and at most
the larger one of the length ofPk and one less
than the length of the longest facial cycle of
G.

(ii) the number of ears is m− n + 2.

Proof. (a)(i) From the constructive proof of Theorem
3.2, it can be found that each ear Pi, i �= k, is either
a single edge or a path with all of its internal vertices
belonging to an outer chain of Ḡi−1. So the length of
a non-trivial ear Pi can be at most 1 less than that of
the longest facial cycle. But as (a, b) ∈ E(G), the ear
Pk is set as an inner facial cycle passing through the
edge (a, b) and not passing through c. Therefore, Pk

may have the length of the longest facial cycle. Hence
length of any ear is at least one and at most the length
of the longest facial cycle of G.

(a)(ii) We employ an induction on n. A graph must
have at least n = 4 vertices and m = 6 edges to be
3-connected. A nonseparating ear decomposition of the
graph in Figure 10(i) is as follows. P0 = c, a.P1 =
d, c, b andPk=2 = a, d, b, a. So we have 3 = 6−4+1 =
m− n + 1 ears for any a, b, c of G.

c
c

a

a

b

bd α

β

γ

θ
(i) (ii)

Figure 10: (i) A triconnected graph with four vertices and six edges

(ii) Gα with n
�

vertices and m
�

edges.

Assume that n ≥ 5 and the result is true for all
triconnected planar graphs having n vertices. With-
out loss of generality we may assume that c is on the
outer boundary of G. We now add a vertex α on the
outer face of G. Let Gα = G

�
{α}. To make Gα

3-connected without losing planarity, d(α) number of
edges are added from α to its d(α) number of neigh-
bours on Co(G), where 3 ≤ d(α) ≤ |Co(G)|. Gα

has n
�

= n + 1 vertices and m
�

= m + d(α) edges.
To find a nonseparating ear decomposition of Gα (see
Figure 10(ii) ) we use the decomposition as in G un-
til the vertex β or γ or θ is contained in Gi. Then
the following ears are chosen in the decomposition of
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Gα. Px = β, α.Px+1 = γ, α, θ. Then we take the
ears as in the decomposition in G. Hence there are
d(α) − 1 new ears more than those in the decomposi-
tion of G. So total number of ears in the nonseparating
ear decomposition of Gα is m − n + 1 + d(α) − 1 =
m + d(α) − (n + 1) + 1 = m

�

− n
�

+ 1. Hence the
induction holds.

(b)(i) Now as (a, b) /∈ E(G), then the ear Pk is a
path from a to b. Clearly length of any ear is at least
one and at most maximum of the length of Pk and one
less than the length of the longest facial cycle of G.

(b)(ii) Consider the graphG
�

i = (V (Gi), E(Gi)
�

(a, b)).

From Lemma 3.3(a)(ii) G
�

i has m
�

− n + 1 ears, where

|E(G
�

i)| = m
�

= m + 1. Hence the number of ears is
m− n + 2. Q.E .D.

In section 4, we provide an algorithm to find a re-
source 3-partition of a graph G having a nonseparating
ear decomposition through two vertices a, b and avoid-
ing a third vertex c for any a, b, c.

4 Resource Tripartition

In this section we give an algorithm to find a resource 3-
partition of a planar graphG having a nonseparating ear
decomposition through two vertices a, b and avoiding a
third vertex c for any a, b, c.

LetHi be the subgraph induced byVin(P0)∪Vin(P1)∪
. . . ∪ Vin(Pi) and H̄i be the subgraph induced by V −
Vin(P0) ∪ Vin(P1) ∪ . . . ∪ Vin(Pi). We have the fol-
lowing lemma.

Lemma 4.1 Let P0, P1, . . . , Pq be the non-trivial ears
of a nonseparating ear decomposition of a planar graph
G through a, b and avoiding c. Then for any W ⊂
Vin(Pi), Hi −W is connected for i, 0 ≤ i ≤ q.

Algorithm Resource_Tripartition
Input: A planar graph G = (V,E) which has a
nonseparating ear decomposition through two ver-
tices a, b and avoiding a third vertex c for any a, b, c,
three designated distinct vertices u1, u2, u3 and three
natural numbers r1, r2, r3 such that

�3

i=1
ri = r.

