
A Genetic Algorithm-based Multi-class Support Vector Machine for
Mongolian Character Recognition

O. BATSAIKHAN1

C.K.HO2

Y.P. SINGH3

, Faculty of Information Technology
Multimedia University

63100 Cyberjaya- Malaysia
1m1160021@mmu.edu.my

2ckho@mmu.edu.my
3ypsingh@mmu.edu.my

Abstract. This paper proposes a hybrid genetic algorithm and support vector machine (GA-SVM) ap-
proach to address the Mongolian character recognition problem. As the character recognition problem
can be considered as a multi-class classification problem, we devise a DAG-SVM classifier. DAG-SVM
uses the One-Against-One technique to combine multiple binary SVM classifiers. The GA is used to se-
lect the multi-class SVM model parameters. Empirical results demonstrate that the GA-SVM approach
is able to achieve good accuracy rate.

Keywords: Support vector machines, genetic algorithms, classification.

(Received August 07, 2007 / Accepted December 17, 2007)

1 Introduction

Support vector machines (SVMs) are a set of supervised
learning techniques that has gained enormous popular-
ity in the field of pattern recognition and classification.
SVMs produce complex decision rules (with respect to
classification) by mapping a set of training points to
a high-dimensional space in which they are separable.
SVMs can potentially provide better classification per-
formance compared to conventional techniques [3, 15].
A difficulty with applying SVM (as with other classi-
fiers) is tuning the model parameters .To this end, exist-
ing schemes include the Bayesian evidence framework
[8, 13] and the probably approximately correct (PAC)
framework [12, 14]. This work deals with Mongolian
character recognition, which in essence give rise to a
multi-class classification task. As SVMs were origi-
nally developed for binary classification, an ensemble
of SVMs is required for the multi-class problem. Thus,
the problem of model parameter selection becomes much

more complex.
In this paper, we introduce a hybrid GA-SVM clas-

sifier for Mongolian character recognition. We consider
SVMs with Gaussian kernel. A standard GA is used
for selecting good values for major SVM parameters,
namely the kernel parameter (denoted by γ ) and the
regularization parameter (denoted by C). Such combi-
nation of GA and SVM has been proven to be success-
ful in [17]. Since the character recognition problem is a
multi-class classification problem, the use

of a single SVM would not suffice since an SVM
in its original form is a binary classifier. Hence, multi-
ple binary SVMs are assembled using the One-Against-
One paradigm to form the multi-class SVM classifier.
This shall be referred to as DAG-SVM as introduced in
[10].

The remaining of this paper is organized as follows:
In section 2, a brief introduction to binary SVMs and
multi-class SVMs is given. Section 3 discusses the SVM

m1160021@mmu.edu.my
ckho@mmu.edu.my
ypsingh@mmu.edu.my


model parameter selection problem, and details the pro-
posed GA for multi-class SVM parameter selection. The
experimental results and performance analysis is given
the section 4. Section 5 concludes this paper.

2 Binary SVMs

In general, a binary classification problem deals with a
set of examples {xi, yi} with 1 ≤ i ≤ l (l being the
size of the example set). Each example xi ∈ RN , N be-
ing the dimension of the input space, belongs to a class
labeled by yi. The goal is to search for a hyperplane
that optimally separates the positive from the negative
examples. The points x which lie on this hyperplane
satisfy the equation w × x + b = 0, where w is nor-
mal to the hyperplane. The SVM learning algorithm
searches for the maximal separating hyperplane:

yi(xi × w + b− 1) ≥ 0 (1)

If Eq. 1 is satisfiable, the examples are linearly sepa-
rable. The optimization problem for obtaining the max-
imal separating hyperplane can be formulated as:

Minimize 1
2w × w

Subjectto yi(xi × w + b− 1) ≥ 0
This is solved using the methods of Lagrange multi-

pliers. Using Lagrange multipliers, it can be shown that
the linear support vector training problem is reduced to
[15]:

Maximize L(α) = Σli=1(αi)−
1
2Σli=1(αiαjyiyjxixj)

Subjectto Σli=1(αiyi) = 0, αi ≥ 0

(2)

with αi denoting a Langrange multiplier.
The optimal solutions αi, (w, b) satisfy the follow-

ing condition [15]:

