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Abstract. In 2000, Cramer and Shoup presented a signature scheme which is secure against adaptive
chosen-message attacks under the strong RSA assumption in the standard model. Then, in 2003, under
the strong RSA assumption only, Fischlin produced a signature of roughly half the length. A verifiable
signature sharing scheme (VΣS) introduced by Franklin and Reiter in 1995 enables the recipient of a
signature to share it among n proxies so that a subset of them can reconstruct it later. In this paper,
we first give a modification of Fischlin’s scheme under the strong RSA assumption and then get a new
verifiable signature sharing scheme based on it in the standard model. At last, we prove that our new
VΣS can tolerate the malicious behavior of up to half of the proxies corrupted by a static adversary
except for a negligible probability. Our scheme is efficient and the length of signature in our scheme is
similar to Fischlin’s and roughly half of Cramer-Shoup signature scheme.

Keywords: Strong RSA, Hash function, Digital signature, Discrete-log, Verifiable Signature Sharing.

(Received May 14, 2009 / Accepted August 18, 2009)

1 Introduction

A signature scheme provides a way for each user to sign
messages so that the signatures can later be verified by
anyone else. More specifically, each user can create a
matched pair of private and public keys so that only he
can create a signature for a message using his private
key, but anyone can verify the signature for the message
using the signer’s public key. The verifier can convince
himself that the message contents have not been altered
since the message was signed. Also, the signer can not
later repudiate having signed the message, since no one
but the signer possesses his private key.

In [4], Cramer and Shoup have presented a signature
scheme. For a 1024-bits RSA modulus and a 160-bit
message, a signature has about 2200 bits. The scheme
is secure against adaptive chosen-message attacks un-
der the strong RSA assumption and does not rely on
random oracle model. By security we mean security

against an adaptive chosen message attack, as defined
by Goldwasser et al in [9]. Cramer and Shoup added
discrete-log assumption to the variation of their scheme
and then produced signatures of roughly half the length
(about 1350 bits). In [5], Fischlin revisited their scheme
and achieved the same signature size under the strong
RSA assumption only, even with a slightly improved
performance than in the original strong-RSA only case
or the discrete-log and strong-RSA case. But Fischlin’s
scheme includes X-OR operation, so that the scheme is
difficult to be applied to the Verifiable Signature Shar-
ing scheme (VΣS).

Verifiable Signature Sharing scheme (VΣS), which
was a protocol first introduced by Franklin and Reiter
in [6], enables the recipient of a digital signature, who
is not necessarily the original signer, to share such sig-
nature among n proxies so that a subset of them can
later reconstruct it. A VΣS is divided into a sharing



phase and a recover phase. At the end of the sharing
phase each proxy can verify that a valid signature for
the given document can be reconstructed. At the end
of the recover phase such signature is reconstructed no
matter what a malicious subset of proxies may do. As
we known, the VΣS for RSA, Rabin, ElGamal, Schnorr,
and DSS are all discussed. But the solutions for Cramer-
Shoup seem more elusive. The reason of it may be the
complex operations of Cramer-Shoup.

In this paper, we first show a modified version of
Fischlin’s scheme under the strong RSA assumption only.
Our solutions change a random l-bit string α and l-
bit hash value into a random (l − 1)-bit string α and
(l − 1)-bit hash value and rearrange a representation
(−α,−(α

⊕
H(m)), y) by a representation (−α,−(α+

H(m)), y). The length of signature in our scheme is
similar to Fischlin’s and roughly half of the original
Cramer-Shoup signature scheme. The efficiency of our
scheme corresponds to that of Fischlin. Then we base
on it to get a new secure and efficient VΣS.
Organization: We first briefly overview the digital sig-
nature and the verifiable signature sharing in section 2
and 3 respectively, and describe previously proposed
solutions to Cramer-Shoup signature scheme and our
scheme with a sketch proof of security. Then basing on
the scheme, we present a new VΣS and show the proof
of its security. In section 4, we give the conclusion.

2 Signature Scheme

In this section, we give some definitions and assump-
tions to our protocol, then describe our protocol and
sketch proof of its security.

2.1 The RSA and strong RSA Assumptions

Now we review the RSA and strong RSA assumptions
in somewhat more detail.

RSA Problem: Given a randomly generated RSA
modulus n, a exponent r, and a random z ∈ Z∗n,find
y ∈ Z∗n such that yr = z. The RSA assumption is this
problem is hard to solve.

