
A Multimodal Interface for the Discovery and Invocation of Web
Services

CÁSSIO V. S. PRAZERES, MAYCON L. M. PEIXOTO

e-mail: prazeres@dcc.ufba.br, mayconleo@gmail.com

Universidade Federal da Bahia (UFBA)
Departamento de Ciência da Computação

Avenida Adhemar de Barros, Campus de Ondina
Salvador - BA

Universidade de São Paulo (USP)
Instituto de Ciências Matemáticas e de Computação

Avenida Trabalhador São-carlense, 400 - Centro
São Carlos - SP

Abstract. The World Wide Web has been enhanced with many types of online services such as banking
access, e-commerce, e-health, e-learning, etc. This variety of services, distributed around the world,
can be accessed from any place at anytime. However, in some situations a user may face difficulties
in the use of the traditional mouse and keyboard input devices to search and access services through
the Web. In this paper we propose the use of multimodal interfaces for the discovery and invocation of
Web Services. Our approach, called Multimodal Interface for Discovery and Invocation of Web Services
(MIDIWS), transforms users requests made in XHTML + VoiceXML into requests specified as SOAP
messages. These requests are sent to a UDDI repository which returns a service or a set of services also
by means of SOAP messages. These messages are transformed back into XHTML + VoiceXML and,
then, presented to the user.

Keywords: Multimodal interface, VoiceXML, Web Services.

(Received March 6th, 2013 / Accepted September 14th, 2013)

1 Introduction

The grow in the number of users in the World Wide
Web has been accompanied by a growth in the diversity
of applications in areas such as e-commerce, e-health,
e-learning, to name a few. Many of these applications
are made available by means of Web Services.

The W3C (World Wide Web Consortium) defines
Web Services1 as “a software system designed to sup-
port interoperable machine-to-machine interaction over
a network. It has an interface described in a machine-

1http://www.w3.org/TR/ws-gloss/

processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically con-
veyed using HTTP with an XML serialization in con-
junction with other Web-related standards”.

In many situations, the aim is to make services avail-
able to end-users by means of web applications. When
this is the case, the discovery and the invocation of
available services can be made by means of search en-
gines interfaces in which the user provides keywords
related to the desired service.

In order to spread the access to your Web Services,
INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

http://www.w3.org/TR/ws-gloss/

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 24

some companies may want to make available your ser-
vices to be accessed by means of other modalities as not
only mouse and keyboard (as voice modality for exam-
ple). Users can provide the keywords via voice input,
for instance, supported by speech recognition technol-
ogy, as envisioned by Dettmer [2].

Two special initiatives from the W3C point to many
challenges that some users face in accessing the Web:
the Web Accessibility Initiative [17] and the Device In-
dependence Working Group [18]. The frist initiative
points to “challenges such as impaired vision, limited
motor capabilities or difficulties with perception that
diminish their ability to use the Web” [21]. The sec-
ond one point that “there are Web users who face chal-
lenges because of device or network limitations, includ-
ing small screens, restricted keyboards and lower band-
width” [21].

The approach proposed in this paper can address
these two types of challenges pointed by the W3C [21].
This approach uses multimodal interface for the discov-
ery and invocation of Web Services. Our approach is
called MIDIWS (Multimodal Interface for Discovery
and Invocation of Web Services).

In MIDIWS, the user interactions in any modal-
ity (as speech or gesture, for example) can be mapped
to SOAP [20] (Simple Object Access Protocol) mes-
sages that are sended to UDDI [9] (Universal Descrip-
tion, Discovery, and Integration) registries. In order to
demonstrate our approach, we implement a case study
by using speech modality. This case study focus on the
case that the user who access the Web face challenges
because of device limitations, as, for example, restricted
keyboards.

