
A Representation Model of Design Rationale for the Design of ERP Systems

Sandra Kawamoto

Jorge Rady de Almeida Junior

Escola Politécnica da Universidade de São Paulo, Depto. de Eng. de Computação e Sistemas Digitais

sandrak@totvs.com.br, jorge.almeida@poli.usp.br

 Abstract: Special attention has been given to documentation and support activities in Software Engineering design,

 mainly when they are related to complex systems and distributed teams. Usually, information related to the final

 decisions of each phase is registered. However, the reasons of each decision and the alternatives that were considered

 and discarded are not documented. Capture and recovery of this type of information, in an efficient way, are the

 purposes of the Design Rationale study. Recording this information can facilitate maintenance, reuse and even the

 design phase, providing a better understanding of the system, by knowledge spread, communication and integration

 among the project team. The main concern is when and how to capture this information with low interference in

 designers’ usual activities, so that benefits can overcome the costs involved in this task. The purpose of the present

 work is to show, with plausible reasons, the great usefulness of the application of the Design Rationale technique in

 ERP systems design, proposing a new representation model for recording design decisions in these systems.

 Keywords: Design Rationale, Representation Models, Enterprise Resource Planning (ERP).

(Received April 07, 2009 / Accepted July 16, 2009)

1. Introduction

The main focus of this work is the proposal of a new

representation model of Design Rationale for

computational systems design. The proposal is applied

to an ERP (Enterprise Resource Planning) development.

Dutoit et al. [01] state that new technologies (web

oriented, components, patterns, etc.) and the process

models (agile, risk-oriented, and model-oriented) reflect

the challenges of software engineering nowadays:

design of more complex software in distributed teams, at

lower time and cost. Dutoit et al. [01] complements that

the emphasis on technologies and process models masks

the fact that software engineering is basically an activity

based on people and that the success of a project or

product depends on the decisions taken during the whole

project.

Normally, the standard documentation of projects

contains a description of the final project, i.e., the final

decisions that were taken. Design Rationale

encompasses not only the decisions, but also the reasons

that supported each decision, including its reasons and

alternatives considered [02]. Design Rationale provides

aid for review, maintenance, documentation, evaluation

and learning of the project.

Design Rationale is especially important for software

projects. In general, the software undergoes several

changes during its development cycle, not only to

perform corrections as well to change or incorporate

new requirements. The software maintenance phase is

very expensive and it becomes more complex if the

original team of architects is not available. Software is

usually handled by different teams, and only part of

them participates effectively throughout the project

review process. Another particularity of a software

project is the existence of multiple solutions for the

same problem. Considering all these features, the Design

Rationale has great potential to be a technique that can

add value to the software development process.

Thus, the purpose is to propose a new model of

representation of Design Rationale, to be applied to ERP

projects. The intention of this new model is to supply

some deficiencies of three Design Rationale models

studied, providing a more powerful tool for

documentation and analysis.

The proposal is based on the description and comparison

of three models of Design Rationale: QOC (Questions,

Options and Criteria), IBIS (Issue Based Information

System) and DRL (Decision Representation Language).

These are the main models considered in researches on

the subject [01], [03], [04], [05].

The choice of Design Rationale as the basic concept of

this paper is justified by the fact that its use can provide

great benefits to the software development process [06],

[07], [08]. However, in practice there was still not a

significant adhesion to its use [09]. At the beginning of

the research, many hoped that its practical application

could, quickly, be widespread. There was not, however,

the estimates of how difficult it would be to define

approaches and systems that could be successfully used

in real projects [01].

The choice here was over ERP systems because

practically all the specific characteristics of this kind of

application are favorable to the use of the Design

Rationale.

According to Dutoit et al. [01], after more than 35 years

of research in Design Rationale, some basic questions

remain unsolved, including:

1. How to capture the justification of decisions in the

project (rationales), that is, how to extract and store

the information;

2. What the best way to represent the justification of

project decisions is;

3. How to formalize these pieces of information, that

is, how to transform the information in the desired

representation form;

4. How the stored information may be used;

5. What the potential barriers to the capture,

representation, formalization and use of Design

Rationale are.

This paper contributes to answer question 2, because it

analyzes the Design Rationale representation models,

proposing a more appropriate model to ERP systems.

In section 2, the basic theory which involves the concept

of Design Rationale is described, contemplating its

definition and presentation of three Design Rationale

representation models, including a comparison between

them.

Section 3 contains the proposal of this paper, that is, an

analysis of the use of the Design Rationale in developing

environments of Enterprise Resource Planning (ERP),

presenting a proposal for a more appropriate

representation model for this kind of system. Finally,

section 4 contains the final conclusions.

2. Design Rationale
Software-oriented artifact designs are still found in

practice. Considering this paradigm, the emphasis is on

the generation and tracking of intermediary project

artifacts (requirements, specifications, prototypes and

documentation) that lead to the final system. But the

development process of these artifacts remains implicit

and hidden in meetings, notebooks, e-mails or in the

programmer’s memory [06]. Consequently, this

information will not be available and what is worse,

their recovery may not be possible in the needed time.

In the new technologies (web orientation, components

and application models) and in the newer process

models (agile, the risk-oriented, model-oriented), there

is a similar problem. These new technologies and

process models pose a challenge to software

engineering: building more complex software in

distributed teams, at lower cost and time. However, the

emphasis on technology and process models often leaves

in the background the fact that software engineering is

essentially an activity based on people and that the

success of a project or product depends on the decisions

taken during the engineering phase [01].

