
SOFTWARE SECURITY RISK ANALYSIS USING FUZZY EXPERT
SYSTEM

SODIYA A. S.1
LONGE H. O. D.2

FASAN O. M.3

UNIVERSITY OF AGRICULTURE
DCC - Department of Computer Science

P. M. B. 2240
ABEOKUTA, NIGERIA1, 3

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF LAGOS

AKOKA, LAGOS2

1sinaronke@yahoo.co.uk
2hodlonge@yahoo.co.uk
3sola_fasan@mail.com

Abstract. Today, there is wide concern on the security of software systems because many organizations
depend largely on them for their day-to-day operations. Since we have not seen a software system that
is completely secure, there is need to analyze and determine the security risk of emerging software sys-
tems. This work presents a technique for analyzing software security using fuzzy expert system. The
inputs to the system are suitable fuzzy sets representing linguistic values for software security goals of
confidentiality, integrity and availability. The expert rules were constructed using the Mamdani fuzzy
reasoning in order to adequately analyse the inputs. The defuzzification technique was done using Cen-
troid technique. The implementation of the design is done using MATLAB fuzzy logic tool because of its
ability to implement fuzzy based systems. Using newly develop software products from three software
development organizations as test cases, the results show a system that can be used to effectively analyze
software security risk.

Keywords: Software systems, Software security, Risk analysis, Fuzzy logic

(Received January 18, 2008 / Accepted July 16, 2008)

1 INTRODUCTION
Nowadays, security problem involving computer-based
systems are getting more frequent and this calls for se-
rious attention. The number and variety of attacks by
person and malicious software from outside organiza-
tion, particularly via the Internet are rapidly increasing.
The amount and consequences of inside attacks also re-
main a major concern.

However, it is widely accepted that designing secure
software is a difficult problem. Attackers break rou-

tinely into systems and in response, some software ven-
dors started providing security as a necessary feature
for their products and network systems. As a result of
years of research in computer security, many powerful
techniques have been developed to solve a wide array of
security problems. Yet, some security features in some
software are either unnecessary or the software does not
meets its security needs. Infact, producing secure soft-
ware products requires a lot of security engineering [9].

Overtime, a major phase that has been incorporated

sinaronke@yahoo.co.uk
hodlonge@yahoo.co.uk
sola_fasan@mail.com


into the software development in order to improve soft-
ware security is the security testing stage, which basi-
cally uses a risk-based security test. Since perfect secu-
rity appears to be an unattainable goal with the present
technologies, producing secure software becomes a ques-
tion of risk management. Security risk must be identi-
fied, ranked, mitigated and then must be managed through-
out the software product lifecycle. Once the security
risks are identified, adjustments are then made to the
software before the final deployment.

Thus, this work proposes a fuzzy logic-based tech-
nique for determination of level of security risk associ-
ated with software systems. Fuzzy logic, as introduced
in [10], is one of the major tools used for security anal-
ysis. The major goals of secure software which are used
as the inputs to the system are: the preservation of con-
fidentiality (preventing unauthorized disclosure of in-
formation), preservation of integrity (preventing unau-
thorized alteration of information) and preservation of
availability (preventing unauthorized destruction or de-
nial of access or service to an authentic user).

The rest of this paper is organized as follows. Sec-
tion 2 presents related works. In section 3, the method-
ology of design is described. Section 4 explains the im-
plementation procedure and section 5 contains the eval-
uation of the system. The future work and conclusion
are presented in section 6.

2 RELATED WORKS
Despite all the efforts towards producing high quality
and secure software systems, attackers still frequently
break into these systems. In response, software vendors
started incorporating security as a necessary feature for
their products. Software security is critical to informa-
tion assurance and design-level vulnerabilities are re-
sponsible for up to 50% security problems in codes [1].
Previous research works in this area have presented or
suggested different security measures and processes to-
wards producing secure software.

In [3], threat modeling was described as the basis
for security requirements. The work mentioned that
threat modeling is a process that consist three high level
steps: characterizing the system, identifying assets and
access points, and identifying threats. The risks associ-
ated with identified threats were then assessed.

Another tool used for identifying the security risk is
the attack trees. Attack trees are used to model a cho-
sen set of attack via a finite state machine. Attack trees
model the decision making process of the attackers [2].
Attacks against a system are represented in a tree struc-
ture. The root of the tree represents the potential goal
of an attacker (for example, to steal a credit card num-

ber). The nodes in the tree represent the actions the
attacker can take and each path in the tree represents a
unique attack to achieve the goal of the attacker. At-
tack trees can be used to answer question such as, what
is the easiest attack, the cheapest attack, the attack that
causes the most damage and so on. Attack trees are
used for risk analysis, capturing of security knowledge
in a reusable way and implementing counter-measures
to attacks. However, the use of attack trees cannot re-
place the threat modeling process [5].