MIDIWS has a SOAP engine and an agent that in-
teract with multimodal interfaces (customer side) and
a UDDI registry (server side). In a first step, the
SOAP engine gets requests in XHTML + VoiceXML
and transforms to requests in SOAP messages. Sec-
ond, the agent receive these SOAP messages and send
to the UDDI registry. The UDDI sends back to the agent
the response (SOAP messages) about the search for a
service in a third step. Fourth, the agent sends these
response to the SOAP engine that transforms back to
XHTML + VoiceXML and presents to the user.

In order to provide multimodalities for discovery
and invoke Web service, we present an engine that
make transformations in XML documents (XHTML +
VoiceXML to SOAP and vice-versa) and an agent that
works as a mediator between the engine and the UDDI
registry. We implement an infrastructure based on an
Web application container (Apache Tomcat), Web ser-
vices framework (Apache Axis2) and UDDI registry

(Apache jUDDI) integrated with our SOAP engine and
agent to develop and to test the MIDIWS approach.

In the remainder of this paper, Section 2 reviews
concepts of multimodal interfaces; Section 3 reviews
current infrastructure and technologies for Web Ser-
vices; Section 4 introduces MIDIWS; Section 5 details
a scenario in which a “rent a car service” is made avail-
able to users; Section 6 presents an evaluation, based
on two important techniques of usability evaluation, of
our case study; Section 7 discusses related work and
Section 8 presents our final remarks.

2 Multimodal Web Applications

Multimodal Web applications are those in which it
is possible to interact with a traditional Web browser
via synthetic speech, keypads, pointing devices, pre-
recorded audio, plain text and displays.

The technologies SALT (Speech Application Lan-
guage Tags) and X+V (XHTML + VoiceXML) repre-
sent the first steps in building mechanisms of speech-
enabled Web [5]. SALT and X+V are both tag-based
languages created to enable multimodal applications by
adding voice tags to HTML/XHTML.

In the work presented in this paper we use X+V lan-
guage for a number of reasons: it is a standard proposed
by the W3C, there is a community of developers highly
trained in VoiceXML, and several supporting tools are
available. Moreover, it is supported by some browsers
(such as the Opera), thus enabling developers to imme-
diately test the interfaces produced.

Figure 1: Model Architecture for Voice Browser Systems

As shown in Figure 1, the multimodal applica-
tions using standard X+V allows a natural migration of
voice applications based on VoiceXML, generally used
in telephony applications, to applications that include
the voice element to be used with the layout language
XHTML by means of Javascript Sync. It becomes an

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 25

important feature to enable voice applications to per-
form discovery of web services, with the intention of
reaching external resources from limited devices.

3 Web Services and UDDI

Web Services are software systems that are identified
by means of a URI and that are specified by a descrip-
tion based on XML documents. The XML description
permits the interaction among several systems. XML
documents are also used to communicate with others
systems through messages exchange using Internet pro-
tocols [19].

Web Services are based on standard technologies in-
cluing XML, SOAP, WSDL [22] (Web Service Descrip-
tion Language) and UDDI [9] (Universal Description,
Discovery, and Integration). The interaction among an
application based on Web Services and a Web Service
uses the SOA (Service Oriented Architecture).

The XML has an important function in the Web
Services realization, because the involved technologies
(WSDL, SOAP and UDDI) are based on the XML lan-
guage.

The language for service description (WSDL) is
used to describe a Web Service by specifying it local-
ization and by describing the operations provided by the
service. WSDL documents are XML documents that
provide enough information about how to interact with
the Web Service.

SOAP is a communication protocol and a codifica-
tion format based on XML that has a function of realize
communication among applications.

Figure 2: Communication infrastructure for Web Services.

The Figure 2 (adapted from [6]) shows an infras-
tructure of basic communication that permits the use of
Web Services by using SOAP messages exchange. The
objects from the customer side (service requester) uses
the services by means of a proxy class that imitate the
method calls of the Web Service. Thus, the applica-
tion developers use this proxy class instead of directly
write SOAP messages. The proxy class manages the
construction, sending and receiving of SOAP messages.