Generally, only information about the final decisions of

each phase of the software development cycle is stored,

because the analysts consider the task of documenting

each of the alternatives investigated very costly (in

terms of time). However, adequately storing and

retrieving this information provide various advantages

along the project: better design knowledge, easier

maintenance and communication among the project

team, better reuse possibility, easier integration of a new

member and also a lower possibility to implement an

option already discarded in the past.

At first, these advantages leave no doubt that it is

worthwhile to incorporate the capture of this information

to the software development process. The great question

is how to capture and retrieve this information

efficiently and with minimal interference to the usual

process activities. Thus, this scenario seems to be very

adequate to consider the use of Design Rationale, the

basic idea of which is to capture and retrieve that kind of

information.

2.1 Definition

There are several works related to project analysis and

decision management that mention the term Design

Rationale to describe the capture of the designers

reasons concerning decisions taken during the project

development. However, this activity is not limited to the

project elaboration phase, but applied to all software

development phases. Considering that many surveys

about rationale had, in the past, their focus on project

activities, the term Design Rationale is the one that

predominated and it is also the most often used [10].

Design Rationale refers to the documentation of

alternatives, choices and decisions made during the

project development process, as well as the reasons to

have taken a particular way. Several researchers have

already presented their definitions. Below, are some of

them.

According to [11], Design Rationales consist of

explanations of the relationships between structure,

behavior and functionality of artifacts. Some examples

are how a structure implements a feature, or how a

certain behavior is justified by a structure. Design

Rationale also explains the decision-making process.

For Souza et al. [12], Design Rationale is a

documentation representation containing the reasons and

arguments for a specific artifact. It includes both the

selected and the discarded alternatives, evaluated

changes and the arguments which led to a decision.

Design Rationale is the information that explains why an

artifact is structured the way it is and has a determined

behavior [08].

According Hu et al. [13], Design Rationale is the

explanation of why an artifact or some part of it has

been designed in a particular way. It includes

considerations, arguments, changes and decision-making

of a project artifact. This information can be valuable

and even critical to many people who deal with the

artifact.

In Burge, Brown [14], Design Rationale is defined as the

decisions taken during the design analysis phase and the

reasons that lead to such decisions.

Each definition provides a proper focus to the subject,

but, in general, they are similar definitions. Design

Rationale is related to information on the reasons,

considerations and the justifications for a decision, and

also to the alternatives that were considered and,

eventually, discarded. This paper uses the term Design

Rationale with this meaning.

2.2 Design Rationale Representation Models

A wide variety of approaches of Design Rationale has

been proposed. Most differ only in the nomenclature of

the nodes and their relationships. According to a great

part of the researchers, including Stumpf [05] and Shum

[04], the focus is on three models: Issue Based

Information System (IBIS), Questions, Options and

Criteria (QOC) and Decision Representation Language

(DRL). These models are described below.

2.2.1 Issue Based Information System (IBIS)

Historically, the movement of Design Rationale began

with the Issue Based Information System (IBIS),

described by Kunz and Rittel. It aimed at providing

support to groups that were faced with complex

problems [15]. The system guided the identification,

structuring and decision of questions raised and

provided appropriate information to the discussion,

creating a decision plan. It was not software related, but

it was a method of modeling the general argumentation.

A few years later, Rittel was already convinced that

design problems were fundamentally different from the

well-defined problems of science and called them

wicked problems. These problems could not be solved

by means of traditional analytical approaches [16]. Rittel

[17] then proposed an argumentative approach to this

kind of problems and used the IBIS model to implement

this approach.

The IBIS is used to record ideas and relationships during

project discussions while they are occurring. It presents

a framework on how the issues are discussed. The focus

is not on how the problem is resolved, how the

alternatives are extracted and evaluated or how to get to

a consensus. The IBIS puts more emphasis on the

process representation by which decisions are taken.

Therefore, the IBIS model aims at providing support to

structure the discussion so that the information can be

captured and structured, helping developers to solve

their issues.

The IBIS has three kinks of nodes:

1. ISSUES: problems under discussion;

2. POSITIONS: possible solutions to problems;

3. ARGUMENTS: favorable or not opinions to the

various solutions sought.

An ISSUE may ask, generalize or specialize another

ISSUE, resulting in SUBISSUES, each one with its

POSITIONS and ARGUMENTS [18]. ISSUES are

created and argued by the fact that different views may

be taken. ARGUMENTS are built in defense or against

the various POSITIONS until the ISSUE is solved. This

occurs when the opponents are convinced or when it is

possible to implement a procedure for formal decision

[15]. These relationships are illustrated in Figure 1.

The ISSUES are the organizational elements of the

systems. Among their properties, the following can be

mentioned [15]:

• ISSUES have the form of questions;

• The origin of ISSUES can be contradictory

statements;

• ISSUES are specific to particular situations.

POSITIONS are developed using private information

on the problem environment;

• ISSUES are suggested, questioned, specialized,

generalized or replaced.

Conklin and Begeman [19] adapted IBIS to be used in

software engineering, by creating a hypertext system

called graphical IBIS (gIBIS). Its main changes and

extensions are:

• Creation of an additional type of node called

OTHER, used as an escape mechanism for cases in

which it was not possible to find a way to express a

consideration in the IBIS model;

• Creation of an additional type of node called

EXTERN, which contains non-IBIS material, as

requirements documents, design sketches or codes;

• Inclusion of the relationships SPECIALIZES and

GENERALIZES between two POSITION or

ARGUMENT.