Output: A resource 3-partition of G.
begin
Find a nonseparating ear decompositionP0, P1, . . . ,
Pk through u1, u2 and avoiding u3 of G;
Let P0, P1, . . . , Pq be the non-trivial ears of this
nonseparating ear decomposition of G;
Let i be the minimum integer such that Vin(P0) ∪
Vin(P1)∪. . .∪Vin(Pi) contains at least r3 resource
vertices, where each Pi is a non-trivial ear,0 ≤ i ≤
q;

Let e be the excess number of resource vertices in
Vin(P0) ∪ Vin(P1) ∪ . . . ∪ Vin(Pi) over r3;
There are the following two cases: (1) e = 0, and
(2) e ≥ 1;

Case 1: e = 0.
{ In this case, Hi contains r3 resource vertices, and
H̄i contains r1 + r2 resource vertices. }
Let V3 = Hi;
Find a resource bipartitionV1, V2 of the biconnected
graph H̄i∪{(u1, u2)} such that u1 ∈ V1, u2 ∈ V2,
V1 contains r1 resource vertices and V2 contains
r2 resource vertices, and both V1, V2 induce con-
nected subgraphs;
{ We can find a resource bipartition of H̄i∪{(u1, u2)}
in linear time by Lemma 2.3}
return V1, V2, V3 as a resource 3-partition of G.

Case 2: e ≥ 1.
{ In this case, Hi contains r3 +e resource vertices,
and H̄i = H̄i−1 − Vin(Pi) contains r1 + r2 − e
resource vertices. Since e ≥ 1,Vin(Pi) contains
at least two resource vertices, |Vin(Pi)| ≥ 2 and
hence Vin(Pi) is an outer chain of H̄i−1. }
Let Co(H̄i−1) = w1, w2, . . . , wh, w1 where w1 =
u1;
Assume that Vin(Pi) = {wp+1, wp+2, . . . , wq−1}
is an outer chain of H̄i−1;
Find an st-numbering v1, v2, . . . , vz of H̄i∪{(u1, u2)}
such that s = v1 = u1 and t = vz = u2;
Let wp = vp

� and wq = vq
� ;

Assume that p
�

< q
�

, otherwise, interchange the
roles of u1 and u2;
Let v1, v2, . . . , vp

� contain x resource vertices;
There are the following three subcases: (a) r1 ≤ x,
(b) x + e ≤ r1, and (c) x < r1 < x + e;

Subcase 2a: r1 ≤ x.
{ In this subcase, the last e

�

vertices containing
e resource vertices in the outer chain Vin(Pi) are
added to H̄i as the deficient e resource vertices. }
Let V1 = {v1, v2, . . . , vn1

} be the first n1 vertices
containing r1 resource vertices in the st-numbering
of H̄i ∪ {(u1, u2)};
Let V

�

2 = {vn1+1, vn1+2, . . . , vz} be the remain-
ing vertices containing r2 − e resource vertices in
H̄i, where wq = vq

� ∈ V
�

2 ;
{ By the fact (st1) of an st-numbering both V1 and
V

�

2 induce connected graphs. }
Let W = {wq−1, wq−2, . . . , wq−e

� } be the set of

the last e
�

vertices containing e resource vertices
in Vin(Pi);
Let V2 = V

�

2 ∪W ;
{ Since wq−1 is adjacent to wq ∈ V

�

2 , V2 induces a
connected graph with r2 resource vertices. }
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Let V3 = Hi −W ;
{ V3 is connected by Lemma 4.1, and has r3 re-
source vertices. }
return V1, V2, V3 as a resource 3-partition of G.