Another work that described the processes for pro-
ducing secure software was presented at the National
Cyber Summit in 2004 [4]. The work presented that
security testing must be incorporated into the software
development stages in order to help in producing secure
software. They also explained that risk management is
a tool that can help in the production of secure software.
In [8], an architecture that can lead to the development
of secure software products was presented. The archi-
tecture provides an efficient way of integrating security
engineering into software development.

However, in most of these works, the testing and
risk assessment were done using test cases derived from
threat models, attack patterns, attack trees, and from
specification and design. A better way of conducting
the testing or evaluating the risk would be to examine
the levels attained by the software for each of the soft-
ware security goals.

The fuzzy logic approach has been used recently for
the evaluation of risk in different situations. A fuzzy
logic technique that was based on Madiami-style infer-
ence engine was used to identify the potential threats
to computer-based systems [9]. The result showed an
effective way of carrying out threat modeling.

Another work that was based on fuzzy modeling
was presented in [6]. A cognitive fuzzy modeling tech-
nique was designed for enhanced risk assessment in a
health care institution. Another similar paper was pre-
sented in [7]. The work presented a methodology for
assessing and analyzing risks incurred in business in-
formation systems. In the last two papers, the risk as-
sessment were carried out by considering what would
happen if a particular decision was taken or if some in-
formation were lost or rendered unauthentic. A fuzzy
cognitive map was then used to get a clear picture of the
different phases at which risk can incur. The problem
with this technique is that cognitive map is not com-
putationally efficient. In this work, a rule based fuzzy
expert system is used to analyze the risk associated with
software before it is finally deployed.



3 DESIGN METHODOLOGY
The design is basically divided into three stages as follows:-

3.1 DESIGN OF THE LINGUISTIC VARIABLES

The inputs to the system are the values assumed or cal-
culated for the software security goals i.e. confidential-
ity, integrity and availability. The goals are assumed
to be of the same weight and a particular value is de-
termined for each of them based on questions that are
answered about the specific software. Also the val-
ues determined for each of the input are defined as a
fuzzy number instead of crisp numbers by using suit-
able fuzzy sets.

Designing the fuzzy system requires that the differ-
ent inputs (that is, confidentiality, integrity, and avail-
ability) are represented by fuzzy sets. The fuzzy sets
are in turn represented by a membership function. The
membership function used in this paper is the triangu-
lar membership function which is a three point function
defined by minimum(α), maximum(β4) and modal (m)
values where (α ≤ β ≤ m) usually represented in 1.

Figure 1: Triangular Membership Function

3.2 THE FUZZY SETS

The level of confidentiality is defined based on the scales
of not confidential, slightly confidential, very confiden-
tial and extremely confidential. The level of integrity
is also defined based on the scales very low, low, high,
very high, and extra high. Also, the level of availability
is also defined by the scales very low, low, high, very
high and extra high. The levels defined above are based
on a range definition with an assumed interval of [0 -

10]. The ranges for the inputs are shown in tables 3.2,
3.2 and 3.2.

Table 1: Range of inputs for Confidentiality

NotConfidential 0–1
SlightlyConfidential 2–3

Confidential 4–6
V eryConfidential 7–8

ExtremelyConfidential 9–10

Table 2: Range of inputs for Integrity

V erylow Low High V eryHigh ExtraHigh

0-1 2-3 4-6 7-8 9-10

Table 3: Range of inputs for Availabilty

V erylow Low High V eryHigh ExtraHigh

0-1 2-3 4-6 7-8 9-10

The fuzzy sets above are represented by member-
ship functions. The corresponding membership func-
tions for confidentiality, integrity and availability are
presented in figures 2, 3 and 4 respectively.

Figure 2: Membership Function for Confidentiality

Similarly, the output, that is, the level of security
risk is also represented by fuzzy sets and then a mem-
bership function. The level of security risk is defined
based on the scales: not secure, slightly secure, secure,
very secure, and extremely secure within the range of [0
- 30]. The range definition is shown in table 3.2.

The membership function for the output fuzzy set is
presented in figure 5.



Figure 3: Membership Function for Integrity

Figure 4: Membership Function for Availability

Figure 5: Membership Function for SecurityRisk

3.3 THE RULES OF THE FUZZY SYSTEM

Once the input and output fuzzy sets and membership
functions are constructed, the rules are then formulated.
The rules are formulated based on the input parameters
(confidentiality, integrity, and availability) and the out-
put i.e. level of security risk. The levels of confidential-
ity, integrity, and availability are used in the antecedent
of rules and the level of security risk as the consequent
of rules.