Figure 2 shows the types of nodes and relationships of

the extended IBIS model used in the construction of

gIBIS. The possible connections include:

• RESPONDS TO: a POSITION can answer to an

ISSUE;

• SUPPORTS, OBJECTS TO: the ARGUMENTS can

justify or oppose a POSITION;

• GENERALIZES, SPECIALIZES: ISSUES can

generalize or specialize another ISSUE;

• QUESTIONS, IS SUGGGESTED BY: ISSUES can

question or be questioned by other ISSUES,

POSITIONS or ARGUMENTS;

• REPLACES: an ISSUE may be replaced by another

ISSUE;

• OTHER: as an escape mechanism, the OTHER node

can be connected with any other node by means of

the connector OTHER.

Figure 1 - IBIS: Nodes Representation based in Kunz and

Rittel [15]

Conklin and Begeman [19] define gIBIS as a hypertext

system that uses colors and a relational database server

of high performance to facilitate the construction and

research of IBIS networks.

Q
u
es
ti
o
n
s

Is
 s
u
g
g
es
te
d
 b
y

R
es
p
o
n
d
s
to

Q
u
estio

n
s

Is su
g
g
ested

 b
y

Figure 2 - gIBIS: IBIS Extension

2.2.2 Questions, Options and Criteria (QOC)

 Developed by MacLean et al. [22], this model

emphasizes the exploitation of the project alternatives

and the choices made. It is an approach that uses

semiformal notation based on reasoning to

systematically represent visions of the project space.

The project space is a set of relationships or conceptual

dimensions used to compare projects and alternative

solutions [04].

The model presents a framework based on the process of

how the alternatives are generated and evaluated. This

organization allows the explicit representation of a

structured space of project alternatives and the

considerations that led to its choice. In the design

options space answers to the questions are possible [23].

The model includes three types of nodes: QUESTIONS,

OPTIONS and CRITERIA. The QUESTIONS are the

key problems to be solved, the OPTIONS are the

alternatives raised to solve the problems and the

CRITERIA justify the existing options. In addition to

these elements, there are also the assessments, which are

the relationships between OPTIONS and CRITERIA. In

its simplest form, the assessments may have two kinds

of relationships: POSITIVE ASSESSMENT or

NEGATIVE ASSESSMENT. Figure 3 shows the

general structure of the QOC model.

In summary, the model aims to identify key problems

(QUESTIONS), raise and justify (via CRITERIA) the

project alternatives (OPTIONS).

In the QOC, the criteria are stored, allowing the explicit

capture of project restrictions and facilitating the

problem resolution, which does not occur in the IBIS.

According to Hu et al. [13], QOC is simple to learn and

to use, and there is a growing number of research

projects using it. Another advantage highlighted by the

authors is that it is relatively easy to create a QOC for

reverse engineering of the system, preserving it for

future use.

2.2.3 Decision Representation Language (DRL)
Lee and Lai [24] proposed a notation that is an extension

of the QOC and gIBIS models. As its name says,

Decision Representation Language (DRL) has been

developed as a language to represent decision-making.

One of the main concerns was the increase in

expressiveness and functionality. To cover these features,

there was an increase in complexity [20].

Figure 3 - QOC Model, based on the description of MacLean

[22]

DRL is a more complete argumentation model,

involving a larger number of nodes and relationships

than the other two models. Jarczyk, Loffler and Shipman

[23] relate the main types of nodes (ALTERNATIVE,

GOAL, CLAIM, QUESTION and PROCEDURE), of a

hierarchy with 26 node types and more than 20

relationships.

For Louridas and Loucopoulos [20], there are 5 main

entities: DECISION PROBLEM, GOAL,

ALTERNATIVE, CLAIM and QUESTION. Lee [25]

includes the nodes PROCEDURE and GROUP. The

functions of these entities are:

• DECISION PROBLEMS and GOALS: a DECISION

PROBLEM is a controversial subject in the project

and a GOAL is a set of requirements (criteria) to fix

it;

• ALTERNATIVES represent possible solutions to

DECISION PROBLEMS;

• CLAIMS are used to argument. Considering that all

relationships are subclasses of the CLAIM object, an

argumentation can be based on other one;

• QUESTIONS are used to lead the discussions during

the project.

• PROCEDURES are steps that should be taken to

obtain answers to a question. They represent

auxiliary aspects in the decision-making process.

The main relationships between the nodes of the DRL

model are [25]:

• A DECISION PROBLEM “is a subdecision of”

another DECISION PROBLEM;

• A GOAL “is a subgoal of” a DECISION

PROBLEM;

• A CLAIM “supports” or “denies” an

ALTERNATIVE or another CLAIM;

• A CLAIM “answers” a QUESTION;

• A QUESTION “queries” or “influences” a CLAIM;

• A PROCEDURE “is an answering procedure for" a

QUESTION;

• A PROCEDURE “is a subprocedure of” another

PROCEDURE;

Figure 4 illustrates the DRL model, showing the possible

relationships between the nodes.

This approach was used in the development of a

knowledge-based tool called SIBYL to represent

justifications for project decisions [26]. First, instances

of a DECISION PROBLEM are created. Then the

GOALS and ALTERNATIVES are added [27]. Through

appropriate modules, the evaluation and reasoning

process of this information are carried out.

