
Software Metrics Evaluation Based on Entropy

R. SELVARANI 1

T.R.GOPALAKRISHNAN NAIR2

MUTHU RAMACHANDRAN 3

KAMAKSHI PRASAD4

1,2RIIC, Dayananda Sagar Institutions, Bangalore, India
selvss@yahoo.com, trgnair@yahoo.com

3Innovation North: The Faculty of Information and Technology
Leeds Metropolitan University, Leeds LS6 3QS, UKm.ramachandran@leedsmet.ac.uk

4J.N.T.U, Hyderabad,kamakshiprasad@yahoo.com

Abstract. Software engineering activities in the Industry has come a long way with various improve-
ments brought in various stages of the software developmentlife cycle. The complexity of modern
software, the commercial constraints and the expectation for high quality products demand the accurate
fault prediction based on OO design metrics in the class level in the early stages of software development.
The object oriented class metrics are used as quality predictors in the entire OO software development
life cycle even when a highly iterative, incremental model or agile software process is employed. Recent
research has shown some of the OO design metrics are useful for predicting fault-proneness of classes. In
this paper the empirical validation of a set of metrics proposed by Chidamber and Kemerer is performed
to assess their ability in predicting the software quality in terms of fault proneness and degradation. We
have also proposed the design complexity of object-oriented software with Weighted Methods per Class
metric (WMC-CK metric) expressed in terms of Shannon entropy, and error proneness.

Keywords: Object Oriented Paradigm, object oriented metrics, fault-proneness, prediction, defect,
WMC, NOC, DIT, LCOM, CBO, RFC, design, Entropy.

(Received September 09, 2008 / Accepted February 11, 2009)

1 Introduction

Object-oriented design and development is a popular
concept in today’s software development environment,
object oriented (OO) development has proved its value
for systems that must be maintained and modified. OO
software development requires a different approach from
more traditional functional decomposition and data flow
development methods, including the metrics used to eval-
uate OO software [10]. The concepts of software met-
rics [6][7][8] are well established, and many metrics re-
lating to product design quality have been developed
and used. One approach to controlling software main-
tenance costs is the utilization of software metrics dur-
ing the development phase, to help identify potential

problem areas in the design. Software design complex-
ity is a highly important factor affecting the cost of soft-
ware development and maintenance. If we can deter-
mine the impact of complexity factors on maintenance
effort, we can develop guidelines which will help re-
duce the costs of maintenance by recognizing trouble-
some situations early in the development phase. In re-
sponse to these situations the managers can take appro-
priate decision to reduce the design complexity of the
sytem [2][9]. These guidelines will also help to develop
tools that support the maintenance of complex modules,
to create suitable documentation that helps the devel-
oper to manage the complexity in a better way and to
allocate the resources.

This paper presents the empirical evaluation of CK

selvss@yahoo.com
trgnair@yahoo.com
m.ramachandran@leedsmet.ac.uk
kamakshiprasad@yahoo.com

metrics [1][12] for object oriented design based on mea-
surement theory and ontology. These measures applied
in a software system can be used to estimate the cost,
to schedule the future projects, to evaluate the produc-
tivity impacts of new tools and techniques, to establish
productivity trends over time, to improve the quality of
the software, to forecast future staffing needs, and to
reduce future maintenance requirements.

A method based on information theory has also been
proposed for examining software design complexity us-
ing one of the widely accepted OO complexity design
metrics in the context of empirical complexity thresh-
old criteria to assess system-wide software degradation.
We have considered five C++ projects done by differ-
ent group of students. The analysis showed that com-
ponents with high design complexities were associated
with more maintenance activities than those components
with lower class complexities.

2 Metric Evaluation Criteria

Metrics are defined by Fenton and Pfleeger in [5] as out-
put of measurements, where measurement is defined as
the process by which values are assigned to attribute of
entities in the real world in such a way as to describe
them according to clearly defined rules. Software met-
rics are the measures of attributes of a software system
[3][17]. Traditional functional decomposition metrics
and data analysis design metrics measure the design
structure independently. OO metrics treats function and
data as a combined, integrated object [13][1]. To eval-
uate a metric’s usefulness as a quantitative measure of
software quality, it must be based on the measurement
of a software quality attribute. The metrics evaluate the
OO concepts such as methods, classes, cohesion, cou-
pling, and inheritance. The metrics focus on internal
object structure, external measures of the interactions
among entities, measures of the efficiency of an algo-
rithm and the use of machine resources, and the psy-
chological measures that affect a programmer’s ability
to create, comprehend, modify, and maintain software.