The UDDI is a registry of domain public – ser-
vice providers can register their services and service
requesters can search for a desired service. The in-
formation about registered services (UDDI) work as an
information set about all registered Web Services, mak-
ing possible the discovery of services providers and ser-
vices.

4 MIDIWS

MIDIWS, Multimodal Interface for Discovery and
Invocation of Web Services, combines the use of mul-
timodalities for interact with Web applications and the
Web services infrastructure based on SOA architecture.

4.1 MIDIWS Architecture

The MIDIWS architecture is shown in Figure 3. The
overall implementation is deployed in a Web applica-
tion container (Figure 3: Apache Tomcat).

Figure 3: MIDIWS Architecture

The UDDI implementation used is the jUDDI reg-
istry (Figure 3: Apache jUDDI), which is deployed on
the Web application container (Figure 3: Apache Tom-
cat).

In the MIDIWS architecture, we use a relational
database (Figure 3: MySQL) integrated to the jUDDI
registry to store all UDDI information relative to Web
Services.

As far as the MIDIWS architecture is concerned,
the important information regarding the Web services
is that stored in the UDDI repository. For the sake
of illustrating our proposal, two Web services are also
deployed in the Web application container using the
Apache Axis2, which is a framework to develop Web
services (Figure 3: Web Services 1 and 2).

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 26

Naturally, the Web services do not need to be im-
plemented in the same machine that was implemented
the MIDIWS neither in the same machine that was im-
plemented the jUDDI. Meanwhile, as can be viewed in
Figure 3 (Web Service 1 and 2), we implement some
Web services to make possible that some real Web ser-
vices can be stored in our jUDDI implementation.

MIDIWS makes use of two SOAP engines: (i) one
to send the requests from users to be processed by the
jUDDI registry (see Figure 3: MIDIWS), and (ii) the
other to send the responses from the jUDDI regitry back
to the users (see Figure 3: Apache jUDDI). These com-
munications are made via SOAP messages and work as
was presented in Section 3 (see Figure 2).

To experiment with our approach, we have also
deployed in the Web application container (Figure 3:
Apache Tomcat) a Web application that is integrated
with the MIDIWS (Figure 3: WebApp Multimodal).
This Web application has a multimodal interface based
on visual (mouse and keyboard) and voice modalities
and works as explained below.

4.2 MIDIWS Workflow

The MIDIWS architecture follows the 6-step workflow
shown in Figure 4. In step (1), the MIDIWS SOAP
Engine sends a SOAP message to the UDDI registry.
In this step, this SOAP Engine builds a SOAP message
with a request to find the service requested. Document 1
below represents a SOAP message used to inquiry about
a Rent a Car Company service: lines 5 to 9 in Docu-
ment 1 contain the information about the requested ser-
vice (in this case, the service name).

0 <!-- Document 1 -->
1 <!-- SOAP message for Find a Service -->
2
3 <?xml version="1.0" encoding="utf-8"?>
4 <soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/envelope/">
5 <soapenv:Body>
6 <find_service generic="2.0" xmlns="urn:uddi-

org:api_v2">
7 <name>Rent a Car Company</name>
8 </find_service>
9 </soapenv:Body>
10 </soapenv:Envelope>

In step (2), the UDDI registry responds to the
SOAP-Engine, mediated by the Agent shown in Fig-
ure 4, with a list of discovered services. Lines 6 to 18
in the Document 2 below present a list of all discoved
services that match the parameters requested.