The tool provides various services including the

dependency management (tracking of decisions that

have dependencies among themselves), precedence

management (other decisions share the same goals),

point of view management (arguments share the same

assumptions) and plausibility management (the power to

support the argumentation of an alternative).

Lee and Lai [24] argue that a representation must

support a variety of project tasks, such as answering

questions about the progress of the project, the

alternatives generated, the assessments that led to the

choice of certain alternatives and the possible transfer of

knowledge to future projects or even other people that

come to work in the proper project. DRL was developed

to support all these issues. Its emphasis is to manage the

qualitative elements of decision-making and their

dependencies.

In the next item, a comparative analysis of these three

models is performed.

Is an alternative for ac
hi
ev
es

ac
hi
ev
es

Figure 4 - DRL Model, based on Lee [24]

2.2.4 Comparison between Models

The three models are based on arguments and have

semiformal notation. They differ in the extent of features

that they seek to capture and on the way these models

are used in a representation.

In general, the three models have the two nodes referent

to the problems and alternatives of solutions. Each

model uses its own nomenclature to make references to

these nodes. IBIS and DRL have a node that defines the

arguments for the choice or rejection of an alternative.

QOC and DRL have a node that indicates the criteria for

the solution of a problem. This feature is important for a

better and more accurate decision-making [21], because

these criteria indicate desired properties or requirements

that must be met. Moreover, QOC does not explicitly

present information relating to the arguments, which end

up being stored implicitly in the node OPTION. DRL

has a larger number of nodes and relationships types,

providing greater flexibility, but making its

understanding more complex.

Depending on the purpose of the model, it can be

classified as descriptive or prescriptive. A model is said

to be descriptive if the goal is only to describe the

designers’ reasoning processes. No attempt is made to

change the designer’s way of thinking or even the

decisions taken. However, the information stored can

improve procedures for the other phases of the software

developing life cycle, such as the development,

maintenance or reuse of project artifacts. Design

Rationale can also be used to transfer knowledge to new

team members.

The prescriptive approach, on the other hand, aims to

improve the process during the project design,

improving the way of thinking of the people involved.

One goal is to correct perceived deficiencies in the

reasoning of project issues, making it more correct,

consistent and complete. In this approach, records of

Design Rationale can also be created to assist the

processes outside the project design stage. It should also

be noted that descriptive and prescriptive approaches are

not always mutually exclusive. For example, some

approaches have the primary intention of being

descriptive, but also have some prescriptive goals [01].

Considering the basic objectives of the QOC and DRL

models, they are classified as descriptive and IBIS is

classified as prescriptive. QOC is fundamentally

descriptive since its primary purpose is to create a

designer’s decisions representation that is sufficiently

detailed to provide information to other phases of the

development life cycle of an artifact.

For Dutoit et al. [01], two features distinguish QOC

from IBIS. The first refers to the questions scope. While

IBIS can be related to any project topic, the issues of the

QOC model deal exclusively with features of the artifact

being designed. Therefore, the issues of the QOC model

always have possible answers (OPTIONS), which

describe the properties of the artifact being designed.

The second factor that distinguishes the two models is

that the QOC uses judgments to indicate whether the

alternatives meet each criterion set. Although it is

possible to represent these judgments in the IBIS model,

by means of arguments, IBIS has not an explicit

representation of the criteria as model elements. Nguyen,

Swatman and Shanks [18] complement this,

emphasizing that each alternative is evaluated

individually by its own arguments. There is not a

common set of arguments to all alternatives.

Another limitation of the IBIS model is the generation of

a complex network when there are a large number of

nodes, hampering the search for data [21].

The DRL model is much more complete, involving a

larger number of nodes and relationships than the other

two models. One of the goals was to increase the

expressiveness and functionality. Lee and Lai [02] argue

that the DRL is more expressive than the other models

because it serves a broader range of issues. On the other

hand, to accommodate these features, there was an

increase in complexity [20].

This comparative analysis between the models provided

the basis for the proposal presented in the next section.

Considering the theoretical analysis, DRL seems to be

very complex to be used in ERP systems. The best

solution is likely to be based on the QOC or IBIS model.

3. Proposal of a Design Rationale

Representation Model for Project of ERP Systems

This chapter contains the main proposal of this work.

Initially, an analysis of the use of Design Rationale in

ERP systems is conducted. Then, the search made is

described, presenting a graphical representation of the

Design Rationale for each case. Finally, a proposal for a

Design Rationale representation model is presented for

ERP systems projects.

3.1Design Rationale and ERP

This item contains an applicability analysis of the

Design Rationale for ERP systems projects. The purpose

is to confirm that the Design Rationale is useful for

these types of software systems.

If the information about the justification of project

decisions is available, it is possible to use it in various

ways aiming at supporting the project activities. Gruber

and Russel [28] list some of these activities:

• Checking work: as the information captured explains

certain parts of the project, it is possible to carry out

checks in order to detect inconsistencies;

• Clarifications: Design Rationale provides important

information about the project. It is very useful

especially in complex projects;

• Information sharing: a history of the project can

avoid trying to use alternatives already exploited.

This is especially important in projects in which

people that have not participated in the initial phases

of the project should define corrections or add new

features to the system;

• Institutional Memory: in large organizations, many

designers are working concurrently in several

projects, over long periods of time. They need to

share common artifact models, communicate with

each other and with other departments. Capturing

knowledge through Design Rationale, in an explicit

format, it is important to accumulate and share

knowledge within the organization.