3 Empirical Literature on CK Metrics[14]

There are a number of empirical studies on CK met-
rics [1][2] [11][16] [18][24][30]. The existing empirical
studies have been compared and the analysis of their re-
sults has been reported by Subramanyam and Krishana
[30]. To improve the effectiveness of developer inter-
actions in the study, we have adopted a ground theory
(can be defined as a systematic qualitative approach to
research methodology where research hypothesis and
theories can be formulated based on the data collected,

[15][31]) dialogue and structured questionnaire to study
the effectiveness of the empirical evaluation. Current
empirical studies, most notably by Booch [2] and Sub-
ramanyam and Krishnan [30] who outlines four major
steps involved in the object oriented design process.

1. Identification of Classes (and objects): The key ab-
stractions in the problem space are identified and
labeled as potential classes and objects.

2. Identification of semantics of Classes (and objects):
The meaning of classes and objects identified in
the previous step is established, this includes the
definition of the life cycles of each object from cre-
ation to destruction.

3. Identify the relationship between Classes (and ob-
jects): Classes and objects interactions, such as
patterns of inheritance among and patterns of visi-
bility among objects and classes are identified.

4. Implementation of Classes (and objects): Detailed
internal views are constructed, including definitions
of methods and their various behaviours.In the ex-
isting several design methodologies, the design of
class is consistently declared to be the central to
the OO paradigm. Since the class deals with the
functional requirements of the system, it must oc-
cur before system design (mapping object to pro-
cessors and processes) and program design (recon-
ciling of functionality using the target languages,
tools etc.). Given the importance of class design
the metrics outlined in this paper specifically are
designed to measure the complexity of the design
of classes. Weyuker has developed a formal list of
properties for software metrics and has evaluated a
number of existing metrics using these properties
[3]. Of nine properties proposed by Weyuker, the
following six properties are widely accepted by the
researchers.

Property 1: Non-Coarseness Given a classP and a
metricµ another classQ can always be found such that:
µ(P)_µ(Q). This implies that not every class can have
the same value for a metric; otherwise it has lost its
value as a measurement.

Property 2: Non-uniqueness (notion of equivalence)
There can exist distinct classesP andQ, µ(P) = µ(Q).
This implies that two classes can have the same metric
value, i, e., the two classes are equally complex.

Property 3: Design details are important
Given two class designs,P andQ, which provide the
same functionality, does not imply thatµ(P) = µ(Q).
The specifics of the class must influence the metric value.
The intuition behind the property 3 is that even though
two class designs perform the same function, the de-
tails of the design matter in determining the metric for
the class.

Property 4: Monotonicity
For all classesP andQ, the following must hold:
µ(P)2µ(P + Q) andµ(Q)2µ(P + Q) WhereP + Q
implies combination ofP andQ. This implies that the
metrics for the combination of two classes can never be
less than the metric for either of the component classes.

Property 5: Non equivalence of interaction
∃P , ∃Q, ∃R, such that:µ(P) = µ(Q) does not imply
that andµ(Q + R). This suggests that the interaction
betweenQ andR can be different than interaction be-
tweenQ and resulting in different complexity values for
P + Q andQ + R.

Property 6: Interaction increases complexity
∃P , ∃Q such that:µ(P)µ(Q) < µ(P + Q). The prin-
ciple behind this property is that when two classes are
combined, the interaction between classes can increase
the complexity metric value.