Strong RSA Problem: Given an RSA modulus n
and a random z ∈ Z∗n, find r > 1 and y ∈ Z∗n, such that
yr = z.The strong RSA assumption is this problem ia
hard to solve.

Note that these assumptions are different, in that
for RSA assumption the exponent r is chosen indepen-
dently of z; whereas for the strong RSA assumption r
may be chose in a way that depends on z. Barić and
Pfitzmann in [1] introduced the strong RSA assumption.
It has subsequently been used in the analysis of sev-
eral cryptographic schemes in [7] and [8]. This is a po-

tentially stronger assumption than the RSA assumption,
but at the present, the only known method for breaking
either assumption is to solve the integer factorization
problem.

2.2 Definition of Digital Signature scheme

A user,s signature on a message m is a string which de-
pends on m, on pubic and secret key specific to the user
and possibly on randomly chosen data, in such a way
that anyone can check the validity of the signature by
using public data only. Obviously, we would like to pre-
vent the forgery of user’s signature without knowledge
of his secret key. In this section, we show the definition
of digital signature and of the possible attacks against
them.

Definition 1 A digital signature scheme within the pub-
lic key framework, is defined as a triple of algorithms
(G,Σ,V)such that

1. Key generation algorithm G is a probabilistic,
polynomial-time algorithm which on input a secu-
rity parameter 1k, produces pairs(P, S), where P
is called a public key and S a secret key. We use
the notation (P, S) ∈ G(1k) indicates that the pair
(P, S) is produced by the algorithm G.

2. Signing algorithm Σ is a probabilistic, polynomial-
time algorithm which is given a security parame-
ter 1k, a secret key S in range G(1k) and a mes-
sage m ∈ {0, 1}k and produces as output strings s
which we call the signature of m. We use notation
s ∈ Σ(1k, S, m) if the signing algorithm is proba-
bilistic and s = Σ(1k, S, m). Moreover, when the
context is clear, we will write s ∈ Σ(S,m) to mean
that s is the signature of message m.

3. Verification algorithm V is a polynomial-time al-
gorithm which is given a signature s, a message m
and a public key P and tests whether s is a valid
signature of m with respect to P . In general, the
verification algorithm need not be probabilistic.

2.3 Attacks Against Digital Signatures

A theoretical treatment of digital signatures security was
initiated by Goldwasser, Micali, and Yao in [8] and fol-
lowed in [2],[9],[10] and [11]. we now distinguish three
basic kinds of attacks, listed below in the order of in-
creasing severity.

1. Key-Only Attack: In this attack, the adversary knows
only the pubic key of the signer and therefore only
has the capability of checking the validity of sig-
natures of messages given to him.



2. Known-Signature Attacks: The adversary knows
the pubic key of the signer and has been message/
signature pairs chosen and produced by the legal
signer. In reality, this is the minimum an adversary
can do.

3. Chosen Message Attack: The adversary is allowed
to ask the signer to sign a number of messages of
the adversary’s choice. The choice of these mes-
sages may depend on previously obtained signa-
tures. This attacks contains three subclasses: the
generic chosen-message attacks, the oriented chosen-
message attack and the adaptively chosen-message
attack.

It is easy to know that the last one is the most seri-
ous attack. We now classify the expected results of an
attack:

• Disclosing the secret key of the signer: The adver-
sary can compute the signer’s secret key. It is the
most serious attack, which is called total break.

• Constructing an efficient algorithm: The adversary
succeeds in forging the signature of some message
of his choice. This is called universal forgery.

• Providing a new message signature pair: The ad-
versary is able to forge the signature of one mas-
sage not necessarily of his choice. This is called
existential forgery.

Clearly, different levels of security may be required
of different applications. Sometimes, it may suffice to
show that an adversary who is capable of a known sig-
nature attack can not succeed on selective forgery, while
for other applications it may be required that an ad-
versary capable of a chosen signature attack can not
succeed even on existential forgery with non-negligible
probability.

Here we call a signature scheme to be secure if an
existential forgery is computationally impossible even
under an adaptively chosen-message attack.

2.4 Our revised protocol

In this section, we recall the original Cramer-Shoup scheme
and the Fischlin’s scheme. Furthermore, we revised Fis-
chlin’s scheme and prove its security.