0 <!-- Document 2 -->
1 <!-- List of discovered services -->
2
3 <?xml version="1.0" encoding="UTFlist-8"?>
4 <soapenv:Envelope xmlns:

soapenv="http://schemas.xmlsoap.org/soap/

Figure 4: MIDIWS Workflow

envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema

-instance">
5 <soapenv:Body>
6 <serviceList generic="2.0" operator="jUDDI.org"

xmlns="urn:uddi-org:api_v2">
7 <serviceInfos>
8 <serviceInfo

businessKey="13B7B200-41FD-11DD-BB88-
3C09B365B"

serviceKey="4B874330-41FD-11DD-BB88-
E7D2B7EA6">
9 <name>Rent a Car Company 1</name>
10 </serviceInfo>
11 <serviceInfo

businessKey="4064C064-6D14-4F35-8953-
2106476A9"

serviceKey="1A85B7E0-3C89-11DD-B39D-
43AC41B80">
12 <name>Rent a Car Company 2</name>
13 </serviceInfo>
14 <serviceInfo

businessKey="C0B9FE13-179F-413D-8A5B-
4DB8E5BB2"

serviceKey="B1B1BAF5-2329-43E6-AE13-
E97195039">
15 <name>Rent a Car Company 3</name>
16 </serviceInfo>
17 </serviceInfos>
18 </serviceList>
19 </soapenv:Body>
20 </soapenv:Envelope>

In step (3) shown in the Figure 4, a SOAP message
is sent from the Agent to the UDDI registry to request
all information about the services discovered, as
indicated in the lines 6 to 10 of Document 3.

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 27

0 <!-- Document 3 -->
1 <!-- Get details of a discovered service -->
2
3 <?xml version="1.0" encoding="utf-8"?>
4 <soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap
/envelope/">
5 <soapenv:Body>
6 <get_serviceDetail generic="2.0"

xmlns="urn:uddi-org:api_v2">
7 <serviceKey>
8 4B874330-41FD-11DD-BB88-FEFE7D2B7EA6
9 </serviceKey>
10 </get_serviceDetail>
11 </soapenv:Body>
12 </soapenv:Envelope>

In the step (4) of the workflow shown in Figure 4,
the UDDI repository sends a list to the Agent with
details about discovered services as shown in Docu-
ment 4 below. The resulting information is used by the
Agent to, by means of WSDL invocations to the service
providers in step (5), obtain further information of their
services. The responses, indicated in the step (6) of the
workflow, are used by the Agent to choose a service and
to preform further transactions.

0 <!-- Document 4 -->
1 <!-- Services Details -->
2
3 <?xml version="1.0" encoding="utf-8"?>
4 <soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/
envelope/">
5 <soapenv:Body>
6 <name> $Name Service$ </name>
7 <description> $Description Service$
</description>
8 <accessPoint> $URLType$ </accessPoint>
9 </soapenv:Body>
10 </soapenv:Envelope>

5 A Case Study

We performed a case study which we experimented
using the Opera browser. When using the Opera
browser, users can enable XHTML + VoiceXML sup-
port through steps described at the Opera Voice site2.

5.1 “Rent a Car” using MIDIWS

We implemented a service allowing a hypothetical com-
pany to offer the possibility of a user to rent a car by
means of a multimodal interface using XHTML and
VoiceXML. A front-end application (see Figure 5) to
capture the information is provided to the user. Natu-
rally, this is only an example of a service: it could be
any service that a user would like to access via multi-
modal interfaces.

Customers should fill in a Web form with their in-
terests about the wanted service. As an example, one
component of this interface is the step where the city

2http://www.opera.com/voice/

is chosen, which could the one presented in Figure 5.
Other typical components of the interface associated
with the Rent a Car Service we implemented are: Place
to pick up the consumer; Vehicle type: car ou van; Ve-
hicle model: models are linked to the car type; Vehicle
class: full or standard; Distance plan; Car insurance;
Pick up information: pick up date and pick up time;
Return information: return date and return time.