αi[yi(xi × w + b)− 1] = 0, i = 1, ...l (3)

All αi take the value of zero except those for which
the constraints (1) are satisfied with the equality sign.
Since most of the αi are zero, the vector w is a lin-
ear combination of a relatively small percentage of the
points xi. These points are called support vectors, and
they lie on the hyperplane. Having learned the decision
boundary, a new example x can be classified using the
following decision rule:

f(x) = sgn(w × x+ b) (4)

To allow for cases where the examples are non-se-
parable, positive slack variables ζi,i = 1...l and a regu-
larization parameter C are introduced in the constraints.
The intention of the slack variable is to allow for a small
number of misclassified points. For the situation where
0 < ζi < 1, the example falls the correct side of the
decision surface. For ζi > 1, it falls on the wrong side
of the decision surface. Thus, the summation of ζi gives
an upper bound on the training errors. This can then be
incorporated into the formulation of the objective func-
tion to become:

Minimize 1
2w × w + CΣli=1ζi

Subjectto yi(xi × w + b− 1) ≥ 1 + ζi

(5)

For non-linear SVMs, a mapping function Φ = RN →
H is required to map the input features into a high-
dimensional space. Then of course the training algo-
rithm would only depend on the data through dot prod-
ucts in H, i.e. on functions of the form Φ(Xi)×Φ(Xj).
Suppose there is a kernel function K that does the fol-
lowing:

K(Xi,Xj) = Φ(Xi)×Φ(Xj)
In this case, it is sufficient to use K in the training al-

gorithm, without having to ascertain . Some commonly
used kernels include Gaussian, Radial Basis Functions,
Polynomials, and Sigmoidal. With the use of a kernel,
the training algorithm then maximizes:

L(α) = Σli=1(αi)−
1
2

Σli=1(αiαjyiyjK(xi,xj)) (6)

and the decision function becomes

f(x) = sgn(Σli=1(αiyiK(xi,xj) + b)) (7)

3 Multi-class SVM and its Training

A number of architectures are available to enable SVMs
to handle multi-class problems. One way is to process
all examples in one optimization formulation. This is
called the ’all-in-one’ approach [15, 16]. Another tech-
niques is to divide the multi-class problem into sub-
problems, each of which can be solved by a binary SVM.
The output of all the binary SVMs are then combined to
form the final output for the multi-class problem. This
technique of dividing the problem into sub-problems
and then combining the smaller outputs is called ’divide-
and-combine’ [11]. The divide-and-combine’ approach
give rise to the need for local and global parameter tun-
ing. In local tuning, each binary SVM is tuned with re-
spect to the sub-problem it is solving. In global tuning,



Figure 1: The decision DAG for a four-class problem.

we have two concerns. Firstly, the manner in which the
binary SVMs are combined. Secondly, it is necessary to
ensure that the parameters selected in local tuning can
work reasonably well when the binary SVMs are com-
bined. The fact that each binary SVM may use different
kinds of kernels adds to the difficulty of parameter tun-
ing [7].

A popular example of the divide-and-combine ap-
proach is DAG-SVM (DAG stands for Directed Acyclic
Graph). It was introduced in [10], and has its origins
from [4]. Given a classification problem with K classes,
the DAG-SVM technique uses K(K-1)/2 binary SVM
classifiers. Each of these classifiers is trained on a dis-
tinct pair of classes. DAG-SVM can be considered as a
’one-against-one’ method. The decision DAG contains
K(K-1)/2 SVMs (the internal nodes) and K number on
leaf nodes, each representing a class. An example of
a decision DAG for a four-class problem is shown in
Figure 1.

To classify an example, we begin from the root and
travel down the DAG until a leaf node is reached, which
gives the final class. At each node, a binary decision
function is evaluated. The edges are labeled with the
outcome of the binary decision function.