These schemes are parameterized by two security
parameters l and l′, where l + 1 < l′.They all make use
of a collision-resistant hash function H , whose output
can be interpreted as a positive integer less than 2l. A
reasonable choice for H might be SHA-1 in [12]. For a
positive integer N ,we let QRn denote the subgroup of

Z∗n of squares.

2.4.1 Cramer-Shoup Signature scheme

The original Cramer-Shoup scheme is presented as fol-
lows in Figure 1.

1. Key Generation: The signer generate a compos-
ite number N , where N = pq which is product
of two safe primes, such that p = 2p′ + 1, q =
2q′+1 for primes p, q, p′, q′. Pick two quadratic
residues h, x ∈ QRN and a random (l + 1)-bit
prime e′, so that pubic key is (N, h, x, e′) and
private key is (p, q).

2. Signing: To sign a message m, compute the l-
bit hash value H(m) with a collision-intractable
hash function H(·). Pick a random (l + 1)-bit
prime e 6= e′, y and a random y′ ∈ QRN , then
compute x′ such that (y′)e′ = x′hH(m) mod N
and ye = xhH(x′) mod N . The signature is
(e, y, y′).

3. Verification: To verify a putative signature
(e, y, y′) on a message m. First check that e
is an odd (l + 1)-bit number different from e′,
then compute x′ = (y′)eh−H(m) and verify that
x = yeh−H(x′).

Figure 1. Cramer-Shoup signature scheme

Remark: In the scheme, y can be calculated using
the factorization of N . It is not necessary in verification
to verify that e is prime due to [4].

2.4.2 Fischlin’s Signature scheme

Under the strong RSA assumption only, Fischlin re-
vised and simplified the scheme of Cramer-Shoup as
follows in Figure 2.

2.4.3 Revision of Fischlin’s Signature scheme

As pointed out in [5], Fischlin assimilate the trapdoor
commitment to the representation problem, where one
may split the message into α and α + H(m). Here
we use the same idea to turn the trapdoor commitment
into the representation problem. But the representa-
tion in our scheme is (−α,−(α + H(m)), y) instead
of (−α,−(α ⊕ H(m)), y) in Fischlin’s scheme. (To
see Figure 3)



1. Key Generation: The signer generate a compos-
ite number N , where N = pq which is product
of two safe primes such that p = 2p′ + 1, q =
2q′+1 for primes p, q, p′, q′. Pick three quadratic
residues h1, h2, x ∈ QRN , so that pubic key is
(N, h1, h2, x) and private key is (p, q).

2. Signing: To sign a message m, compute the l-
bit hash value H(m) with a collision-intractable
hash function H(·). Pick a random (l + 1)
bit prime e, a random l-bit string α and com-
pute a representation (−α,−(α ⊕H(m)), y) of
x with respect to h1, h2, e, N , where (y)e =
xhα

1 h
α⊕H(m)
2 mod N The signature is (e, α, y).

3. Verification: To verify a putative signature
(e, α, y) on a message m. First check that e is
an odd (l + 1)-bit integer, that α is l bits long
and that (y)e = xhα

1 h
α⊕H(m)
2 mod N

Figure 2. The Fischlin
′
s Signature scheme

1. Key Generation: The signer generate a compos-
ite number N , where N = pq, which is product
of two safe primes, such that p = 2p′ + 1, q =
2q′+1 for primes p, q, p′, q′. Pick three quadratic
residues h1, h2, x ∈ QRN , so that pubic key is
(N, h1, h2, x) and private key is (p, q).

2. Signing: To sign a message m, compute the
(l − 1)-bit hash value H(m) with a collision-
intractable hash function H(·). Pick a random
(l + 1)-bit prime e, a random (l − 1)-bit string
α and compute a representation (−α,−(α +
H(m)), y) of x with respect to h1, h2, e, N

where (y)e = xhα
1 h

α+H(m)
2 mod N The signa-

ture is (e, α, y).

3. Verification: To verify a putative signature
(e, α, y) on a message m. First check that e is
an odd (l + 1)-bit integer,that α is (l − 1)-bits
long and that (y)e = xhα

1 h
α+H(m)
2 mod N

Figure 3. Revision of Fischlin’s Signature Scheme

Compared to Cramer-Shoup signature scheme and
Fischlin’s Signature scheme, we can see that efficiency
of our scheme corresponds to that of Fischlin’s and more
optimal than Cramer-Shoup. And the differences be-
tween ours and Fischlin’s are that we use the operation

α + H(m) instead of α ⊕H(m). If we use some pre-
computation techniques, the efficiency of them is com-
parative.

