
Reducing Structural Complexity of Software by Data Streams ∗

JÁN KOLLÁR 1

L’ UBOMÍR WASSERMANN 1

VALENTINO VRANIĆ 2

M ICHAL VAGAČ 3

1Technical University of Košice, Department of Computers and Informatics
Letná 9, 042 00 Košice, Slovakia

(Jan.Kollar,Lubomir.Wassermann)@tuke.sk

2Slovak University of Technology, Faculty of Informatics and Information Technologies
Institute of Informatics and Software Engineering

Ilkovi čova 3, 842 16 Bratislava 4, Slovakia
vranic@fiit.stuba.sk

3Matej Bel University, Faculty of Sciences
Tajovského 40, 974 01 Banská Bystrica, Slovakia

vagac@fpv.umb.sk

Abstract. Language architecture is developed from context-free grammar enriched by communica-
tion channels. Four types of formal communication channels and one type of informal communication
channel are identified for functional languages, to provide a systematic background for human-machine
communication. Formal channel positions are determined by a grammar, and informal channels by a pro-
grammer. Structural complexity is radically decreased since data streams are approximately as concise
as computer machine code, but they are semantically equivalent to high level functional programs. Using
simple example of a functional language, we present the principle of functional language architecture
and its driving by a data stream. In particular, we show how a program is initially recorded, how it is
automatically generated, and how it is adapted to verbose, quiet and collaborative modes. As a result, we
propose data stream-oriented architecture, in which structural complexity of current programs is rapidly
decreased, since the execution of language architecture machine code means the execution of high-level
programs.

Keywords: Data stream driven computing, language architecture, executable modeling, domain specific
languages, integrated model and language semantics.

(Received June 21, 2009 / Accepted August 17, 2009)

1 Introduction

Automatic software construction by machines is soft-
ware engineering vision [6, 5]. Generative [3], aspect
oriented [11], and context oriented programming [10]

∗This work was supported by VEGA project No. 1/4073/07
"Aspect-oriented Evolution of Complex Software Systems"

are successful software engineering practices for mini-
mizing accidental complexity of software construction.
In our opinion however, sometimes too complicated so-
lutions are provided, because increasing growth of se-
mantic complexity of software is accompanied with the
growth of structural complexity.

Crucial problem of executable modeling is how to

(Jan.Kollar,Lubomir.Wassermann)@tuke.sk
vranic@fiit.stuba.sk
vagac@fpv.umb.sk

define the semantics of structural elements expected to
be evolved in the future. It is well known for natural
languages, that meaningful sentences can be formulated
just understanding terms and expressions, from which
they are composed. That is why semiformal models
post-mortem formalisation to get executables is enor-
mous effort due to high degree of semantic ambiguities.
For example, looking deeply in the substance of UML
class diagrams and design patterns, we may notice that
both are just abstract syntactic trees, with freely seman-
tically interpretable non-terminals.

Modeling, prototyping, design and architectonic pat-
terns are exploited in current software engineering prac-
tice, but this time no commonly accepted theory for au-
tomatic software production exists. Despite that UML
action semantics was published already in 2001 [15],
executable modeling is applied just in specific applica-
tions [17]. Even worse, no common methodology for
model transformation is available [4].

As we may notice, language is more than model and
metalanguage is more than metamodel [12]. Software
language engineering approaches based on grammars
[9, 13] are useful in top-down direction to produce pro-
grams from grammars, as well as in bottom-up direction
for deriving grammars from programs [1]. In this paper,
in constrast to program transformation, applied to meta-
model [7], we propose integrated metaprogram and pro-
gram execution. Instead of two dimensional compiler
construction [16] we ignore original source form, not
constructing a compiler at all. In initial stages of our
design of executable language model, we have visual-
ized grammar tracing, similar to program tracing, intro-
duced in [2]. But in our solution, instead of program
inspection, grammar in the form of metaprogram (i.e.
language executable model, or language architecture)
is executed.