3.1 SVM training

The purpose of training an SVM (as with any other clas-
sifiers) is to minimize its generalization error. A scheme
called cross-validation is usually used to partition the
example set into subsets for use in training and valida-
tion. In a K-fold cross-validation, the original examples
are partitioned into M subsets, usually of equal sizes.
M-1 subsets are used for training the SVM, and one for
validation. The training is done M number of times.
With this arrangement, each subset is used exactly once
as the validation set. The M results can then be aver-
aged or combined in some other way to produce a sin-

Table 1: The different choice of the regularization parameters on sin-
gle font and single size Mongolian characters for γ=0.015

Structure Parameters Error rate
Learning Test

set set
DAG-SVM RBF C=100 γ= 0.015 0.00% 2.0%
DAG-SVM RBF C=10 γ= 0.015 0.00% 2.7%
DAG-SVM RBF C=1 γ= 0.015 0.00% 2.5%
DAG-SVM RBF C=0.1 γ= 0.015 0.01% 2.3%
DAG-SVM RBF C=0.01 γ= 0.015 0.08% 1.2%
DAG-SVM RBF C=0.001 γ= 0.015 0.00% 1.8%

gle estimation. The leave-one-out cross-validation uses
a single example for validation while the rest are used
for training. Despite being computationally more ex-
pensive, it can give an almost unbiased estimation of
the generalization error [2]. Cross-validation is used in
this work as it is a well-established technique for super-
vised learning, and it is easy to implement.

3.2 Sensitivity of Multi-class SVM performance with
respect to model parameters

This study employs Gaussian kernels for the SVMs.
The parameters to be optimized for SVMs with Gaus-
sian kernels are γ (the kernel parameter) and the regu-
larization parameter C.

The experiments to study the sensitivity of the multi-
class SVM with respect to C and γ consists of two parts.
The first part holds γ at a constant value, with γ=0.015.
The regularization parameter C is varied using the val-
ues 0.001, 0.01, 0.1, 1, 10, 100. For the multi-class
classification, we have chosen the DAG-SVM classifier.
The data set consists of 20 Mongolian characters (Sin-
gle font and single size) with 100 samples for each char-
acter. Each character is represented as a 11×12 grid of
binary pixels.

We trained the DAG-SVM classifiers with the Se-
quential Minimal Optimization (SMO) algorithm on the
Arial Mongolian font of size 10. Table 1 presents the er-
ror rate of the DAG-SVM classifier with different choices
of the regularization parameters C and γ=0.015. The
DAG-SVM classifier is rather insensitive to different
choices of the regularization parameters C. For the ex-
perimented values in the set 0.001, 0.01, 0.1, 1, 10, 100,
the error rate on the test set is about the same (in the area
of 1.2% - 2.7%).

The second part of the experiment attempts to dis-
cover if the performance of DAG-SVM is more sensi-
tive to the kernel parameter γ. For this purpose, the reg-
ularization parameter C is set to 100 (constant), and γ
takes its values from 0.001, 0.01, 0.1, 0.2, 0.3, 0.5. Ta-
ble 2 summarizes the classification error rates of DAG-
SVM with respect to the different choices of γ on the
same data set. We conclude from Table 2 that the DAG-



Table 2: The different choice of γ on single font and single size
Mongolian characters for C = 100.

Structure Parameters Error rate
Learning Test

set set
DAG-SVM RBF C=100 γ=0.001 0.00% 2.7%
DAG-SVM RBF C=100 γ= 0.01 0.00% 3.3%
DAG-SVM RBF C=100 γ= 0.1 0.00% 10.0%
DAG-SVM RBF C=100 γ= 0.2 0.00% 63.7%
DAG-SVM RBF C=100 γ= 0.3 0.00% 82.4%
DAG-SVM RBF C=100 γ= 0.5 0.00% 94.2%

SVM classifier is very sensitive to different choices of
the γ. For all values in 0.001, 0.01, 0.1, 0.2, 0.3, 0.5,
the performance is very different (in the range of 2.7%
to 94.2%).

It can be noted from Table 1 and Table 2 that the
values of γ have much effect on accuracy rate than the
regularization parameter C within the selected range.
In the following we propose a genetic algorithms for
selecting a good value for γ.

We conclude from Table 2 that the DAG-SVM clas-
sifier is very sensitive to different choices of the γ. For
all values in 0.001, 0.01, 0.1, 0.2, 0.3, 0.5, the perfor-
mance is very different (in the range of 2.7% to 94.2%).