2.5 Security of the Revision

Now we give the security of the Revised Scheme.

Theorem 1 The revised signature scheme is secure against
adaptive chosen message attack, under the strong RSA
assumption and the assumption that H is collision re-
sistant.

First, we review the notion of an adaptive chosen
message attack. The key generation algorithm for the
signature scheme is moved, generating a public key which
is given to the adversary and a private key which is
given to a "signing oracle". Next, the adversary queries
the signing oracle a number of times, which submits a
message of its choice to signing oracle each query. The
signing oracle signs the given message and gives the
signature to the adversary. In the course, the power of
choosing the message of the adversary is free. At the
end of its execution, it outputs a forged signature on a
message which was not submitted to the signing oracle.
Of course, the adversary is either allowed to fail or out-
puts a forged signature. Because the adaptive chosen
message attack is the most serious attack, if a signature
scheme can against this attack, we call it secure.

Before proving Theorem 1, for convenience,we give
a well-known and useful lemma.

Lemma 1 Given X, Y ∈ Z∗N and a, r ∈ Z, such that
Xa = Y r and gcd(a, r) = 1. Then one can efficiently
compute x, such that xr = X .

Proof. Due to gcd(a, r) = 1, so we use the extended
Euclidean algorithm to compute integers s, t, such that
sa + tr = 1. We set x = Y sXt, so xr = (Y sXt)r =
Y srXtr = XasXtr = Xas+tr = X . From the above
description, we find x does the job. ¤

Here we will give sketch proof of Theorem 1 since
the proof is similar to that in [5]. The specific proof
of it can be found in[13]. We assume the adversary
makes t signing queries and then produces a forgery.
Let mi denote the i-th query to the singer and (ei, αi, y)
the answer. Let (e, α, y) be forgery on message m and
we assume that all ei chosen by the signer during an
attack are distinct (yet, the adversary’s choice e may
equal some ej and H(m) 6= H(mi) for mi).

We only need discuss types of forgers [4] as follow-
ing :

• Type 1: For some 1 ≤ j ≤ t, e = ej and x′ 6= x′j .



• Type 2: The adversary outputs e = ej for some j.

• Type 3: The adversary outputs a new e, e 6= ej for
all ej .

Forgers of Type 1 disappear due to our modifica-
tion. So there are two types of forgers in our scheme to
be done.

Forger of Type 2 : We assume the value j in Type 2
is found, if not,we can guess it. Since H(mj) 6= H(m),
we have αj 6= α or αj +H(mj) 6= α+H(m). We can
guess in advance which case will happen with probabil-
ity 1/2. Here we assume αj 6= α. The other case is
treated in the analogous way.

Given N, z ∈ Z∗N and odd prime r, we can output
z1/r. We will invoke the Type 2 Forger on the following
pubic key and signature oracle. Set ej = r and for
i 6= j, where 1 ≤ i ≤ t, choose a random (l + 1)-bit
prime ei. Let h1 = v2

∏
i ei , h2 = z2

∏
i6=j ei , x =

h−β
1 w2

∏
i ei for random v, w ∈ Z∗N and a random

(l − 1)-bit string β. The public key is (N, h1, h2, x).
On behalf of the signer to sign the i-th message for

i 6= j. Choose a random (l − 1) bit string αi and
compute yi = (x1h

αi
1 h

αi+H(mi)
2 )1/ei . For the j-th

message query,set αj = −H(mj) and compute yj =
(xh

αj

1 h
(αj+H(mj))
2 )1/ej .

It is easy to see that the distribution of the data in the
simulation is identical to the real attack. And adversary
can get

h
−αj

1 h
−(αj+H(mj))
2 yr

j = x = h−α
1 h

−(α+H(m))
2 yr mod N.

Since h1 = v2
∏

i ei and h2 = z2
∏

i6=j ei , we can set
a = 2

∏
i 6=j ei((α + H(m)) − (αj + H(mj))) and

Y = v2
∏

i6=j ei(αj−α)yy−1
j and get za = Y r. Since

((α + H(m))− (αj + H(mj))) is at most l-bit and all
ek are relatively prime. we can easily compute an r-th
root of z by lemma 1.