2 Reducing Structural Complexity

The main idea behind our solution, presented in this pa-
per, is as follows:

Let us have a grammarG, and a data streamS.
Then S is consumed by language model/architecture
derived from grammarG and this consumption exe-
cutes programP . The execution inG should be se-
mantically equivalent toP , i.e. P = G S, where
[[P]] = [[S]] + [[G]] .

Current architecture logic is hardwired as a finite
state automaton, which is defined by regular grammar.
ProgramP is executed by the application of automa-
ton to the machine representationS of programP . But
since of equivalence of grammarG and automaton, we
may abstract automaton to grammar. Then the appli-

cation (G S) of a grammarG to machine codeS is
meaningful execution ofP . Omitting the role of archi-
tecture, source programP (written for example in some
high level language) and its target machine codeS has
the same semantics, and then we may write[[P]] =
[[S]] . But this is just the simplification, because the
meaning of source program is given by composition of
target code structural semantics[[S]] and architecture
semantics [[G]] . The we have[[P]] = [[S]] +
[[G]] , which is an accurate relation between the se-
mantics of source programP and its target code[[S]]
executed in architecture represented by grammar[[G]] .

Structural complexity of a program written in a high
level language is far more lower than if using a machine
language for the same problem.

The problem is that current formal programming lan-
guages supported by translators have limits of abstrac-
tion given by semantically weak machine languages of
current architectures.

That is why our data streamS, which represents
program construction, should be structurally at a very
low level of current machine code, but semantically equiv-
alent to current high level programP .

Then we will be able to build new kind of architec-
tures – language architectures, which will by applied
to miniaturized forms of current high level programs
(and software systems) in the form of new target code.
We would like to integrate current concepts of modeling
and programming, replacing current modeling practices
by the transformation of formal languages of new gen-
eration.

In this paper, we present no software tool for the de-
velopment of programs, systems and models in new lan-
guage architectures. We introduce just principles and
simple implementation, using Haskell [14] IO monad,
to be as concise as possible. Practically, we are using
Hugs 98 interpreter [8], because it is fully sufficient for
our purposes. It is supposed that a reader is familiar
with functional programming concepts including mon-
ads.

3 Language Architecture

Language based architecture is language executable
model, defined by grammar with communication chan-
nels, in which data streams are consumed and produced,
either by a user or by an architecture, and they may be
stored in the architecture memory.

Let us define a simple functional language grammar,

with communication channels according to (1).

Language → print Exp
Exp → Mul C1? { S1?(+ | −) Mul }
Mul → Term O1? [S2?(∗ | /) Mul]
Term → S3?(val? | Exp)

(1)
where[ϕ] = ε | ϕ, for syntactic expressionϕ and

empty symbolε, and{ ϕ } is transitive closure, i.e.

{ ϕ } = ε | ϕ | ϕ ϕ | ϕ ϕ ϕ | . . .

In (1), communication channels are underlined, and
they are associated with metalanguage constructs – tran-
sitive closure, optional occurrence, and set of syntactic
expressions, as well as with selected terminal symbol
val.

data Symbols = Language | Exp | Mul | Term |
PRINT | ADD | SUB | MUL | DIV | EXP | VAL Int
deriving Show

data T a = T a [T a] deriving Show

evaluate :: T Symbols -> IO ()
evaluate (T PRINT [st]) = putStr (show (evalExp st))

evalExp :: T Symbols -> Int
evalExp (T ADD [st1, st2]) = evalExp st1 + evalExp st2
evalExp (T SUB [st1, st2]) = evalExp st1 - evalExp st2
evalExp (T MUL [st1, st2]) = evalExp st1 * evalExp st2
evalExp (T DIV [st1, st2]) = evalExp st1 ‘div‘ evalExp st2
evalExp (T (VAL x) []) = x

Figure 1: Language architecture semantics

Communication channels consume data stream
which determines the execution in the language archi-
tecture. Informally, the communication channels work
as follows:

1. If Ck? consumes 1, then the constructs in transi-
tive closure are activated, if 0, then they are not
activated.

2. If Ok? consumes 1, then optional constructs are
activated, if 0, then they are not activated.

3. If Sk? consumes numbern, thenn-th construct se-
lected from set of constructs is activated.

4. val? consumes the value, which defines the seman-
tics of terminal symbolval.