It can be noted from Table 1 and Table 2 that the
values of γ have much effect on accuracy rate than the
regularization parameter C within the selected range.
In the following we propose a genetic algorithms for
selecting a good value for γ.

3.3 Genetic Algorithm based model parameter se-
lection for multi-class SVM classifiers

Genetic algorithms (GAs) fall under a category of al-
gorithms called evolutionary algorithms (EAs). Evolu-
tionary algorithms were motivated and designed based
on models of organic evolution. GA in the earliest form
is developed by Holland, a computer scientist and psy-
chologist at the University of Michigan. Holland’s work
is the starting point for nearly all known applications
and implementations of genetic algorithms [5]. The
main idea of GA is to search for a good solution from a
population of candidate solutions. It represents the can-
didate solutions using strings of symbols called chro-
mosomes. The collection of chromosomes makes up
the GA population, which is basically a set of sample
points from the search space [9].

The GA population is subjected to the following
operations: selection, crossover and mutation. Selec-
tion produces a group of candidate solutions on which
crossover is performed. Crossover aims to produce bet-
ter solutions from the existing solutions. The next step
is to perform mutation, which are small, random per-
turbations made to the newly produced candidate so-

lutions. Crossover provides search intensification while
mutation helps in diversification. Collectively, the cross-
over and mutation operations are known as the repro-
duction functions. The process of selection, crossover
and mutation is repeated until a stopping criterion is ful-
filled. The computational steps of a simple GA can be
summarized as follows:

Generate the initial population P0 of N individuals

1. i← 1

2. P
′

i ← selection_function(Pi − 1)

3. Pi ← reproduction_function(P
′

i )

4. Evaluate(Pi)

5. i← i+ 1

6. Repeat step 3 until termination.

We use a GA for selecting values for γ. Let γj rep-
resent the model parameter of interest for the jth binary
SVM. We employ real-valued chromosomes. A chro-
mosome consists of all the γj values, i.e. γ1,γ2,,γM ,
where M is the required number of binary SVMs. The
decoding of the chromosome is then straight forward.
We use the overall classification rate on a validation set
as the fitness function.

The population consists of 30 chromosomes. The
decision to use this population size is based on two fac-
tors. The first is to keep the computational cost low
since each fitness function evaluation involves execut-
ing the GA. Secondly, a trial-and-error effort indicates
that using 30 chromosomes can still produce acceptable
results. The selection, crossover and mutation opera-
tions and their parameters are shown in Table 3. The
arithmetic crossover operator is implemented as follows
[6]:

X ′ = rX + (1− r)Y
Y ′ = (1− r)X + rY

(8)

where X ′ and Y ′ are the offspring from X and Y
, and r is a uniform random number in the range (0,1).
The non-uniform mutation is implemented such that for
any gene xi that is selected for mutation, its new value
x

′

i is determined as follows [6]:

x
′

i =

 xi + (bi − xi)f(G) if r1 < 0.5
xi + (xi + ai)f(G) if r1 ≥ 0.5

xi, Otherwise
(9)

where f(G) = (r2(1− G
Gmax

))b,



Table 3: GAOT Parameters used for real-valued genetic representa-
tion

Operator Name Operator Parameter
Non-Uniform Mutation Frequency: 3
Arithmetic Crossover Frequency: 3
Tournament Selection Tournament size: 5

Table 4: 3-class data set validating rates from multi-class SVM model
selection

C
γ

0.002 0.004 0.008 0.015 0.03 0.06
100 99.9 99.8 99.9 99.9 100 100
10 100 99.9 100 100 100 99.7
1 99.9 100 100 100 99.8 99.9

0.1 99.8 100 99.9 100 99.9 99.9
0.01 100 99.9 100 100 100 99.9
0.001 100 100 99.9 100 100 99.9

r1, r2= a uniform random number in the range (0,1),
G = the current generation, Gmax = the maximum num-
ber of generations. b = the shape parameter. The GA
terminates after 100 generations.