Looking up a project for ERP system, it is observed

that it has several features that propitiate an

adequate use of Design Rationale.

The ERP systems are developed over a long period, and

generally by large groups of people. The software

usually suffers systemic and technological changes

starting from the current version, i.e., newer system

versions are built on the basis of the previous ones.

Considering that such systems have a considerable

legacy (many code lines written), it is difficult to use a

new technology that does not take into account the

existing system. Consequently, although a version is

considered a new project, in fact, it is dependent on all

previous versions.

Therefore, the design of a release, in a more global view,

covers the design of all previous versions. A new feature

or changing something that already exists may need

information from the initial system design, possibly

carried out several years ago.

The life cycle of this kind of software differs from the

others, because changes are constantly made in the

system (for corrections, legal changes, new features,

etc.). Usually there are various updates between one

version and another. Moreover, a feature of this kind of

system is the need of customization to meet the specific

needs of each client. This activity is considered another

project, made by another team of the company or even

by a team of another company.

It is very common that consulting firms carry out the

ERP implementation and customization. Information on

the ERP projects decisions can be valuable to this phase,

avoiding inconsistencies, unnecessary work and

attempts to test alternatives already discarded. The most

recent surveys suggest that the lack of knowledge of the

ERP system has been a matter of great importance to

many organizations [29].

It is not unusual for the designer of a particular routine

not to be present when it is necessary to make any

changes in its functionality. This is due to two main

factors: long software life cycle and high turnover of

people in this area.

For all these features, the project of an ERP system is a

very suitable case to the use of Design Rationale. It is a

complex project, which undergoes a lot of changes, has

a long life cycle and involves a large number of people.

Consequently, it will be very useful if it is possible to

store information in order to carry out project

verifications or to provide clarifications to the people

involved..

The documentation of project decisions generates a

history, facilitating the sharing and accumulation of

information. One benefit is to avoid an attempt to use

alternatives already discarded in the past. This

information will be important in all the life cycle phases

of the ERP.

Additionally, an ERP system has an implementation

phase, in which customizations are made for each

company. This is the most critical phase, which often

generates dissatisfaction of both the implementing team

and of the people from the client company. Recent

researches revealed a significant reduction in the level of

implementation satisfaction of ERP systems in the

period from 1998 to 2000 [30]. It is believed that much

of the problem is caused by lack of information and

communication. Design Rationale can contribute to

solve such problems.

It is very difficult to anticipate all project decisions that

will be questioned [11]. Therefore, the use of Design

Rationale should have the ability to answer a lot of

questions about the project. Another tactic is to focus on

the information on a specific part of the project. This

strategy can be more effective in cases in which there is

a history of previous projects and it is possible to predict

which parts of the project are the most likely to have

their information questioned.

The latter option seems to be very appropriate for ERP

projects. By means of the history, it is usually possible

to determine which modules suffer more updates, which

functions have more problems, which are the critical

processes, etc. Then the focus can be put on specific

parts of the project.

3.2 Real Cases Analysis

In this item, some actual cases of decisions on the design

of an ERP system are presented. The first attempts to

collect data were made by means of e-mails to the

developing coordinators of ERP systems of three large

companies. From a total of thirty three people, only one

responded to the request. Realizing that the problem was

the understanding of what was being requested, the data

collection began to be made by means of informal

interviews.

In general, the interviewees showed some difficulty in

remembering examples. Even when a case was

remembered, not all alternatives or reasons for the

decision were remembered. Nearly half of those

interviewed requested assistance from another person in

the team to remember some detail. In total, thirteen

people were interviewed. In a poll conducted by Tang et

al. [31], 74% of interviewees said that they forgot the

reasons related to the project decisions.

After the interviews, twenty-two cases were collected.

Four cases were selected to be detailed in this paper. The

others have a very similar representation and, practically,

do not add any extra information to the proposed model.

Then these four cases of decision of ERP system are

presented.

3.2.1 Case 1: Credit Analysis

The Commercial Automation module manages from the

operational control related to the cash register and

attendance, to the financial management of inventories

and purchases.

In this module, there is a credit analysis process that is

conducted at the moment of paying for the goods

purchased, if the operation is performed by check. It

consists of the status verification of the customer credit

in the market.

During the project analysis, two alternatives were

considered to the implementation of this process:

1. Query via Web Service: each terminal that needs

information sends a process calling for a query. This

process may take some time. A new query request

can only be sent when the first one returns. This

solution is simple to implement and provides

security, preventing a purchase from being made

without any credit verification. Moreover, a

customer may happen to switch to a payment method

that does not require credit verification (cash, for

example). In this solution, after the credit analysis

query is requested, it is necessary to wait for the

answer to finalize the purchase. Moreover, other

people may be waiting to make a credit analysis and

will have to wait for the credit analysis query, the

result of which will not even be used.

2. Local Semaphore: rather than simply sending the

requests, the system implements a local query queue.

If a request for credit analysis is cancelled, the

system checks whether the request is in the queue. If

not, nothing is done, indicating that the query is

being processed. If yes, the query is removed and

other queries take place. In this case, it is necessary

to implement this queue logic, but it is a more

flexible solution, with better performance.

Figure 5 shows a graphical representation of the

problem using the IBIS model. While it is possible to

represent all information in the picture, it is unclear

which is the chosen alternative and for what reason,

since the two alternatives have the same number of

positive and negative arguments.

Normally, an argument is more important than another.