In the case of the interface “City:” (see Figure 5),
our implementation provides a component radio but-
ton for visual interaction (XHTML) or through voice
(VoiceXML). The first case (visual) is shown in Docu-
ment 5.
0 <!-- Document 5 -->
1 <!-- XHTML source for "choose a city" -->
2
3 <!-- City -->
4 <div id="divCityId">
5 City:
6

7 <input type="radio" name="city"

id="cityNewYorkId"
value="New York"/> New York;

8 <input type="radio" name="city"
id="cityLosAngelesId"
value="Los Angeles"/> Los Angeles;

9 <input type="radio" name="city"
id="cityChicagoId"
value="Chicago"/>Chicago;in the

10 <input type="radio" name="city"
id="cityHoustonId"
value="Houston"/>Houston;

11 </div>

To provide the voice interface, it is necessary to de-
fine a grammar that will recognize the user and ways
to help him to fill in the correct information (see Docu-
ment 6).
0 <!-- Document 6 -->
1 <!-- VoiceXML source for Recognition
Grammars -->
2
3 <!-- City -->
4 <vxml:field name="voice_field_city"

xv:id="voice_city" modal=
"true">
5 <vxml:grammar>
6 <![CDATA[

#JSGF V1.0;
grammar city;
public <city> = New York | Los Angeles |

Chicago | Houston;
]]>

7 </vxml:grammar>
8 <vxml:prompt> Choose the city </vxml:prompt>
9 <vxml:catch event="help nomatch noinput">
10 For example, say New York.
11 </vxml:catch>
12 <vxml:catch event="help nomatch noinput"
count="2">
13 Please, choose New York, Los Angeles,
Chicago or Houston.
14 </vxml:catch>
15 </vxml:field>

If the user is filling out the form by voice, is neces-
sary to carry out a synchronization between the modal-
ities, as shown in Document 7.

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

http://www.opera.com/voice/

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 28

Figure 5: Rent a Car Service

0 <!-- Document 7 -->
1 <!-- Sync between XHTML and VoiceXML -->
2
3 <!-- City -->
4 <xv:sync xv:field="#voice_city"
xv:input="city"/>

Summarizing our example implementation, when
an interface is loaded by the browser, the focus is di-
rected on text field HTML. The aim is to obtain the de-
sired city. The same VoiceXML form represented by
“id=voice_city” requires a prompt that ask to the user:
Please, Choose the city!.

5.2 Detailing the case study

We divide a case study execution of the “Rent a Car”
service in steps as represented in Figure 6.

First, the user is presented with a form (Figure 6:
Web Application Multimodal) to fill in an order to pro-
vide the Engine-agent with details about choices his/her
rent a car service.

In the second step, the user submits the informa-
tion (XML: XHTML or VoiceXML) to the SOAP en-

gine (Figure 6: SOAP-Engine) in order to build a list of
services corresponding to his criteria.

Third, the Agent (Figure 6: Agent) finds a list of
“Rent a Car” services in UDDI. For each service avail-
able:

• The Agent requests a description of how to com-
municate with the service found (WSDL);

• The Agent requests a list of details about services;

• The UDDI registry (Figure 6: UDDI) returns the
requested details.

In the fourth step, the Agent joins all descriptions
submitted by UDDI and selects the best service. The
best selection criteria is not implemented in our cur-
rent version. We will implement smart agents, based
on OWL-S ontology, to perform selection based on the
semantics of the Web service.

Finally, the confirmation data of the service done is
presented to the user and a confirmation message is pre-
sented to the user. When voice is used, the correspond-

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 29

Figure 6: MIDIWS Workflow: a Case Study Execution.

ing message is: < prompt > Successful service! <
/prompt >.

At the end of these steps, if no rent a car company
service can be found, the user should be presented with
an appropriated message.

6 Evaluating the “Rent a Car” Service

We evaluate our case study of “Rent a Car” Service (see
Figure 5) by using two important techniques of usabil-
ity evaluation: i) the Heuristic Evaluation [8], which
encompass several features of the user interaction; and
ii) the Think Aloud Evaluation [14], which has focus
on evaluating usability of interactive learning systems
or even websites.