4 Empirical Results

We apply the proposed GA-SVM approach on the Mon-
golian character recognition problem. We choose the
following data sets: 3-class and 6-class. For all the
problems, we choose 50 % of training samples as val-
idating samples to select the proper model. We use
the SVM Toolbox [1] and GA Toolbox called GAOT
[6] for simulation. In the first step, we set the candi-
date values for γ to be 0.002, 0.004, 0.008, 0.015, 0.03,
0.06. The candidate values for the regularization pa-
rameter C are 0.001, 0.01, 0.1, 1, 10, 100. We arrived
at these candidate values by first estimating the lower
bounds using a number of trials. For γ, the lower bound
is 0.002. The next candidate value is about twice the
lower bound. For C, the lower bound is 0.001. The
next candidate value is ten times the lower bound. Each
subsequent candidate value is determined in the same
way. The validation rate of the multi-class SVM is eval-
uated on the 36 combinations of C and γ. Two out-
comes are expected from this simple parameter sweep
effort.. Firstly, this will identify a very good value for C
from the candidate values. Secondly, we can estimate a
smaller range within which the near-optimal value of γ
can be found. The GA is then used to search within this
range to obtain the best value for γ.

4.1 Results on the 3-class data set

Table 4 presents the validation rates for the 36 combi-
nations of C and γ .

Table 5: Confusion matrix on 3-class problem with GA selected γ.
Actual Class Label

1 2 3
1 99.9% 0.0% 0.1%
2 0.0% 100.0% 0.0%
3 0.0% 0.0% 100.0 %

Average rate 99.97%

Table 6: 6-class data set validating rates from multi-class SVM model
selection

C
γ

0.002 0.004 0.008 0.015 0.03 0.06
100 99.3 99.1 99.8 99.6 99.2 99.1
10 99.3 99.7 99.2 99.7 99.7 99.5
1 99.3 99.5 98.9 99.5 99.6 99.8

0.1 99.5 99.6 99.8 99.6 99.7 99.4
0.01 99.3 99.7 99.7 99.9 99.3 99.6
0.001 99.7 99.6 99.6 99.6 99.7 99.1

The best validation rate is 100.0% using the values
C= 10, 1, 0.1, 0.01, γ= 0.015. We select 99.9% as
our selection threshold. Thus, the optimal models are
most likely to exist in γ ∈[0.04, 0.015] with the regu-
larization parameter C at values 10, 1, 0.1, 0.01, 0.001.
Empirical results show that the values of the regulariza-
tion parameter C have much less effect on accuracy rate
than γ within the selected range. Thus, in our GA based
search, the regularization parameter C is set to 10. GA
will then search for the best value for γ within the range
[0.04, 0.015].

The overall validating accuracy rate serves as our
fitness value. All individual SVMs have the same value
for C. The best value for γ determined by GA is 0.0089.
We then use the selected parameters to train the multi-
class SVM. The trained multi-class SVM is then used to
perform prediction on the testing samples. The testing
confusion matrix is shown in Table 5. It can be observed
that the multi-class SVM performed very well, with an
average rate of 99.97%.

4.2 Results on the 6-class data set

As before, we first perform a rough search for a good
value of the regularization parameter C from the val-
ues 0.001, 0.01, 0.1, 1, 10, 100. This rough search is
also used to identify a small interval in which the best
value for γ is located. The initial values for γ are 0.002,
0.004, 0.008, 0.015, 0.03, 0.06. Table 6 presents the
validating rates from the above C and γ combinations
(36 combinations). The best validating rate is 99.9%
with the regularization parameter C = 0.01. Next, for
the GA optimization, we set γ to be within the range
[0.015, 0.06]. The regularization parameter C is held at
0.01.

The GA converges very fast, usually around 20 gen-



Table 7: Confusion matrix on the 6-class problem with GA selected
Actual Class Label

1 2 3 4 5 6
1 99.9% 0.0% 0.0% 0.0% 0.0% 0.1%
2 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 99.8% 0.0% 0.0% 0.2%
4 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0 % 100.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Average rate 99.95%

erations. The best testing rate we obtained is for γ=0.0513.
The corresponding test results are shown in Table 7. An
average accuracy rate of 99.95 is obtained, which can
be considered as very good. The results on the 3-class
and 6-class data set demonstrate the effectiveness of the
multi-class SVM model parameter selection technique,
which is a combination of a simple exhaustive search
for the regularization parameter, and a GA search for
the kernel parameter γ.