Considering such a fact, an alternative can support fewer

arguments that another one, but even so, it may be the

one chosen. This can happen because some arguments

can be more important than others.

In this case, the option chosen was the use of a local

semaphore, optimizing the process.

O
bj
ec
ts
 to

Figure 5 - Design Rationale Representation for Case 1

3.2.2 Case 2: Human Resources – Note Table

In the Human Resources module, there is a routine that

makes the notes of entry and exit of each employee.

Basically, a comparison between an official table with

the work schedules pattern is made and the notes of

entries and exits of each employee. Based on this

analysis, it is possible to calculate discounts and extra

hours at the end of the month.

Considering a large data volume, this routine must be

accomplished with very good performance. The main

point is the definition of the processing method of these

tables:

1. Physical Table: the data are in a table in the

database. Despite the direct processing being slower

than having the data in memory, it is possible to

take advantage of several features of the database

management system (integrity, triggers, indexes,

etc.).

2. Data in memory: the data are read from the

database and are in memory during analysis. This

option requires extra implementations, such as data

loading, data validation and sorting. The advantage

is the access speed to data after they are ready to be

processed.

Figure 6 shows the representation of the Design

Rationale for this case. The main question creates

another issue, which is how to get the best performance.

Initially, the alternative "data in memory" has been

chosen. This case does not add any new element unless

the specialization of the question lies in another issue -

“How to get better performance?”

The interesting point in this case is that the interviewees

reported that today the choice is no longer the best. The

increase in functions to handle exceptions made the

choice of data in memory slower. Thus, the alternative

“physical table" became the best solution.

3.2.3 Case 3: Business Process Management (BPM)

The goal of Business Process Management (BPM) is

providing greater visibility and transparency of

procedures and consequent possibility of monitoring and

auditing. One of the features of this tool is to provide

flexibility for changes and enhancements according to

demand.

The Business Process Management (BPM) allows

processes modeling, the rules parameterization of

business associated with the flow, definition and

restriction of access for users to consider the skills and

activities to be undertaken and the control over process

application features (time and process cost). Moreover,

it allows the development of computer applications,

called the fourth software layer, integrated or not legacy

systems, such as: proprietary systems, ERP, CRM,

telephony, and other technologies.

Figure 6 - Design Rationale Representation for Case 2

Considering the use of BPM with ERP, an external

software tool can be used, or the functionality can be

integrated to the system. One of the ERPs analyzed

decided for its integration to ERP standard.

During the analysis phase of this module, one of the

main decisions was to choose the data entry method in

the system. Basically there were two options:

1. Pre-defined model: the model containing all the

system features is defined by programming, and

cannot be changed during implementation. So it is

easier to implement, but less flexible, requiring

intervention of the IT area if it is necessary to make

some changes. In this model, the system will ask the

information to the user as he goes through the

screens.

2. Dynamic Model: the definition of the data entry

model is made by the company manager during the

system implementation. After the completion of this

activity, the environment is ready for the

information input. The idea is that this manager

understands the business of the company and he

does not necessarily need to understand computing.

Consequently, the model is dynamically defined

and can be modified without the intervention of the

IT staff. The implementation of this solution is

more complex and requires a validation of the user

defined model. However, this is the solution that

allows the creation of a system with features that

follow the Business Process Management (BPM)

concepts.

The representation of this case in the Design Rationale

in the IBIS model is shown in Figure 7. In the figure, it

is not possible to define which the best alternative is,

since each supports two arguments and is opposed to the

other two.

The solution of this issue was made by the dynamic

model implementation.

3.3 Model Definition

This item presents the proposal for a model to represent

the Design Rationale considering ERP systems. Hu et al

[13] claim that a good representation model is essential

to an effective recovery.

The proposed model is intended to capture the

information of Design Rationale in the project analysis

phase of the development cycle of an ERP system.

Information recovery can be made throughout the

software life cycle, including the project analysis phase,

the implementation phase of the system and the

development of other product versions.

O
bj
ec
ts
 to

Figure 7 – Design Rationale Representation for Case 3

The goal is to have a model that could represent the

main elements found in the decisions of ERP systems,

which were, at the same time, simple and intuitive.

Moreover, the objective was proposing a model that

could be helpful during the project analysis, helping the

discussions and choices and also contribute to the other

system life cycle phases, providing a more complete

documentation. To meet this criterion, the graphical

representation should explain the choice of a particular

alternative.

The DRL was discarded because its emphasis is on the

decision-making management and its dependencies. Its

complexity hinders its application in larger projects and

with large number of people such as ERP systems. The

high turnover is another obstacle to adopt this model.

The training time necessary to understand the new

technology can make the adoption of this model

infeasible. Then, IBIS and QOC seemed to be the most

appropriate models for this case.

In Case 1, it was verified that the IBIS was the model

that best represented the example characteristics. The

main reasons for choosing this model are that the issues

may refer to any project question and not just the artifact

being designed. The graphic representation was

validated, after presenting it to the proper people

interviewed.

For the majority of cases, it was found that only the IBIS

model was not sufficient to present a self-explanatory

model, especially with respect to the chosen alternative.

Taking into account only the number of arguments that

are favorable to an alternative, there is a risk of not

choosing the best one. The solution was to set weights

for each argument. These weights define the importance

degree of the arguments, considering the problem. The

range of valid values goes from zero to ten, and the

higher the number, the greater its importance.