In the Heuristic Evaluation, we use the ten heuris-
tics of Nielsen [8] and we made general analysis of the
interface, identifying gaps and assignment of one of the
five levels of severity that guide the development on the
priority and urgency of a solution.

In the Think Aloud Evaluation, we bring a real user
to try to rent a car by using the MIDIWS and this user
reports step by step all that he/she intends to do, why
he/she to do, and what he/she expect of system re-
sponse.

The user interface of the “Rent a Car” case study
does not present a high complexity of interaction, as is
the completion and submission of a Web form by voice
to rent a car. Still, during the evaluation process were
identified some deficiencies in the application.

The Heuristic Evaluation has spent two hours and
was required to install and configure the Opera browser
for the MIDIWS could be used and evaluated with voice
interaction.

Aspects of the system interface do not have serious
flaws, but there are things that can be improved, such as:
the grouping of similar data by using edges and titles for
such; and the increasing in vertical spacing between the
titles and the boxes, because this area is currently very
little and overlap the graphics.

The Think Aloud Evaluation pointed to one prob-
lem: the evaluator did not perceives whether the task
had been completed, since it is not given the proper
feedback when the Web form of rent a car is submit-
ted.

The grouping of similar data in the Web form is a
trivial problem when using interaction by mouse and
keyboard. However, considering only the interaction by
voice, it is important to further evaluation whether the
grouping of similar data can help the user interaction.

Concluding, there are some errors found during the
evaluation and must be repaired to make the interaction
more efficient and increase the usability of the applica-
tion (“Rent a Car” Service).

7 Related Works

Several researchers investigate approaches to
use multimodal interaction in Web applica-
tions(e.g. [2],[1],[4],[11],[16],[7]). These authors
present and discuss several implementations, tools and
technologies for multimodal interactions over the Web
and over mobile technologies. In MIDIWS, we present
an infrastructure to discover and invoke Web services
by using multimodal interactions.

Dettmer [2] remarks that mobile technologies, as
mobile phone, provide a universal platform for access-
ing on-line services. He advocates that VoiceXML can
be combined with visual technologies (as XHTML) to
access on-line services by both voice and graphics. In
MIDIWS, we also combine VoiceXML and XHTML in
the user side. We integrate VoiceXML and XHTML
with an infrastructure of Web services to provide dis-
covery and invocation of on-line services.

Ramakrishnan et. al. [11] [16] propose a voice
browser system that provides access to the World Wide
Web to persons with visual disabilities. These systems
permit the browsing of hypertext Web documents via

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 30

audio by transforming HTML document in audio doc-
uments (VoiceXML). MIDIWS assumes that the user
interface is on XHTML + VoiceXML and transforms
users requests into SOAP messages to make Web ser-
vice discovery and invocation.

Honkala and Pohja [4] discuss that providing
XHTML + VoiceXML in multimodal interfaces is not
trivial since each modality has to be authored sepa-
rately. The authors propose to use XForms as the user
interface description language, because it is indepen-
dent of modality. In MIDIWS, we use XHTML +
VoiceXML only to test our approach. We do not take
into account, for this work, the way which the multi-
modal interfaces are developed.

Simon et. al. [13] investigated the authoring of
multimodal interfaces on mobile devices. These au-
thors present a prototype authoring tool that permits the
development of graphical as well as multimodal web-
based user interfaces. This prototype authoring tool fo-
cuses on the user that develops a service; MDIWS that
focuses on the final user which seeks for a determined
service.

In the Spika work [15], his concerns is about provid-
ing a multimodal software for mobile devices. Besides,
it has a automatic converter dialogues to voice-based
dialogues in both directions. MIDIWS can be extended
for use on mobile platforms, only making a minimum
adaptations to smartphones.