Subcase 2b: x + e ≤ r1.
{In this subcase, the first e

�

vertices containing e
resource vertices in Vin(Pi) are added to H̄i as the
deficient e resource vertices. }
Let V

�

1 = {v1, v2, . . . , vn1
} be the first n1 ver-

tices containing r1 − e resource vertices in the st-
numbering of H̄i ∪ {(u1, u2)}, where wp = vp

� ∈

V
�

1 ;
Let V2 = {vn1+1, vn1+2, . . . , vz} be the remain-
ing vertices containing r2 resource vertices in H̄i;
{ By the fact (st1) of an st-numbering both V

�

1 and
V2 induce connected graphs. }
Let W = {wp+1, wp+2, . . . , wp+e

� } be the set of

the first e
�

vertices containing e resource vertices
in Vin(Pi);
Let V1 = V

�

1 ∪W ;
{ Since wp+1 is adjacent to wp ∈ V

�

1 , V1 induces a
connected graph with r1 resource vertices. }
Let V3 = Hi −W ;
{ V3 is connected by Lemma 4.1, and has r3 re-
source vertices. }
return V1, V2, V3 as a resource 3-partition of G.

Subcase 2c: x < r1 < x + e.
{ In this subcase, e ≥ 2; the first b vertices contain-
ing r1 − x resource vertices and the last c vertices
containing e−(r1−x) resource vertices in Vin(Pi)
are added to H̄i as the deficient e resource vertices.
}
Let W = {wp+1, wp+2, . . . , wp+b} be the set of
the first b vertices containing r1 − x resource ver-
tices in Vin(Pi);
Let W

�

= {wq−1, wq−2, . . . , wq−c} be the set of
the last c vertices containing e− (r1− x) resource
vertices in Vin(Pi);
{ Since |W | + |W

�

| = b + c < |Vin(Pi)|, W ∩
W

�

= φ, |W ∪W
�

| = b+ c and W ∪W � contains
e resource vertices. }
Let V1 = {v1, v2, . . . , vp

� } ∪W ;

Let V2 = {vp
�

+1, vp
�

+2, . . . , vz} ∪W
�

;
{ V1 and V2 contains r1 and r2 resource vertices
respectively, wp = vp

� ∈ V1, wq = vq
� ∈ V2, and

both V1 and V2 induce connected subgraphs. }
Let V3 = Hi −W ∪W

�

;
{ V3 is connected by Lemma 4.1, and has r3 re-
source vertices. }
return V1, V2, V3 as a resource 3-partition of G.
end;

Since st-numbering can be obtained in O(n) time
by Lemma 2.1, the running time of the above algo-
rithm is O(n) if a nonseparating ear decomposition of
G through u1, u2 and avoiding u3 can be found in linear
time. Thus we have the following theorem.

Theorem 4.2 A planar graph G having a nonseparat-
ing ear decomposition through two vertices a, b and
avoiding a third vertex c for any a, b, c has a resource 3-
partition. Furthermore, if a nonseparating ear decom-
position of G through two vertices a, b and avoiding a
third vertex c for any a, b, c can be found in linear time,
a resource 3-partition of G can be found in linear time.

Hence from Theorem 3.2, we obtain a linear algo-
rithm to find a resource 3-partition of a 3-conneced pla-
nar graph G by using the nonseparating ear decomposi-
tion of G through a, b and avoiding c described in sec-
tion 3.

5 Conclusion
In this paper, we present a linear-time algorithm for
finding a resource tripartition of a planar graph for which
a nonseparating ear decomposition through two vertices
a, b and avoiding a third vertex c for any a, b, c can be
found in linear time. We also present a linear algorithm
for constructing a nonseparating ear decomposition of
a triconnected planar graph. The interesting features of
the nonseparating ear decomposition produced by our
algorithm regarding the number of ears and bounds on
length of ear can have significant applications. Using
our algorithm for finding a nonseparating ear decom-
position, we obtain a linear algorithm to find resource
tripartitions of triconnected planar graphs. Applying
our algorithm for finding a nonseparating ear decom-
position with an algorithm in [3], we can also achieve
a linear algorithm to find three “independent spanning
trees" in 3-connected planar graphs rooted at a vertex
r. However, the following problems related to resource
partitioning are still open.

(a) Developing algorithms for finding resource
k-partitions of graphs for k ≥ 4.

(b) Developing algorithms to find resource k-partitions
of graphs for k ≥ 2 where resources are specified
for the partitions.
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