Thus, the model could represent a very common feature

in the cases reported: each argument has a different

importance for the issue solution. Figure 8 shows the

IBIS model with weights in the arguments.

Finally, after a review of cases such as that presented in

section 3.2.4 (BPM), one limitation of the IBIS model

described in the literature was confirmed: the lack of

explicit representation of the criteria as model elements

[18]. The inclusion of a specific element to represent a

criterion (requirement or restriction) eliminated this

limitation. This information, which is present in the

QOC model, turns the model more complete. Figure 9

illustrates the final proposal of the Design Rationale

model for ERP systems. This model was established

through the combination of features of the IBIS and

QOC models and the inclusion of a quantification

attribute about the importance of the arguments.

It was possible to adequately represent all the decision

cases of ERP systems considered in the research by

means of this model. The graphic representation of this

new model for the four cases presented in Section 3.2 is

depicted below.

Figure 8 - Design Rationale Model for ERP Systems: Inclusion

of the attribute “Weight”

3.4 Model Application to the Real Cases

This section contains the application of the proposed

model in the previous real cases presented in section 3.2.

3.4.1 Case 1: Credit Analysis

Figure 10 shows a graphical representation of the

problem using the new model. To represent the

difference in importance between the arguments,

weights are used. Thus, it can be seen why the

alternative of a local semaphore was chosen.

Figure 9 - Proposal of a Design Rationale Model for ERP

Systems

O
bj
ec
ts
 to

Figure 10 – Design Rationale Representation for Case 1

3.4.2 Case 2: Human Resources – Note Table

Figure 11 shows the Design Rationale representation for

the case of the note table. Considering that the second

argument is the one that provides the best answer to the

question (Weight: 8), the alternative "data in memory"

has been chosen.

Figure 11 - Design Rationale Representation for Case 2

As mentioned earlier, the increase in functions to handle

exceptions just made the choice of data in memory

slower. To reflect this change in the graphical

representation, it is only necessary to change the

"weight" of the corresponding argument, as illustrated in

Figure 12. Thus, the alternative "Physical Table" seems

to be the best solution.

This case reinforces the usefulness of having the

property "weight" in the arguments indicating its

importance in the solution of the issues. It is essential to

understanding changes in the chosen alternatives.

Figure 12 - Design Rationale Representation for Case 2 –

Current Situation

3.4.3 Case 3: Business Process Management (BPM)
The Design Rationale representation of the reported case

in the new model is represented in Figure 13. The figure

can be more easily interpreted with the representation of

the node Criterion. The node "Agree with the BPM

features" is a system requirement and, therefore, the

solution must support this item. Therefore, the "dynamic

model" is the solution to the problem.

Figure 13 - Design Rationale Representation for Case 3

3. Conclusions

For many Design Rationale researchers, the value of

capturing information on the project decisions meant

that this technique would be quickly disseminated in the

companies. Furthermore, the academic research on the

subject continued growing.

While there are several surveys on Design Rationale and

on Enterprise Resource Planning (ERP), separately, no

study was found on the combination of the two issues.

Thus, the study on the Design Rationale application in

ERP Systems demonstrated the enormous value of its

use. The project justifications can be documented in a

complete and accurate way, particularly helping the

designers of this kind of system.

Another important factor is the observation of some

deficiencies found in two modeling forms of Design

Rationale, which allowed the proposition of an

adaptation to the way of modeling, which showed to be

quite appropriate to record the reasons for designing

ERP systems. The proposed model for ERP systems,

albeit simple, serves all of the cases collected.

After the elaboration of the Design Rationale proposed

model, it was possible to see that the greatest difficulty

is not in the definition of processes or models. The

technical challenges are small when compared with the

human challenges.

It should be noted that the proposed model aimed to

capture information from Design Rationale in the

preparation phase of the project development cycle of an

ERP system. Information recovery can be made

throughout the system life cycle, including the project

elaboration phase, in addition to the deployment phase,

as well as the development of other product versions.

The proposed model is capable of representing models

that correspond to the main elements found in the

decisions of ERP systems, assisting in the project major

decisions, providing an even more complete

documentation.

References

[01] DUTOIT, A. et al. Rationale Management in

Software Engineering, Editors, Springer, 2006.

[02] LEE, J.; LAI, K. What’s in Design Rationale? in

Design Rationale - Concepts, Techniques, and Use, T.

Moran and J. Carroll, Eds. New Jersey: Lawrence

Erlbaum, p. 21-51, 1996.

[03] ROSSI, M. et al. Method Rationale in Method

Engineering. Proceedings of the HICSS-33, Maui, HI,

IEEE Computer Society, 2000.

[04] SHUM, S. B. Cognitive Dimensions of Design

Rationale. In D. Diaper, & N. Hammond (Eds.), People

and Computers VI, Proceedings of HCI'91, Cambridge

University Press, 1991.

[05] STUMPF, S. C. Argumentation-based Design

Rationale - the Sharpest Tools in the Box. Research

Note RN/98/103, Computer Science Department,

University College London, University of London, U.K.,

Available in: http://www.cs.ucl.ac.uk/staff/S.Stumpf/

Reports/IN9801.html Access in: 10/02/2006.

[06] SHUM, S. B.; HAMMOND, N. Argumentation-

Based Design Rationale: What Use at What Cost?
International Journal of Human-Computer Studies, p.

603-652, 1994.

[07] FISCHER, G. et. al. Making argumentation

serve design. In T. Moran and J. Carroll, editors, Design

Rationale Concepts, Techniques, and Use, p. 267-294,

1995.