A fuzzy rule is conditional statement in the form:
IF x is A

Table 4: Level of Security Risk

NotSecure 0–3
SlightlySecure 4–9

Secure 10–18
V erySecure 19–25

ExtremelySecure 26–30

THEN y is B

where x and y are linguistic variables; and A and B
are linguistic values determined by fuzzy sets on uni-
verse of discourses X and Y, respectively. Both the an-
tecedent and consequent of a fuzzy rule can have mul-
tiple parts. All parts of the antecedent are calculated
simultaneously and resolved in a single number and the
antecedent affects all parts of the consequent equally.

Some of the rules used in the design of this fuzzy
system are as follow:

1. If (Confidentiality is NotConfidential) and (Integrity
is VeryLow) and (Availability is VeryLow) then
(SecurityRisk is NotSecure).

2. If (Confidentiality is NotConfidential) and (Integrity
is VeryLow) and (Availability is Low) then (Secu-
rityRisk is SlightlySecure).

3. If (Confidentiality is NotConfidential) and (Integrity
is VeryLow) and (Availability is High) then (Secu-
rityRisk is SlightlySecure).
. . .
125. If (Confidentiality is ExtremelyConfidential)
and (Integrity is ExtraHigh) and (Availability is
ExtraHigh) then (SecurityRisk is ExtremelySecure)

The rules above were formulated using the Mam-
dani max-min fuzzy reasoning. Also, using the Mam-
dani max-min inference system to evaluate the com-
plete set of rules, the security risk level derived from
the rules is given in equation 1:

Skji(security level) = max{minCk(x), Ij (y), Ai(z)}
(1)

Where,

Ck(x) : R → [0, 1],
Ij(y) : R → [0, 1],
Ai(z) : R → [0, 1].

The equation 1 is the fuzzy reasoning for evaluating a
rule base to get the output i.e. the defuzzification pro-
cedure. The procedure used here is the Center Of Area
(COA).



The rules formulated are then transformed to fuzzy
perception structure. The fuzzy perception is normally
determined by the rules and fuzzy sets of the underlying
problem. The fuzzy perception describes the relation-
ships between the variables during and after evaluation
of the output. A reduced form of the fuzzy perception
representation of the rules is given in figure 6.

Figure 6: Fuzzy perception structure

A summary of the procedure with which the initial
fuzzy inference system is built is presented below.

3.4 Procedure for building the initial fuzzy inference
system

Step 1: Determining the input variables.
The input variables are determined based on the proper-
ties that should be incorporated or eliminated in a sys-
tem. For example the properties to be incorporated into
a secure system are used in this work. These are confi-
dentiality, integrity and availability.

Step 2: Defining the input variables.
For each of the input, suppose that the domain interval
is [0, +s] e.g. [0 − 10], each of them defined individ-
ually. The domain is divided into 2N + 1 regions and
each region is attached a fuzzy membership function.
In this work, the domain is divided into 5 regions (N =
2). The regions are represented by triangular member-
ship functions.

Step 3: Defining the output variable membership
function.
Suppose the domain interval for the output is [0, +s]
e.g. [0−30]. Divide the domain interval into 2N + 1 re-
gion and assume for each region a membership. For ex-

ample level of security risk (the output) is divided into
5 regions (N = 2).

Step 4: Formulating the rules and populating the
rule base.
The rules are built based on expert knowledge of the
relationships between the variables. The rules are for-
mulated to reflect the relationships between any possi-
ble relation of the input variables and the output vari-
able. The rules in this work reflect the relationships be-
tween the levels of confidentiality, integrity and avail-
ability and also the level of security risk. Thus, there
are (2N + 1)3 fuzzy rules in the rule base of the fuzzy
system.

4 IMPLEMENTATION PROCEDURE
The linguistic variables were determined with the ex-
tent of the positive and negative responses to a well-
constructed security questions that are presented in form
of on-line questionnaire. As it was mentioned earlier,
MATLAB was used for the implementation. The lin-
guistic inputs to the system are supplied through the
graphical user interface called rule viewer. Once the
rule viewer has been opened, the input variables are
supplied in the text box captioned input with each of
them separated with a space.

a. THE FIS EDITOR
The fuzzy inference system editor (7) shows a sum-
mary of the fuzzy inference system. It shows the
mapping of the inputs to the system type and to the
output. The names of the input variables and the pro-
cessing methods for the FIS can be changed through
the FIS editor.

Figure 7: The FIS editor



b. THE MEMBERSHIP FUNCTION EDITOR
This can be opened from the command window by
using the plotmf function but more easily through
the GUI. The membership function editor (8) shows
a plot of highlighted input or output variable along
their possible ranges and against the probability of
occurrence. The name and the range of a member-
ship value can be changed, so also the range of the
particular variable itself through the membership func-
tion editor.