3.1 OO-Specific Metrics:

The OO design metrics are primarily applied to the con-
cepts of classes, coupling, and inheritance. Predicting
design defects can save cost enormously. CK suite of
metrics has been successfully applied in identifying de-
sign defects early during the design process. The sum-
mary of CK design metrics are described as follow:

Weighted Methods per Class (WMC)
It is a class level metric. A class is a template from
which objects can be created. This set of objects shares
a common structure and a common behaviour mani-
fested by the set of methods. The WMC is a count
of the methods implemented within a class or the sum
of the complexities of the methods (method complex-
ity is measured by cyclomatic complexity). The num-
ber of methods and the complexity of the methods in-
volved is a predictor of how much time and effort is
required to develop and maintain the class. The larger
the number of methods in a class, the greater the po-
tential impact on children, since children inherit all of
the methods defined in a class. Classes with large num-
bers of methods are likely to be more application spe-

cific, limiting the possibility of reuse. This metric mea-
sures the understandability, reusability and maintain-
ability [1][4][5][6][8]. WMC is a good indicator for
implementation and test effort.

Response for a Class (RFC):
RFC looks at methods and messages within a class. A
message is a request that an object makes of another
object to perform an operation. The operation executed
as a result of receiving a message is called a method
The RFC is the set of all methods (internal, external)
that can be invoked in response to a message sent to an
object of the class or by some method in the class. This
metric uses a number of methods to review a combina-
tion of a class’s complexity and the amount of commu-
nication with other classes. If a large number of meth-
ods can be invoked in response to a message, testing and
debugging the class requires a greater understanding on
the part of the tester. A worst-case value for possible
responses assists in the appropriate allocation of testing
time. This metric evaluates the system design as well as
the usability and testability.

As RFC is directly related to complexity, the abil-
ity to test, debug and maintain a class increase with an
increase in RFC. In the calculation of RFC, inherited
methods count, but overridden methods do not. This
makes sense, as only one method of a particular signa-
ture is available to an object of the class. Also, only one
level of depth is counted for remote method invocations.

Lack of Cohesion of Methods (LCOM)
Cohesion is the extension of information hiding[5]. De-
gree to which methods within a class are related to one
another and work together to provide well-bounded be-
haviour. Effective OO designs maximize cohesion be-
cause they promote encapsulation. LCOM uses data in-
put variables or attributes to measure the degree of sim-
ilarity between methods. Any measure of method sep-
arateness helps identify flaws in the design of classes.
There are two ways to measure cohesion[4]. 1.The per-
centage of methods that use each data field in a class
can be calculated and the average of the percentages
can be subtracted from 100 which indicate the level of
cohesion. If the percentage is low, the cohesion will
be more and if it is high then there will be low cohe-
sion. 2. The count of disjoint sets at from the intersec-
tion of the sets of attributes used by the methods also
will indicate the level of cohesion. For a good cohe-
sion and less complexity, the class subdivision must be
well defined. Classes with low cohesion could prob-
ably be subdivided into two or more subclasses with
increased cohesion. Any measure of disparateness of

methods helps identify flaws in the design of classes. It
is a direct indicator of design complexity and reusabil-
ity.

Coupling Between Object Classes (CBO)
Coupling is a measure of the strength of association es-
tablished by a connection from one entity to another [4].
Classes (objects) are said to be coupled when a mes-
sage is passed between objects, when methods declared
in one class use methods or attributes from the other
classes. Tight coupling between super classes and their
subclasses is introduced by inheritance. For a good OO
design balance between coupling and inheritance is re-
quired. CBO is a count of the number of other classes to
which a class is coupled [4]. It is measured by counting
the number of distinct non inheritance-related class hi-
erarchies on which a class depends. Excessive coupling
is detrimental to modular design and prevents reuse. In
order to improve modularity and promote encapsula-
tion, inter-object class couples should be kept to a min-
imum. The larger the number of couples, the higher the
sensitivity to changes in other parts of the design; main-
tenance is therefore more difficult. The higher the inter-
object class coupling, the complexity will be increased
and more rigorous testing is needed. Complexity can be
reduced by designing systems with the weakest possible
coupling between modules. This improves modularity
and promotes encapsulation [4]. CBO evaluates effi-
ciency and reusability [1][2][3][4][5][6][8].

Depth of Inheritance Tree (DIT)
Inheritance is a type of relationship among classes that
enables programmers to reuse previously defined ob-
jects, including variables and operators [5]. Deep in-
heritance hierarchies can lead to code fragility with in-
creased complexity and behavioral unpredictability. The
depth of inheritance hierarchy is the number of classes
(nodes) connected to the main class (root of the tree).
The deeper a class within the hierarchy, the greater the
number of methods it is likely to inherit, making it more
complex to predict its behavior. Deeper trees consti-
tute greater design complexity, since more methods and
classes are involved, but the greater the potential for
reuse of inherited methods. A support metric for DIT
is the number of methods inherited. This metric pri-
marily evaluates efficiency and reuse but also relates to
understandability and testability [1][2][3][4][5][6][8].