Note, channelsCk andOk are represented by one
bit, Sk can be represented in most cases by one byte
(since the number or set elements rarely exceeds 256),
but each terminal channel representation depends on its
value type.

Position of each communication channel above is
given by grammar. Communication channels derivable
from grammar are formal.

The fifth type of communication channel is infor-
mal, it is the subject of annotation by a programmer, and
it does not affect program execution. Informal channels
are not marked in grammar (1) in this paper, although
we are using them in the implementation (as prompts to
a user).

The semantics of language architecture is defined by
functionevaluate , see Fig 1.

Suppose source expressionprint 4*(3+2-1)-5
is translated to the syntactic tree

T PRINT [T SUB [T MUL [T (VAL 4) [],
T SUB [T ADD [T (VAL 3) [],T (VAL 2)
[]],T (VAL 1) []]],T (VAL 5) []]]

Then the evaluation by functionevaluate prints
value 11 on the screen.

We remind, our goal is to get the same result by sup-
plying the architecture with data stream, instead of sup-
plying compiler/interpreter by source code.

4 Data Streams as a Language Architecture
Instructions

Constructing initial data stream manually without sup-
porting tool is enormous effort, because when we are
typing stream data, we must look at grammar. Never-
theless, if hard task is done and data stream is recorded
to a memory, architecture is able to reproduce compu-
tation.

4.1 Stream Recording

To record input stream, we set all communication chan-
nels to "read from user and write to memory" mode.
This is done by functiongetStreamItem in Fig. 2
and continued in Fig. 3.

aToI = foldl op 0 where x ‘op‘ y = x * 10 + ord y - ord ’0’

data DataStream = S Int | O Int | C Int | V Int

getStreamItem :: (Int -> DataStream) -> [DataStream]
-> IO (Int,[DataStream])

getStreamItem itemType stream =
getLine >>= \ns -> return (aToI ns) >>=

\n -> return (n,stream++[itemType n])

construct :: Symbols -> [DataStream] -> IO (T Symbols,[DataStream])

construct Language stream =
construct Exp stream >>=
\(exp,stream) -> return ((T PRINT [exp]),stream)

construct Exp stream = construct Mul stream >>=
\(mul,stream) -> closure mul stream

where
closure mul stream = putStr "#C1# [0/1]? " >>=

\() -> getStreamItem C stream >>=
\(n,stream) -> caseSel n stream

where
caseSel n stream

| n == 1 = select stream >>=
\(op,stream) -> construct Mul stream >>=
\(mul’,stream) -> closure (T op [mul,mul’]) stream

| n == 0 = return (mul,stream)

select stream = putStr "#S1# [0:+,1:-]: " >>=
\() -> getStreamItem S stream >>=
\(n,stream) -> return (([ADD,SUB] !! n),stream)

Figure 2: Data stream recording

Invoking computation by
(construct Language []) , and typing the stream
of numbers

0 4 1 0 1 0 3 0 1 0 0 2 0 1 1 0 1 0 0
0 1 1 0 5 0 0.

we get in IO monad pair of two items – (1) con-
structed syntactic tree, and (2) input stream represented
asDataStream , which is recorded, i.e

(T PRINT [T SUB [T MUL [T (VAL 4) [],
T SUB [T ADD [T (VAL 3) [], T (VAL 2)
[]],T (VAL 1) []]],T (VAL 5) []]],
[S 0,V 4,O 1,S 0,S 1,S 0,V 3,O 0,C 1,
S 0,S 0,V 2,O 0,C 1,S 1,S 0,V 1,O 0,
C 0,O 0,C 1,S 1,S 0,V 5,O 0,C 0])

construct Mul stream = construct Term stream >>=
\(term,stream) -> optional term stream

where
optional term stream = putStr "#O1# [0/1]? " >>=

\() -> getStreamItem O stream >>=
\(n,stream) -> caseSel n stream

where
caseSel n stream

| n == 1 = select stream >>=
\(op,stream) -> construct Mul stream >>=
\(mul’,stream) -> return ((T op [term,mul’]),stream)