A limitation of VoiceXML is the use of a prede-
termined grammar. Rouillard [12] proposes a system
of voice recognition to VoiceXML. The system has a
Web service which is to recognize speech in English
grammar and generates an output in English text. He
uses UDDI to discovery Web services that can trans-
late the English text to the target language. In the same
sense, Hastie [3] demonstrates a DUDE (Dialogue and
Understanding Development Environment). DUDE is
a development environment to generate dialogue auto-
matically, making context-sensitive Voice XML pages.
MIDIWS works only with English speech. We can
combine the proposal of Rouillard to make MIDIWS
to work with others languages.

8 Final Remarks

In this paper, we have proposed an approach to allow
the discovery and access of Web Services for users who
face challenges because of device or network limita-
tions, including small screens, restricted keyboards and
lower bandwidth or for persons with impaired vision,
limited motor capabilities or difficulties with perception
that diminish their ability to use the Web.

Our approach is named MIDIWS – Multimodal

Interface for Discovery and Invocation of Web
Services. In MIDIWS, a user can enter data via
XHTML + VoiceXML and services will be discovered
and invoked through of the Web.

We built a SOAP-Engine component in the
MIDIWS architecture to enable the comunication be-
tween the Web application and UDDI. The SOAP-
Engine, mediated by the Agent, deal with the messages
transactions so as to make it possible to provide the
search, access and return of the Web services compu-
tation.

We have implemented a case study of “Rent a Car”,
in order to prove that the envisaged solution is techni-
cally feasible. This case study has shown all steps of
input and output of datatypes and navigation within a
Web form XHTML + VoiceXML for discovery and ac-
cess a service Rent a Car Company. We focus our case
study on users using limited devices as devices with re-
stricted keyboards, for instance.

We think that MIDIWS constitutes a smooth transi-
tion milestone step in the complex path towards the ul-
timate deployment of fully featured Web services. Our
prototype can be extended to support novel uses of in-
teraction in emerging application domains.

In future work, we plan to extend our approach
to consider ontology of Semantic Web Services in the
discovery the best service. In this paper we do not
make any assumption regarding to the semantic of the
Web service selected. We are working with straightfor-
ward discovery, based on category and service name,
in UDDI [10]. We plan also to conduct a more com-
plete and precise evaluation of MIDIWS and refine the
browsing presentation strategies accordingly.

Acknowledgements

We would like to thank CAPES (Coordination for the
Improvement of Higher Education Personnel), CNPq
(National Counsel of Technological and Scientific De-
velopment), and RNP (National Network on Teaching
and Research) for supporting the authors of this article.

References

[1] Coles, A., Deliot, E., Melamed, T., and Lansard,
K. A framework for coordinated multi-modal
browsing with multiple clients. In WWW ’03: Pro-
ceedings of the 12th international conference on
World Wide Web, pages 718–726, New York, NY,
USA, 2003. ACM.

[2] Dettmer, R. It’s good to talk [speech technol-
ogy for on-line services access]. IEE Review,
49(6):30–33, June 2003.

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

Prazeres & Peixoto A Multimodal Interface for the Discovery and Invocation of Web Services 31

[3] Hastie, H., Liu, X., and Lemon, O. Automatic
generation of information state update dialogue
systems that dynamically create voice xml, as
demonstrated on the iphone. In Proceedings of
the SIGDIAL 2009 Conference: The 10th Annual
Meeting of the Special Interest Group on Dis-
course and Dialogue, SIGDIAL ’09, pages 148–
151, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[4] Honkala, M. and Pohja, M. Multimodal interac-
tion with xforms. In ICWE ’06: Proceedings of
the 6th international conference on Web engineer-
ing, pages 201–208, New York, NY, USA, 2006.
ACM.

[5] Lai, J. Conversation interfaces, vol.
43(9):pages.24–27. In CACM. ACM, 2000.

[6] Nandigam, J., Gudivada, V. N., and Kalavala, M.
Semantic web services. Comput. Small Coll.,
21(1):50–63, 2005.