Number of Children (NOC)
For a given class, the number of classes that inherit from
it is referred to by the metric Number of Children (num-
ber of child classes) [5]. The greater the number of chil-

dren, the greater the reuse and likelihood of improper
parent abstraction, and it may be an indication of sub
classing misuse. If a class has a large number of chil-
dren, it may require more testing of the methods of that
class, thus increase the testing time. This metric evalu-
ates efficiency, reusability, and testability of the design
of the system. It is an indicator of the potential influ-
ence a class can have on the design and on the system
[1][4].

4 Software Metrics and Entropy Concept

The distinction between reversible and irreversible pro-
cess was first introduced in thermodynamics through
the concept of ’entropy’ [22][27]. In the modern con-
text, the formulation of entropy is fundamental for un-
derstanding thermodynamic aspects of self organization
evolution of order and life that we see in Nature. When
a system is isolated, energy increase will be zero. In this
case the entropy of the system will continue to increase
due to irreversible processes and reach the maximum
possible value. This is the state of the thermodynamic
equilibrium. In the state of equilibrium, all irreversible
process cease. When a system begins to exchange en-
tropy with the exterior then, in general it is driven away
from the equilibrium, and the entropy producing the ir-
reversible process begins to operate. This ’state of dis-
order’ is characterized by the amount of disordered en-
ergy and its temperature level. Here we have to high-
light the following facts as a summary of entropy.

• The entropy of a system is a measure of the amount
of molecular disorder within the system.

• A system can only generate but not destroy the en-
tropy.

• The entropy of the system can be increased or de-
creased by energy transports across the boundary.

The energy sources in the universe were rated on en-
tropy/usefulness scale from zero entropy. The low en-
tropy energy is useful. The use of entropy as a measure
of information content of software systems that as led to
its use in measuring the code complexity of functionally
developed software products. The metric is computed
using information available in class definitions. The
correlation study used the final versions of class defini-
tion. The high degree of positive relationship between
entropy based class definition measure and the design
complexity measure of class implementation complex-
ity verify that the new entropy measure computed from
class definitions can be used as a predictive measure for
class implementation complexities provided the class

definitions do not change significantly during the im-
plementation. Current studies on entropy [29][28] have
been applied mainly to measure the code complexity
measures. Our aim in this research is to apply the con-
cept entropy measures for analysis and predict design
defects based on grounded empirical analysis which is
a structured and interactive approach to user dialogue
for collective data based on sociological study. This in-
volves observing how software engineers develop their
software and their work environment in which the ac-
tual software has been developed. We believe this will
have a direct impact on the quality of the software that
has been produced. The class complexity related to
number of methods in a class is one of the fundamental
measures of the ’goodness’ of a software design. The
most accepted widely studied WMC metric from CK
metric suites plays as an important measure for system
understandability, testability, and maintainability. This
design metrics is a good predictor of time and effort re-
quirement to develop and maintain the class, but when
it is associated with entropy metric, it gives an insight
about the design degradation or disorder of the system
and recommends for redesigning of the system in the
early stage itself which in turn reduce the cost of the
system.

5 Entropy (Information Theory) Based Object
Oriented Software System Complexity Mea-
surement

In object-oriented programming, the class complexity
measures information flows in a class based on the in-
formation passing relationship among member data and
member functions. The inter-object complexity for a
program measures information flows between objects.
Total program complexity is measured by class com-
plexity and inter-object complexity. The term ’software
entropy’ has been defined to mean that software de-
clines in quality, maintainability and understandability
through its lifetime. Here Shannon’s entropy equation
is used to establish a measure of OO software degrada-
tion that is easy to use and interpret. WMC (weighted
method per class), a well-established CK metrics is used
to asses this criteria. WMC thresholds are the basis for
our metric measurement. We have used the threshold
criteria for WMC published by Rosenberg, et al. Soft-
ware Assurance Technology Center (SATC), NASA God-
dard Space Flight Center, in 1998 [19]. These thresh-
olds were based on their experiences at NASA with
OO projects. It is shown in Table 1, and will be used
without modification in this application. Table 1 gives
the threshold criteria and interpretation of risk based on
NASA-SATC guidelines[19]. The use of these thresh-

olds in industry allows software managers to make judg-
ments about the class complexity of their software in
terms of effort required for testing the system and the
level of confidence required in software deployment.