| n == 0 = return (term,stream)

select stream = putStr "#S2# [0:*,1:/]: " >>=
\() -> getStreamItem S stream >>=
\(n,stream) -> return (([MUL,DIV] !! n),stream)

construct Term stream = putStr "#S3# [0:val:?,1:Exp]: " >>=
\() -> getStreamItem S stream >>=
\(n,stream) -> caseSel n stream

where
caseSel n stream

| n == 0 = terminal stream >>=
\(val,stream) -> return ((T (VAL val) []),stream)

| n == 1 = construct Exp stream
terminal stream = putStr ("val: ") >>=

\() -> getStreamItem V stream

Figure 3: Data stream recording – continued

4.2 Program Reproduction

To accept recorded stream, all communication channels
are switched to "read from memory" mode, see Fig 4
and Fig 5, and program is reproduced by expression

construct Language (dataStream
datastream) >>= \(lang,ds) ->
evaluate lang

Then, instead of constructing stream in memory, data
stream datastream is accepted by function
streamItem . For pure reproduction, function
getStreamItem is not applied at all.

For the purpose of simplicity, instead of using some
external file for recorded stream, we just have transfered
it via clipboard, to define constant function
datastream . Function dataStream transforms
stream items to string representation of numbers.

Reproduced output on the screen in verbose mode is
shown in Fig. 7. This looks like recording, except that

this time user types nothing.

Informal channel (user interface) does not affect the
computation, hence switching computation from ver-
bose mode (Fig. 7) to quiet mode means just removing
each occurrence of monadic chain
putStr (......) >>= \() -> , as can be seen
in Fig. 6.

Then no lines with prompts will appear on the screen,
see Fig. 8.

4.3 Program Alternation

By stream alternation it is possible to change recorded
program, and also human-language architecture coop-
eration, allocating some activities to a user, and others
to the language architecture.

For example, all data stream values(V x) from
data streamdatastream can be filtered out, obtain-
ing substream, and val communication channel can be
switched to "read from user" mode.

getStreamItem :: [String] -> IO (Int,[String])
getStreamItem (d:ds) = getLine >>= \ns -> return ((aToI ns),(d:ds))

streamItem :: [String] -> IO (Int,[String])
streamItem (d:ds) = putStr (d++"\n") >>= \() -> return ((aToI d),ds)

construct :: Symbols -> [String] -> IO (T Symbols,[String])

construct Language ds = construct Exp ds >>=
\(exp,ds) -> return ((T PRINT [exp]),ds)

construct Exp ds = construct Mul ds >>=
\(mul,ds) -> closure mul ds

where
closure mul ds = putStr "#C1# [0/1]? " >>=

\() -> streamItem ds >>=
\(n,ds) -> caseSel n ds

where
caseSel n ds

| n == 1 = select ds >>=
\(op,ds) -> construct Mul ds >>=
\(mul’,ds) -> closure (T op [mul,mul’]) ds

| n == 0 = return (mul,ds)

select ds = putStr "#S1# [0:+,1:-]: " >>=
\() -> streamItem ds >>=
\(n,ds) -> return (([ADD,SUB] !! n),ds)

Figure 4: Automated program reproduction

Then, instead of recorded data stream below

0 4 1 0 1 0 3 0 1 0 0 2 0 1 1 0 1 0 0
0 1 1 0 5 0 0.

the next stream of data will be consumed from mem-
ory, except all numbers, designated by lowercase letters
that will be supplied by a user.

0 a 1 0 1 0 b 0 1 0 0 c 0 1 1 0 d 0 0
0 1 1 0 e 0 0.

By other words, we provide user with the domain
specific language for printing values of all expressions
print a*(b+c-d)-e .

The screen output is shown in Fig. 9.

5 Acknowledgment

This paper is the result of the project implementation
Centre of Information and Communication Technolo-
gies for Knowledge Systems (project number:
26220120020) supported by the Research & Develop-
ment Operational Programme funded by the ERDF and
was supported by bilateral projectSoftware Evolution
by Language AdaptationGrant No. BI-SK/08-09-002
and Grant No. SK-SI-0001-08 between Slovakia and
Slovenia.