Forger of Type 3: This case is almost identical to
the one discussed in [5] except for the addition instead
of XOR to get the conclusion. We omit it here.

3 Verifiable Signature Sharing Scheme

In this section, making use of the revised scheme, we
will get a new secure VΣS. VΣS enables the recipient
of a digital signature, who is not necessarily the original
signer, to share such signature among n proxies so that
a subset of them can later reconstruct it, which consists
of a sharing phase and a recover phase. At the end of
the sharing phase, each proxy can verify that a valid sig-
nature for the given document can be reconstructed. At

the end of the recover phase, such signature is recon-
structed no matter what a malicious subset of proxies
may do.

Now we try to present an overview of some basic
elements in our work, which is intended as a high-level
introduction to some of the issues underlying the proto-
col design and proofs.

3.1 The Model

Communication Model. We assume that our compu-
tation model is composed of three entities: the signer,
called Bob, the recipient, called Alice, and a set of n
proxies P1, ..., Pn that can be modeled by probabilis-
tic polynomial-time Turing machines. The VΣS will be
run between Alice and the proxies and not involve Bob.

Alice and the proxies are connected by a complex
network of private point-to-point channels and by a broad-
cast channel. These assumptions allow us to focus on a
high-level description of the protocols. It is worth not-
ing that these abstraction can be substituted with stan-
dard cryptographic techniques for privacy commitment
and authentication. Furthermore, we assume communi-
cation channel is synchronous.

The Adversary. We assume that there exist an ad-
versary A, who can corrupt Alice and up to t of the n
proxies in the network for any value of t < n/2, which
may be the best achievable threshold or resilience for
solution that provide both secrecy and robustness. By
corrupting a player, A can read his memory and cause
him to deviate arbitrarily from the protocol. We also
assume that adversaryA can be adequately modeled by
a probabilistic polynomial time Turing machine and is
static, i.e., she chooses the corrupted players at the be-
ginning of the protocol.
NOTATION. In the rest paper, let n denote the number
of proxies and L = n!.

3.2 Feldman’s VSS over ZN

Catalano and Gennaro [3] show Feldman’s VSS over a
composite (see Fig.4), which will be used it as a crucial
tool to our Verifiable Signature Sharing Scheme, and
prove that it is a verifiable secret sharing scheme sat-
isfying unanimity, verifiability and privacy with fault-
tolerance t for any n, t with n > 2t. Now we give
Feldman’s VSS over ZN as following, which we shall
infer to as Feldman-ZN -VSS.

Let N = pq be a composite modulus, which is prod-
uct of two safe primes such that p = 2p′+1, q = 2q′+1
for primes p, q, p′, q′. We denote with φ(N) = (p −
1)(q − 1) = 4p′q′, which is the order of the multi-
plicative group Z∗N and gcd(φ(N), N) = 1. Let G0



be a random element in Z∗N . It is easy to verify that
the order of G0 is either p′q′ or 2p′q′ (see [3]). Set
G = GL3

0 mod N , then G has order p′q′. We denote
with DLogGA mod N the unique integer a such that
A = Ga mod N .

Theorem 2 The Feldman-ZN -VSS (see Fig.4) is a ver-
ifiable secret sharing scheme satisfying unanimity, ver-
ifiability and privacy.

Proof. See [3]. ¤

3.3 Definition of Verifiable Signature Sharing

VΣS[6] consists of two protocols (ΣShare,ΣRecover)
for Alice and n proxies. The inputs of ΣShare for all
the players consists of a message and the public verifi-
cation key V K of the signer. The secret input for Alice
is a signature S of m under the signer’s key. The out-
put of ΣShare for each proxy Pi is a value Si, which
can assume the special value Si = ω denoting that the
proxy has rejected the sharing. The protocol ΣRecover
is then run on the output of ΣShare by the proxies.

Definition 2 We say that VΣS is a Verifiable Signature
Sharing protocol with fault-tolerance t if, in the pres-
ence of an adversary A that can corrupt Alice and at
most t proxies, it satisfies the following properties:

• completeness: If Alice is not corrupted then the
output of ΣRecover is a signature S on m under
the signer’s key V K.