Table 1: CK-WMC Threshold- NASA-SATC Data

System CK-W MC Threshold (x) Risk Interpretation
Category

1 1≤ x ≤ 20 Good values of
class complexity.

2 20≤ x ≤ 100 Moderate high
values of complexity.

3 x > 100 High class complexity,
cause for investigation

5.1 Properties of Shannon’s Entropy:

The Shannon entropy,Hn, is defined as:

Hn(P) = −

n∑

k=1

Pk = 1(n ≥ 1) (1)

Pk ≥ 0(k = 1,, n) and

n∑

k=1

Pk = 1(n ≥ 1) (2)

Where,
H System=System Complexity Entropy.
k=Integer value1, 2, ...j representing each of the cate-
gories considered.
Pk=Total number of classes that are in categoryP .
N=Total number of system cases (equal to the sum of
all thePks).

Because a logarithm to the base 2 is used, the result-
ing unit of information is called the bit (a contraction of
binary unit). The Shannon entropy satisfies many desir-
able properties. The following properties of the selected
mathematical approach are more suitable for this appli-
cation [21].
1. Non negativity: Information about an experiment
makes no one more ignorant than he was before [28][29].

Hn(P) ≥ 0 (3)

2. Symmetry: The amount of information is invariant
under a change in the order of events.

Hn(P) = Hn(pk(1), pk(2),pk(n)) (4)

Wherek is an arbitrary permutation on{1, 2....n}

3. Normality: A "simple alternative", which in this
case is an experiment with two outcomes of equal prob-
ability 0.5, promises one unit of information.

H2(0.5, 0.5) = 1 (5)

4. Expansibility: Additional outcomes with zero prob-
ability do not change the uncertainty of the outcome of
an experiment.

Hn(p) = Hn+1(P1, P2,Pn, 0) (6)

5. Decisivity: There is no uncertainty in an experiment
with two outcomes, one of them is the Non-negativity
of probability 1, the other is of probability 0.

H2(1, 0) = 0 (7)

6. Additivity: The information, expected from two in-
dependent experiments, is the sum of the information
expected from the individual experiments.

Hnm(P ∗ Q) = Hn(P) + Hm(Q) (8)

7. Subadditivity: The information, expected from two
experiments, is not greater than the sum of the informa-
tion expected from the individual experiments.

Hnm(P ∗ Q) ≤ Hn(P) + Hm(Q) (9)

8. Maximality: The entropy is greatest when all ad-
missible outcomes have equal probabilities.

Hn(P) ≤ Hn(1/n, 1/n, 1/n,1/n) (10)

5.2 Measures of information and their characteri-
zations

The concept of entropy, as a measure of information, is
fundamental in information theory. The entropy of an
experiment has dual interpretations. It can be consid-
ered both as a measure of the uncertainty that prevailed
before the experiment was accomplished and as a mea-
sure of the information expected from an experiment
[20]. An experiment might be an information source
emitting a sequence of symbols (i.e., a message)M =
{s1, s2, s3, ..., sn}, where successive symbols are se-
lected according to some fixed probability law, with
which the symbols occurP = (p1, p2, ..., pn) [22][23].

In this paper the uncertainty measure that prevailed
before the experiment is performed. The maximum en-
tropy is achieved whenSi = Si+1 = Si+2 = Si+3 , or
when all the classes are evenly distributed. Shannon’s
equation "dampens" the effect of a few very highly com-
plex methods to skew the overall complexity of the sys-
tem. This is because the equation limits the contribution
of the entropy score from each category to the overall
(system) entropy score.