6 Conclusion

The main contribution of this paper is as follows.
Executable language model can be implemented as lan-
guage architecture driven by data streams. Data streams
are language architecture programs that represent source
language program as a history of program construction.
This history is formalized, with a very concise repre-
sentation.

construct Mul ds = construct Term ds >>=
\(term,ds) -> optional term ds

where
optional term ds = putStr "#O1# [0/1]? " >>=

\() -> streamItem ds >>=
\(n,ds) -> caseSel n ds

where
caseSel n ds

| n == 1 = select ds >>=
\(op,ds) -> construct Mul ds >>=
\(mul’,ds) -> return ((T op [term,mul’]),ds)

| n == 0 = return (term,ds)

select ds = putStr "#S2# [0:*,1:/]: " >>=
\() -> streamItem ds >>=
\(n,ds) -> return (([MUL,DIV] !! n),ds)

construct Term ds = putStr "#S3# [0:val:?,1:Exp]: " >>=
\() -> streamItem ds >>=
\(n,ds) -> caseSel n ds

where
caseSel n ds

| n == 0 = terminal ds >>=
\(val,ds) -> return ((T (VAL val) []),ds)

| n == 1 = construct Exp ds

terminal ds = putStr ("val: ") >>=
\() -> streamItem ds

datastream = [S 0,V 4,O 1,S 0,S 1,S 0,V 3,O 0,C 1,S 0,S 0,V 2,O 0,
C 1,S 1,S 0,V 1,O 0,C 0,O 0,C 1,S 1,S 0,V 5,O 0,C 0])

Figure 5: Automated program reproduction – continued

streamItem (d:ds) = return ((aToI d),ds)

construct :: Symbols -> [String] -> IO (T Symbols,[String])

construct Language ds = construct Exp ds >>=
\(exp,ds) -> return ((T PRINT [exp]),ds)

construct Exp ds = construct Mul ds >>=
\(mul,ds) -> closure mul ds

where
closure mul ds = streamItem ds >>=

\(n,ds) -> request n ds
where

request n ds
| n == 1 = select ds >>=

\(op,ds) -> construct Mul ds >>=
\(mul’,ds) -> closure (T op [mul,mul’]) ds

| otherwise = return (mul,ds)

select ds = streamItem ds >>=
\(n,ds) -> return (([ADD,SUB] !! n),ds)

construct Mul ds = construct Term ds >>=
\(term,ds) -> optional term ds

where
optional term ds = streamItem ds >>=

\(n,ds) -> request n ds
where

request n ds
| n == 1 = select ds >>= \(op,ds) -> construct Mul ds >>=

\(mul’,ds) -> return ((T op [term,mul’]),ds)
| otherwise = return (term,ds)

select ds = streamItem ds >>=
\(n,ds) -> return (([MUL,DIV] !! n),ds)

construct Term ds = streamItem ds >>=
\(n,ds) -> request n ds

where
request n ds

| n == 0 = terminal ds >>=
\(val,ds) -> return ((T (VAL val) []),ds)

| n == 1 = construct Exp ds

terminal ds = streamItem ds

Figure 6: Stream driven quiet computation

Figure 7: Stream driven verbose computation

Figure 8: Stream driven quiet computation

Figure 9: Alternation to a domain specific computation

For example, considering 10 S, 6 O, 5 C and 5 val
channel communications for our print expression sam-
ple, data stream takes(80+6+5+5×64) = 411 bits,
i.e. less than 52 bytes, which is comparable with the
number of computer machine instructions. However,
stream is not machine code for computer architecture,
but semantically strong code for extensible high-level
language architecture, as we have illustrated for func-
tional language case in this paper.

To make more reliable conclusions about the suc-
cesfull applications of streams in practice, it is nec-
essary to develop imperative and object oriented exe-
cutable language models, as well as appropriate method
for automated (or at least assisted) recording of source
programs in the form of streams. Second, it is neces-
sary to select language of streams, which would be po-
tentially useful as a target communicating language be-
tween human body and language oriented computers.