• soundness: If Si 6= ω for good player then out-
put of ΣRecover is a signature S on m under the
signer’s key V K. If a good proxy Pi output Si = ω
at the end of ΣShare then each good player Pj out-
put Sj = ω.

• security: No information on S can be learned by
the adversary except for the commitment of it. More
formally, we state this condition in terms of simu-
lation: for every adversary A, there exists a sim-
ulator SIM such that, on input m and V K and
with black-box access toA, it produces output strings
with a distribution which is computationally indis-
tinguishable from the set of messages sent and re-
ceived by the bad players during the ΣShare pro-
tocol.

We accept a negligible probability that these condi-
tions are violated.

Informally, completeness means that if Alice hon-
estly shares the signature S of m then no matter what
malicious proxies do, at the end the signature will be

recovered. Soundness means that if Alice is malicious,
then she will be caught trying to cheat, or else she will
share a valid signature. Security means that running the
ΣShare phase, the adversary get no information that he
could compute the signature with the message and the
public key.

Sharing Phase:
Input for all players: A composite number N , an
element G = GL3

0 mod N , where G0 ∈R Z∗N .

Input for the dealer: A secret σ ∈
[−N2, · · · , N2].

The dealer carries out the following steps:

1. Choose a1, · · · , at ∈ [−L2N3, · · · , L2N3]
and define f(z) = Lσ + a1z + · · ·+ atz

t.

2. Compute σi = f(i) ∈ Z for 1 ≤ i ≤ n
and αi = Gai mod N for 1 ≤ i ≤ t and α0 =
Gσ mod N .

3. Send the integer σi = f(i) to the player Pi

and broadcast αt, · · · , α0.

Verification steps:

4. Player Pi verifies that

Gσi = αL
0

t∏

j=1

αij

j mod N (1)

If the equation is not satisfied, he requests that
the dealer make f(i) public. If more than t play-
ers make this request the dealer is disqualified.

5. The dealer broadcasts all shares requested in
the previous step, if he fails to do so he is dis-
qualified.

6. Player Pi carries out the verification of step
1 for all public shares. If the verification fails the
dealer is disqualified.

Reconstruction Phase:
Input for all players: The element G, composite
N , values αt, · · · , α0 mod N .

Player Pi broadcasts σi. Accept those for
which Equation(1) is satisfied. Take t + 1 ac-
cepted shares and interpolate over the rational
the unique polynomial f(z) of degree t passing
through them. Compute the secret σ as f(0)/L.

Figure 4. Feldman-ZN -VSS over a composite
modulus



3.4 New Verifiable Signature Sharing Scheme

Now we will give a new verifiable signature sharing
scheme (i.e., VΣS protocol) making use of our revised
signature scheme and then give its proof of security.

Theorem 3 The VΣS in Figure 5 is a secure VΣS pro-
tocol for our revisited scheme with fault-tolerance t for
any n, t with n > 2t except for a negligible probability.

For completeness of the proof of Theorem 3, we
prove the following lemmas in detail here again, al-
though both had been proven in [3].

Lemma 2 Given a t-adversary who can corrupt at most
t players, the view of the adversary of the secret shares
generated by the protocol Feldman-ZN -VSS of a secret
σ using a polynomial f(z) such that f(0) = σ and of
the sharing of a random secret r by a polynomial r(z)
with coefficients taken from the appropriate range are
statistically indistinguishable.

Proof. With loss of generality, we can assume that the
adversary corrupts the first t player P1, ..., Pt. We prove
that with high probability there exists a sharing of r
with a polynomial r(z) which satisfies that for each
player Pi (1 ≤ i ≤ t) the share f(i) received in the
sharing of σ is equal to the share received in the shar-
ing of r. Furthermore, the coefficients of r(z) are taken
from the appropriate range.

Define a t-degree polynomial h(z) such that h(0) =
(σ − r)L and h(1) = h(2) = ... = h(t) = 0. That is,

h(z) =
t∑

i=0

h(i)
∏

j 6=ij=0,··· ,t
z−j
i−j . The only non-zero

value of h(z) is at evaluation point 0. Thus we have

that h(z) = L(σ − r)
t∏

j=1

z−j
−j and the coefficient zi is

L(σ − r)
∑

B⊆{1,··· ,t} |B|=i

∏
j∈B(−j)∏

j=1,··· ,t(−j) . Because L =

n!, this value is an integer. Furthermore, the coefficient
can be bounded in absolute value by

∑
B⊆{1,··· ,t}|B|=i

L(σ − r) ≤ (σ − r)L
(

t
i

)

≤ (σ−r)Lt!
i!(t−i)! ≤ (σ − r)Lt! ≤ L2N2 .