5.3 The Shannon’s entropy relationship

Shannon’s Entropy equation[26] provides a way to es-
timate the average minimum number of symbols based
on the frequency of the symbols. By treating the soft-
ware system as an information source, the function calls
or method invocation in object oriented systems resem-
ble the emission of symbols from an information source.
Thus the probabilities required for computing the en-
tropy are obtained using an empirical distribution or
function calls or method invocations.

6 Experimental Analysis

If we treat a software system as an information source
then the symbols emitted from the system can be the op-
erators within a program, where operators are a special
symbol, a reserved word, or a function call [23]. An-
other technique can be based on data flow relationships
[24]. The technique adopted here considers the function
calls in procedural programming as the symbols emitted
from a software system (or module). In object oriented
programming, we replace function calls with method
invocations. The rationale behind this choice is that per-
forming calls to different functions resembles emitting
a message of many symbols particular to the considered
module. The complexity of the design in object oriented
system is the weighted method per class.

The probabilities are obtained using an empirical
distribution of the function calls. The WMC metric
measurement by NASA SATC is based on the number
of distinct functions or modules in a class and the com-
plexity is the message transfer between the modules in
the class.

The WMC complexity measurement is done by con-
sidering the different summations, in the definitions of
entropies, over the number of distinct functions or mod-
ules in a class. In this design metric, there is no possibil-
ity of 0 modules in any of the classes, hence the WMC
metric recommended by NASA-SATC starts from 1.
The information will be zero if there are no functional
calls in a module. We have considered the following
five different Java projects by different teams of stu-

dents as examples to demonstrate the application of our
technique to understand the disorderliness of the project.

This model is used to predict the disorderliness as-
sociated with the system in the class level. Table 2
depicts the program metrics obtained by analyzing the
projects with automated tool Understand Java. The to-
tal number of classes in each project as shown in Figure
1. is divided in to samples according to the algorithm
shown in table 1.

The measures calculated are Shannon generalized
entropies as given by equation (1) and the results are
consistent. As stated by the designer in the program’s
documentation: "The only algorithms at all difficult are
those for parsing, which are rather ad hoc but apparently
correct" [25]. This fact is identified by this information
measure, which have the highest value for the module
of higher design complexity. The next highest value
was appropriately given to the module of comparatively
lesser design complexity. If we check the rest of the
classes, it is clear that the information content measures
give meaningful and intuitive results.

Table 2: Project Metrices
Project P1 P2 P3 P4 P5
Metric

Classes: 37 46 120 139 148
Files: 35 34 56 65 90

Library
Units: 209 234 267 168 289
Lines
Blank 788 675 1253 1569 2378
Lines
Code: 3258 8567 8450 11236 12564
Lines

Comment: 2759 7498 7456 9606 10997
Lines

Inactive: 0 0 0 0 0
Executable
Statements: 1604 5078 4589 6752 7629
Declarative
Statements: 791 1126 569 2319 2746

Ratio
Comment/ 0.85 0.87 0.88 0.89 0.88

Code:

The goal of object oriented design, is "to design the
classes identified during the analysis phase and the user
interface". In this design model, the system architecture
may have a large number of simple classes, rather than a
small number of complex classes for better reusability
and maintainability, which in turn displays lesser de-
sign complexity. Figure 1 depicts the class distribution
among the sample projects of our study. It is observed

Table 3: Java projects entropy degradation- WMC

Project Total S1 S2 S3 WMC N*(WMC
Clas- Entropy Entropy)
ses α ≤1

P1 38 34 3 1 0.5 20.7
46781 77678

P2 46 38 6 2 0.8 37.1
07802 58811

P3 120 105 12 3 0.6 76.0
33912 694421

P4 139 126 7 6 0.5 75.2
41312 433682

P5 148 132 11 4 0.5 87.4
91036 733282

P1 P2 P3 P4 P5
0

20

40

60

80

100

120

140

160

Project

C
la

ss

38
46

139

120

148

Figure 1: Project-Class Distribution

that the project with larger number of classes is compar-
atively less prone to degradation, because the entropy
α=0.59. The entropy of a software system is a class of
metrics to assess the degree of disorderliness in a soft-
ware system structure. Entropy covers all the compo-
nents of a software system at different abstraction lev-
els, as well as the traceability and relationships among
them. It is a direct measure for design complexity and
quality of the system.