References

[1] Črepinšek, M., Mernik, M. Inferring Context-Free
Grammars for Domain-Specific Languages, Conf.
on Language Descriptions, Tools and Applica-
tions, LDTA 2005, April 3, Edinburgh, Scotland,
UK, pp. 64–81, 2005

[2] da Cruz, D., Berón, M., Henriques, P. R, Pereira,
M. J. V. Strategies for Program Inspection and
Vizualizations, Proc. CSE’2008 International Sci-
entific Conference on Computer Science and En-
gineering, Sep.24–26, High Tatras Stará Lesná,
Slovakia, pp. 107-117, 2008

[3] Czarnecki, K., Eisenecker, U. E. Generative Pro-
gramming: Methods, Tools, and Applications.
Addison Wesley, 832 pp., 2005

[4] Czarnecki, K., Helsen, S. Feature-based survey of
model transformation approaches, IBM Systems
Journal, Vol.45, No.3, pp. 621–645, 2006

[5] Greenfield, J., Short, K., Cook, S., Kent, S. Soft-
ware Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley,
500 pp, 2004

[6] van Gurp, J., Bosch, J., Svahnberg, M. On the
notion of variability in software product lines. In
Proceedings 2nd Working IEEE / IFIP Conference
on Software Architecture (WICSA), pp. 45–54,
2001

[7] Javed, F., Mernik, M., Gray, M., Zhang, J., Bryant,
B. R. Using a Program Transformation Engine

to Infer Types in a Metamodel Recovery System,
Acta Electrotechnica et Informatica, Vol.8, No.1,
pp. 3–30, 2008

[8] Jones, M.P. et al. The Hugs98 User Manual.
http://www.haskell.org/hugs/

[9] Lämmel, R. Grammar Adaptation, In Proc. For-
mal Methods Europe (FME’01), volume 2021 of
LNCS, Springer-Verlag, pp. 550–570, 2001

[10] von Löwis, M., Denker, M., Nierstrasz, O.
Context-oriented programming: beyond layers,
Proceedings of the International Conference on
Dynamic languages, ACM International Con-
ference Proceeding Series; Vol. 286, Lugano,
Switzerland, pp. 143–156, 2007

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J., Griswold, V. G. An Overview of As-
pectJ. ECOOP’01, LNCS, vol. 2072, pp. 327–355,
2001

[12] Kleppe, A. A Language Description is More than
a Metamodel. In: the 4th International Workshop
on (Software) Language Engineering, 2007

[13] Klint, P., Lämmel, R., Verhoef, C. Toward
an Engineering Discipline for Grammarware,
ACM Transactions on Software Engineering and
Methodology, Vol.14, No. 3, July 2005, pp. 331–
380, 2005

[14] Peyton-Jones, S. (ed.): Haskell 98 Language
and Libraries (The Revised Report), 2002
http://haskell.org/definition/haskell98-report.pdf

[15] Sunyé, G., Ho, W., Le Guennec, A. and Jézéquel,
J. M. Using UML Action Semantics for exe-
cutable modeling and beyond, Proceedings of the
13th Conference on Advanced Information Sys-
tems Engineering, Springer, pp. 433–447, 2001

[16] Wu, X., Roychoudhury, S., Bryant, B. R., Gray, J.
G., Mernik, M. A Two-Dimensional Separation of
Concerns for Compiler Construction. Proceedings
of the 2005 ACM symposium on Applied comput-
ing, pp. 1365–1369, 2005

[17] Zhao, J., Liu, S., Wang, X., Chen, L., Wei, C. Re-
search and design of an executable modeling lan-
guage based on MOF, IEEE 9th International Con-
ference on Computer-Aided Industrial Design &
Conceptual Design, Kumming, China, 22-25 Nov.
2008, pp. 399–404, 2008

	Introduction
	Reducing Structural Complexity
	Language Architecture
	Data Streams as a Language Architecture Instructions
	Stream Recording
	Program Reproduction
	Program Alternation

	Acknowledgment
	Conclusion