5 Conclusions

We have described a hybrid GA-SVM multi-class clas-
sifier with application to the Mongolian character recog-
nition problem. Emphasis is placed on the selection
of two important SVM parameters. The regularization
parameter is selected using an exhaustive search pro-
cedure based on a set of candidate values. We have
demonstrated that the classification performance of the
multi-class SVM on the Mongolian character recogni-
tion problem is less sensitive to changes in the regular-
ization parameter. This hybrid system harnesses the ca-
pability of a standard GA to search for the best value for
the SVM Gaussian kernel parameter γ The multi-class
SVM, using the optimized parameters, have shown very
good classification results on the 3-class and 6-class
data sets, with average accuracy of at least 99.9%.

References

[1] Cawley, C. G. MATLAB SVM toolbox (v0.54β).
University of East Anglia, School of Informa-
tion Systems, Norwich, Norfolk, United Kingdom,
2000.

[2] Chapelle, O. and Vapnik, V. Model selection for
support vector machines,Advances Neural Infor-
mation Processing Systems. MIT press, 12, 2000.

[3] Cortes, C. and Vapnik, V. Support vector net-
works. Machine Learning, 20:273–297, 1995.

[4] Friedman, J. Another Approach to Poly-
chotomous Classification. Dept. Statist.,

Stanford University, Stanford,CA,http://www-
stat.stanford.edu/reports/friedman/poly.ps.Z.

[5] Holland, J. H. Adaptation in natural and artificial
systems. The University of Michigan Press, 1975.

[6] Houck, C. R., Joines, J. A., and Kay, M. G. A
Genetic Algorithm for Function Optimization: A
Matlab Implementation. North Carolina State
University, 1996.

[7] Hsu, C. W. and Lin, C. J. A Comparison of
methods for multi-class support vector machines.
IEEE Transaction on Neural Networks, 13:415–
425, 2001.

[8] Kwok, J. Integrating the evidence framework and
the support vector machine. Proceedings Euro-
pean Symposium on Artificial Neural Networks,
Brussels, 1999.

[9] Michalewicz, Z. Genetic Algorithms + Data
Structures = Evolution Programs. Springer Ver-
lag, New York, 1992.

[10] Platt, J. C., Cristianini, N., and Shawe-Taylor, J.
Large margin DAGs for multi-class classification,
Advances in Neural Information Processing Sys-
tems, Cambridge. MA: MIT Press, 12:547–553,
2000.

[11] Scholkopf, B., Burges, C., and Vapnik, V. Ex-
tracting support data for a given task. Proceedings
of the 1st International Conference on Knowledge
Discovery and Data Mining, 1995.

[12] Scholkopf, B., Shawe-Taylor, J., Smola, A. J., and
Williamson, R. C. Kernel dependent support vec-
tor error bounds. Proceedings of the International
Conference on Artificial Neural Networks,IEEE
press, New York, 1999., 1, 1999.

[13] Tipping, M. The relevance vector machine. Ad-
vances in Neural Information Processing Sys-
tems,MIT press, Cambridge, MA, 12:633–699,
2001.

[14] Tsuda, K. Optimal hyperplane classifier based on
entropy number bound. Proceedings of the In-
ternational Conference on Artificial Neural Net-
works, IEEE press, New York,, 1, 1999.

[15] Vapnik, V. Statistical Learning Theory. New
York:Wiley, 1998.



[16] Weston, J. and Watkins, C. Support vector ma-
chines for multi-class pattern recognition. Pro-
ceedings 7th European Symposium on Artificial
Neural Networks, 1999.

[17] Xu, P. and Chan, A. An efficient algorithm on
multi-class support vector machine model selec-
tion. Proceedings of the International Joint Con-
ference on Neural Networks, 4:3229–3232, 2003.


	Introduction
	Binary SVMs
	Multi-class SVM and its Training
	SVM training
	Sensitivity of Multi-class SVM performance with respect to model parameters
	Genetic Algorithm based model parameter selection for multi-class SVM classifiers

	Empirical Results
	Results on the 3-class data set
	Results on the 6-class data set

	Conclusions