The desired polynomial r(z) is f(z)−h(z), its coef-
ficients are integers in the range[−L2N3 −L2N2, · · · ,
L2N3 + L2N2] , thus the probability that the coeffi-
cients of r(z) will not be in the right range is at most
t 2L2N2

2(L2N3+L2N2) ≤ t
N , which is negligible. ¤

Lemma 3 Assume G = GL3

0 , where L = n! and G0 ∈R

Z∗N . Given values σ1, · · · , σt and an additional value

Gσ modN , it is possible to compute values Gσ1 , · · · , Gσt

modN such that the polynomial f(z) = Lσ + a1z +
· · ·+ atz

t satisfies that f(z) = σi for 1 ≤ i ≤ t

Proof. Define the polynomial f(z) =
t∑

i=0

σi

∏
j 6=i

z−j
i−j ,

where σ0 = Lσ. Clearly, f(i) = σi for 1 ≤ i ≤ t, thus
it remains to be shown that we can compute G raised
to the coefficients of f(z). Rearranging terms we have
that the coefficient of zk is

ak =
t∑

i=0

σi∏
j 6=i(i− j)

λk,i (0 ≤ k ≤ t).

Thus

Gak = G

t∑
i=0

σi∏
j 6=i(i−j) λk,i

=
t∏

i=0

G
σi∏

j 6=i(i−j) λk,i

= G
σ0λk,0
(−1)tt!

t∏

i=1

G

λk,iσi∏
j 6=i

(i−j)

= (α0)
Lλk,0
(−1)tt!

t∏

i=1

(Gλk,iσi

0 )
L3∏

j 6=i
(i−j)

.

Notice the all the exponents are integers now. ¤

ΣShare:

1. Alice broadcasts e, y to the proxies. She runs
Feldman-ZN -VSS on the secret σ = α and with
basis G = (h1h2)L3

. Let α0 be the commitment
to the secret generated in the Feldman-ZN -VSS.
If Alice is honest, α0 = (h1h2)L3σ

2. The proxies run the verification phase of Feld-
man’s VSS. They reject if either Alice is dis-
qualified during the verification of Feldman-ZN -
VSS or α0 6= ( ye

xh
H(m)
2

)L3
mod N .

ΣRecover:

The proxies run the reconstruction phase of
Feldman-ZN -VSS to recover σ. They compute
σ = α mod p′q′ and output (e, y, α).

Figure 5 . New Verifiable Signature Sharing Scheme

Proof of theorem 3: Completeness is clear due to
Feldman-ZN -VSS.

Soundness is also quite clear. If the proxies accept
then the shared value σ satisfies our revisited equation
ye = xhα

1 h
α+H(m)
2 mod N . So the value reconstructed

in ΣRecover must be a correct signature.



Security relies on simulation. Assume w.l.o.g that
the adversary corrupts the first t proxies. The simulator
S on input (h1, h2, x, N, m) works as follows. It sim-
ulates Feldman-ZN -VSS with G = (h1h2)L3

as basis
and r∗ = (ye/xh

H(m)
2 )L3

as public commitment to the

secret α. Define f(z) =
t∑

i=0

aiz
t the t-degree polyno-

mial ai ∈ [−L2N3, · · · , L2N3] for 1 ≤ i ≤ t such that
f(0) = DLogGr∗ and f(i) = σi, so we can compute
the values αi = Gai modN via "interpolation in the
exponent"(in particular α0 = r∗).

By Lemma 4, we can easily find the simulated view
of the adversary is defined as the t shares σ1, · · · , σt

and the pubic values α1, · · · , αt. By Lemma 4,we know
that the simulated view of adversary and the real one
are statistically indistinguishable. This completes the
proof. ¤

4 Conclusion

We presented a revision of Fischlin’s signature scheme
which is based on Cramer-Shoup signature scheme. The
efficient of our signature protocol corresponds to that of
Fischlin, where we make use of addition instead of the
XOR. Furthermore, we apply our protocol to the wider
aspects and especially get an efficient, secure VΣS against
static t-adversary.
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