Table 3. depicts the result of application of Shan-
non entropy equation to verify the utility of complex-
ity metrics for predicting the complexity of initial OO
classes. The NASA SATC WMC threshold criteria are
used to form the sample set of classes in each project.
In this analysis it is observed as the degradation level of
project 2 is higher than other projects. Figure 2 depicts
the complexity levels of sampled project P1 to P5.

0 P1 P2 P3 P4 P5
0.4

0.5

0.6

0.7

0.8

0.9

Project

E
nt

ro
py

−W
M

C

Figure 2: Project Complexity

7 Conclusion And Future Work

The benefits of object-oriented programming are the re-
sulting simplicity and understandability of the problem
through the use of abstraction. However, even OO soft-
ware is not immune to the effects of brittleness, or degra-
dation. We believe that this entropy degradation met-
ric with OO design metrics thresholds may be useful
in evaluating OO software, specifically large Java and
C++ systems. This metric may be of most value in
programming environments where legacy code is being
reengineered into object-oriented programs. We have
developed a model based on Shanon’s entropy equation
(eqn-1) with their mathematical properties (non neg-
ativity, symmetry, normality, Expansibility, decisivity
and maximality, additivity and subadditivity) to mea-
sure the design complexity of the projects with the CK-
WMC metric using the variations of the WMC met-
ric and widely accepted threshold values for interpret-
ing the complexity. The measure based on the Chi-
damber and Kemerer version of WMC, where a com-
plexity score of ’1’ is assigned to each method in a class
showed the most promise at being a good indicator of
system degradation. The group of classes with higher
entropy scores are more prone for degradation it is ex-
tremely difficult in assessing the module independency
in a software system. Hence the complexity score the
’Shannon entropy’ is of degreeα ≤ 1.

The probability for computing the entropies are ob-
tained using the empirical distribution of the methods
in a class. The Shannon entropy is more consistent for
different values of WMC metric. Asα increase, the
measure becomes coarse and indicates the high degra-

dation possibilities of the Object oriented software sys-
tem. The NASA/Rosenberg threshold risk criteria pro-
vided the best correlation to system degradation, be-
cause of the grouping of the classes into three cate-
gories according to the metric criteria. Software mea-
surement has been a successful approach in evaluat-
ing and predicting process capability through personnel
performance. Future research includes the system inho-
mogenity measurement with complete set of CK met-
ric suite and also assessing the performance of various
teams involved in developing the software products.

The entropy model generated here have produced
results which are useful and are capable of providing
effective guidelines during the design time to the de-
sign architect to reduce the system entropy by appropri-
ately adjusting design metrics. This approach is effec-
tive, useful and promising towards developing a better
quality, cost effective software product.

References

[1] Chidamber, Shyam and Chris Kemerer, "A Met-
rics Suite for Object-Oriented Design,"IEEE
Transactions on Software Engineering,pp. 476-
492, June 1994.

[2] Booch and Grady, "Object Oriented Anal-
ysis and Design with Applications," The
Benjamin/Cummings Publishing Company, Inc.,
1994.

[3] Weyuker E., "Evaluating Software Complexity
Measures," IEEE Trans. Software Eng.,vol. 14,
no. 9, pp. 1357-1365, Sept. 1988

[4] Linda H. Rosenberg, Lawrence E. Hyatt, "Soft-
ware Quality Metrics for Object-Oriented Envi-
ronments"

[5] Fenton N. E. and Pfleeger S. L, "Software Met-
rics: A Rigorous and Practical Approach,"Second
ed.Int’l Thompson Computer press,1996.

[6] Hudli R., Hoskins C. and Hudli A., "Soft-
ware Metrics for Object Oriented Designs," IEEE,
1994.

[7] Jacobson and Ivar "A Survey of Thresholding
Techniques," Object Oriented Software Engi-
neering, A Use Case Driven Approach,Addison-
Wesley Publishing Company, 1993.

[8] Lorenz Mark and Kidd Jeff, "Object Oriented
Software Metrics," Prentice Hall Publishing,
1994.

[9] Sommerville Ian, "Software Engineering,"
Addison- Wesley Publishing Company,1992.

[10] Stephen R. and Schach, "Object oriented and clas-
sical software engineering,"McGraw-Hill Sixth
edition 64-75.