[08] CONKLIN, J.; BEGEMAN, M. L. gIBIS: A

Hypertext Tool for Exploratory Policy Discussion.

Proceedings of the 1988 Conference on Computer

Supported Cooperative Work (CSCW-88), ACM,

Portland, Oregon, p. 140-152, 1988.

[09] BOSCH, J. Software Architecture: The Next

Step, Software Architecture: First European Workshop,

EWSA 2004, St Andrews, UK., p 194-199, 2004.

[10] SAUER, T. Using Design Rationales for Agile

Documentation. Proceedings of the IEEE International

Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises 2003 (WETICE’03), 2003.

[11] GRUBER, T. R.; RUSSEL, D. M. Design

Knowledge and Design Rationale: A framework for

representation, capture, and use. Technical Report

KSL 90-45, Knowledge Systems Laboratory, Stanford,

California, 40p, 1991.

[12] SOUZA, C. R. B. et al. A Model Tool for Semi-

automatic Recording of Design Rationale in Software

Diagrams. In Proceedings of the String Processing and

Information Retrieval Symposium, p. 306–313, 1998.

[13] HU, X. et al. A Survey on Design Rationale:

Representation, Capture and Retrieval. Engineering with

Computers: An Int’l Journal for Simulation-Based

Engineering, v. 16, p. 209–235, 2000.

[14] BURGE, J. E.; BROWN, D. C. Reasoning with

Design Rationale. In Proceedings of the Artificial

Intelligence Design Conference, 2000.

[15] KUNZ, W.; RITTEL, W. J. Issues as Elements of

Information Systems, Working Paper No 131,

University of California, Berkeley, 1970, reprinted in

1979. Disponível em: http://www-iurd.ced. berkeley.

edu/pub/WP-131.pdf. Access in: 06/12/2005.

[16] RITTEL, H.; WEBBER, M. Dilemmas in a

General Theory of Planning, Policy Science, Vol. 4, p.

155-169, 1973.

[17] RITTEL, H. On the Planning Crisis: Systems

Analysis of the 'First and Second Generations', in

Proceedings of the Systems Analysis Seminar, European

Association of National Productivity Centers, 1972.

[18] NGUYEN, L.; SWATMAN, P. A.; SHANKS, G.

Supplementing Process-Oriented with Structure-

Oriented Design Explanation within Formal Object-

oriented Method. Software Engineering Conference,

1998. Proceedings. 1998 Australian, p.118-132, 1998.

[19] CONKLIN, J.; BURGESS-YAKEMOVIC, K. A

Process-Oriented Approach to Design Rationale, in

Design Rationale Concepts, Techniques, and Use, T.

Moran and J. Carroll, (editors), Lawrence Erlbaum

Associates, Mahwah, NJ, p. 293-428, 1995.

[20] LOURIDAS, P.; LOUCOPOULOS, P. A Generic

Model for Reflective Design, ACM Transactions on

Software Engineering and Methodology (TOSEM), v.9

n.2, p. 199-237, 2000.

[21] FRANCISCO, S. D. DocRationale: uma

ferramenta para suporte a Design Rationale de
artefatos de software. Dissertação de Mestrado,

Instituto de Ciências Matemáticas e de Computação –

Universidade de São Paulo, São Carlos - SP, 2004.

[22] MACLEAN, A. et al. Questions, options and

criteria: Elements of design space analysis. Human-

Computer Interaction, p. 201-250, 1991.

[23] JARCZYK, A.; LOFFLER, P.; SHIPMAN, F.

Design Rationale for Software Engineering: A

Survey: In Proceedings of 25th Annual Hawaii

International Conference on System Sciences, p. 8-10,

1992.

[24] LEE, J.; LAI, K. A Comparative Analysis of

Design Rationale Representations, Human-Computer

Interaction Special Issue on Design Rationale, p. 251-

280, 1991.

[25] LEE, J. SIBYL: A qualitative design

management system. In P.H. Winston and S. Shellard,

eds., Artificial Intelligence at MIT: Expanding Frontiers,

Cambridge MA: MIT Press, p. 104-133, 1990.

[26] LEE, J. SIBYL: A Tool for Managing Group

Decision Rationale. In Proceedings of the CSCW’90

Conference, ACM Press, New York, p. 79-92, 1990.

[27] MONK, S.; SOMMERVILLE, I.; PENDARIES, J.

M.; DURIN, B. Supporting Design Rationale for

System Evaluation. In: Proceedings of the Fifth

European Software Engineering Conference, Barcelona,

Espanha, p. 307–323, 1995.

[28] GRUBER, T. R. Model-based Explanation of

Design Rationale, in Proceedings of the AAAI-90

Explanation Workshop, Boston, July 30, 1990.

[29] DAVENPORT, T. H. Mission Critical – Realizing

the Promise of Enterprise Systems, Boston, MA:

Harvard Business School Press, 2000.

[30] SKOK, W.; LEGGE, M. Evaluating enterprise
resource planning (ERP) systems using an
interpretive approach, Proceedings of the 2001 ACM

SIGCPR conference on Computer personnel research,

San Diego, California, USA, p.189-197, 2001.

[31] TANG, M. et al. A Survey of the Use and
Documentation of Architecture Design Rationale, 5th

Working IEEE/IFIP Conference on Software

Architecture (WICSA 2005), p. 89-98, 2005.