[7] Narayan, M., Williams, C., Perugini, S., and Ra-
makrishnan, N. Staging transformations for mul-
timodal web interaction management. In WWW
’04: Proceedings of the 13th international con-
ference on World Wide Web, pages 212–223, New
York, NY, USA, 2004. ACM.

[8] Nielsen, J. Usability Inspection Methods, chapter
Heuristic Evaluation, pages 25–62. John Wiley &
Sons, New York, NY, USA, 1 edition, 1994.

[9] OASIS. Introduction to UDDI: Important Fea-
tures and Functional Concepts. Available on-line
on http://uddi.org/pubs/uddi-tech-wp.pdf. Visited
on 07/02/2008, October 2004.

[10] Prazeres, C. V. S., Teixeira, C. A. C., and Pi-
mentel, M. G. C. Semantic web services discov-
ery and composition: Paths along workflows. In
Proceedings of the 2009 Seventh IEEE European
Conference on Web Services, ECOWS ’09, pages
58–65, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[11] Ramakrishnan, I. V., Stent, A., and Yang, G.
Hearsay: enabling audio browsing on hypertext
content. In WWW ’04: Proceedings of the 13th in-
ternational conference on World Wide Web, pages
80–89, New York, NY, USA, 2004. ACM.

[12] Rouillard, J. Web services and speech-based ap-
plications around voicexml. Journal of Networks,
2(1):27–35, 2007.

[13] Simon, R., Wegscheider, F., and Tolar, K. Tool-
supported single authoring for device indepen-
dence and multimodality. In MobileHCI ’05: Pro-
ceedings of the 7th international conference on
Human computer interaction with mobile devices
& services, pages 91–98, New York, NY, USA,
2005. ACM.

[14] Someren, M. W. V., Barnard, Y. F., and Sandberg,
J. A. C. The Think Aloud Method: A Practical
Guide to Modelling Cognitive Processes. Aca-
demic Press, 1 edition, August 1994.

[15] Spika, M. A modular multimodal software plat-
form for mobile devices. In Consumer Electronics
(ICCE), 2010 Digest of Technical Papers Interna-
tional Conference on, pages 241 –242, jan. 2010.

[16] Sun, Z., Stent, A., and Ramakrishnan, I. V. Dialog
generation for voice browsing. In W4A: Proceed-
ings of the 2006 international cross-disciplinary
workshop on Web accessibility (W4A), pages 49–
56, New York, NY, USA, 2006. ACM.

[17] W3C. Web Accessibility Initiative (WAI). Avail-
able on-line on http://www.w3.org/WAI/. Visited
on 02/12/2008.

[18] W3C. Device independence. Available on-
line on http://www.w3.org/2001/di/. Visited on
02/12/2008, 2001.

[19] W3C. Web Services Activity. Available on-
line on http://www.w3.org/2002/ws/. Visited on
07/02/2008., 2002.

[20] W3C. Simple Object Access Protocol (SOAP)
1.2, W3C Recommendation. Available on-line on
http://www.w3.org/TR/soap12-part0/. Visited on
07/02/2008, June 2003.

[21] W3C. Device independence, accessibility and
multimodal interaction. Available on-line on
http://www.w3.org/2005/04/di_mmi_wai.html.
Visited on 02/12/2008, 2005.

[22] W3C. Web Services Description Lan-
guage (WSDL) 2.0, W3C Candidate
Recommendation. Available on-line on
http://www.w3.org/TR/wsdl20/. Visited on
07/02/2008, January 2006.

INFOCOMP, v. 12, no. 2, p. 23-31, December 2013.

	Introduction
	Multimodal Web Applications
	Web Services and UDDI
	MIDIWS
	MIDIWS Architecture
	MIDIWS Workflow

	A Case Study
	``Rent a Car'' using MIDIWS
	Detailing the case study

	Evaluating the ``Rent a Car'' Service
	Related Works
	Final Remarks