[11] Banker R. D., Datar S. M., Kemerer C. F. and
Zweig D., "Software Complexity and Software
Maintenance Costs,"Comm. ACM,vol. 36, pp.
81-94, 1993.

[12] Basili V.R., Briand L.C. and Melo W.L., "A
Validation of Object-Oriented Design Metrics as
Quality Indicators," IEEE Transactions on Soft-
ware Engineering,vol. 22, pp. 751-761, 1996.

[13] Cartwright M. and Shepperd, "An Empirical In-
vestigation of Object-Oriented Software in Indus-
try," Technical Report TR 96/01,Dept. of Com-
puting, Talbot Campus, Bournemouth Univ. 1996.

[14] Chidamber S. R. and Kemerer C. F., "A Metrics
Suite for Object-Oriented Design,"IEEE Trans-
actions on Software Engineering,vol. 20, pp. 476-
493, 1994.

[15] Henry S and Li W., "Metrics for Object-Oriented
Systems"Proc. OOPSLA’92 Workshop: Metrics
for Object-Oriented Software Development,Van-
couver, Canada, 1992.

[16] Li W. and Henry S., "Object-Oriented Metrics
that Predict Maintainability,"J. Systems and Soft-
ware, vol. 23,pp. 111-122, 1993. S.Nielsen, per-
sonal communication, June 18, 1996.

[17] Sharble R. C. and Cohen S. S., "The Object-
Oriented Brewery: A Comparison of Two Object-
Oriented Development Methods,"Software Eng.
Notes,vol. 18, pp. 60-73, 1993.

[18] Yomi Kastro Bogazici University, "The De-
fect Prediction Method for software Versioning,"
2004.

[19] Rosenberg L. H., "Applying and Interpreting
Object Oriented Metrics," April 1998.

[20] Aczel J. and Daroczy Z., "On Measures of In-
formation and their Characterization,"Academic
Press,1997.

[21] Abramson N., "Information Theory and Coding,"
McGraw-Hill, 1963.

[22] Hamming R., "Coding and Information Theory"
Prentice-Hall,1980.

[23] Harrison W. "Object Oriented Software Metrics,"
IEEE Transactions on Software Engineering,vol.
18, no. 11, PP 1025-1029, Nov. 1992.

[24] Kim K., Shine Y., and Wu C., "Complexity
measures for object oriented programming based
on entropy," Proceedings of the Asian pacific
Conference on Software Engineering,pp 127-136,
Dec.1995.

[25] Frakes W. B., Fox C. J. and Nejmeh B. A., "Soft-
ware Engineering in the UNIX/C Environment,"
Prentice Hall,1991.

[26] Apd-El-Hafiz S. K, "Entropies as measure of soft-
ware information Software maintenance,"Pro-
ceedings, IEEE International conferencepp 110
-117, 2001.

[27] Van P. and Wrekly "Non local irreversible ther-
modynamics,"arxiv:cond-mat/0112214v3 [cond-
mat.mtrl-sci],2003.

[28] Lavenda B. H. and Dunning J.,Davies arxiv:
physics/0310117v1 [physics.class-ph]2003.

[29] Bansiya J., Davis C., and Etzkon L., "An Entropy-
Based Complexity Measure for Object- Oriented
Designs," Journal of Theory and Practice for
Object Systems,Vol. 5., Issue 2, 1999.

[30] Subramanyam R. and Krishnan M. S., "Empirical
Analysis of CK metrics for Object-Oriented De-
sign Complexity: Implications for Software De-
fects," IEEE Trans. on SE,vol.29, no.4, April
2003.

[31] Borgatti S, "Introduction to Grounded Theory,"
http://www.analytictech.com/mb870/introtoGT.htm,
http://www.analytictech.com/mb870/introtoGT.htm,
accessed on 7th September 2008.

	Introduction
	Metric Evaluation Criteria
	Empirical Literature on CK Metricsc14
	OO-Specific Metrics:

	Software Metrics and Entropy Concept
	Entropy (Information Theory) Based Object Oriented Software System Complexity Measurement
	Properties of Shannon's Entropy:
	Measures of information and their characterizations
	The Shannon's entropy relationship

	Experimental Analysis
	Conclusion And Future Work