Figure 8: The Membership Function editor

c. THE RULE EDITOR
The rule editor can be used to add, delete or change
a rule. It is also used to change the connection type
and the weight of a rule. The rule editor for this
application is shown in figure 9.

Figure 9: The Rule editor

d. THE RULE VIEWER
The text box captioned input is used to supply the
three input variables needed in the system. The ap-
propriate input corresponds to the number of YES
answer in the questionnaire for each of the input
variables. For example, in the figure 10, all the in-
put variables are 5 and the corresponding output is
13.9, which specified at the top of the corresponding
graphs. The input for each of the input variables is
specified at the top of the section corresponding to
them, so also the output variable. The rule viewer
for this work is presented in figure 10.

Figure 10: The Rule editor

e. THE SURFACE VIEWER
The surface viewer shown in figure 11 is a 3-D graph
that shows the relationship between the inputs and
the output. The output (securityRisk) is represented
on the Z-axis while 2 of the inputs (Confidential-
ity and Integrity) are on the x and y axes and the
other input (Availability) is held constant. The sur-
face viewer shows a plot of the possible ranges of
the input variables against the possible ranges of the
output.

5 EVALUATION
The security risk analysis system was evaluated using
three newly completed software products from three dif-
ferent software development organizations. The output
determines the security level of software under consid-
eration. The summary of the evaluation is given in Ta-
ble 5.

For product A, 5 is the score for confidentiality, 5
for the integrity and 5 for the availability. The crisp
output 13.9 shows that the security level for the soft-



Softare InputvariablesA CrispoutputC Significance SecurityLevel

A 5 5 5 13.9 45% slightly secure, 55% secure 46.33%

B 8 7 8 24.2 20% secure, 80% very secure 80.60%

C 10 10 10 28.4 35% very secure, 65% extremely secure 94.67%

Table 5: Evaluation of Different Input Variables

Figure 11: The Surface Viewer

ware is 13.9 out of the 30. On the fuzzy sets defined for
the security risk level, this value corresponds to around
45% slightly secure and 55% secure. On the scale of
30, this value shows that the software having the values
is 46.33% secure. In an organization where the security
level has been set for like a minimum 70%, it is evident
that this software is not secure and necessary adjust-
ments have to be made. In order to make these adjust-
ments, the software has to be redesigned or examined
in order to improve on the security. For product B, the
inputs to the system are 8, 7 and 8 for confidentiality,
integrity and availability respectively. The crisp output
is 24.2. This value corresponds to 20% secure and 80%
very secure on the fuzzy set scale for the output. This
then means that the software is 80.67% secure. Thus for
an organization whose standard is a minimum of 70%
software security, it can be concluded that the software
is secure enough and can then be deployed.

From the last product C, it was seen that a software
can never be 100% secure which is actually the case be-
cause no one can be perfectly sure that the software is
error free. When the inputs to the system are 10, 10
and 10 for confidentiality, integrity and availability re-
spectively (which are the highest possible values from
the design), the output to the system is 28.4 on the out-
put scale, which corresponds to around 35% very se-

cure and 65% extremely secure. On the general scale,
this value means that the average level for which one
can claim the security of any software is around 94.67%
and it rare to claim that a software is 100% secure.

6 FUTURE WORK AND CONCLUSION
It might be necessary to redesign this system in a way
that it will be deployable and will be without the use of
MATLAB. It might also be necessary to use an adaptive
fuzzy logic technique for security risk analysis.

We have been able to design a system that can be
used to evaluate the security risk associated with the
production of secure software systems. This will def-
initely help software organizations meet up with the
standard requirements. A technique for assessing se-
curity of software system before final deployment has
been presented.

The result of this study shows that if the software
producing companies will incorporate security risk anal-
ysis into the production of software system, the issue of
insecurity of software will be held to the minimum if
not eliminated. This study has also revealed that if each
of the software security goals can be increased to the
maximum, then the level security will also be increased
and the risk associated will be eliminated.

Finally, security risk analysis is a path towards pro-
ducing secure software and should be considered a sig-
nificant activity by software development organisations.

References
[1] Hoglund, G. and McGraw, G. Exploiting soft-

ware, how to break the code. Addison-Wesley pub-
lisher), 2004.

[2] Leveson, N. G. System safety and computers.
Addison-Wesley publisher, 1995.

[3] Myagmar, A. J., S.and Lee and Yurcik, W. Threat
modeling as basis for security requirements. In
Symposium on Requirements Engineeing for In-
formation Security (SREIS), 2005.

[4] Noopur, D. and Samuel, T. R. Processes to pro-
duce secure software. A paper written for, Cyber



Security Summit Taskforce Subgroup on Software
Development Lifecycle, 2004.

[5] Sheyner, O. and Wing, J. Tools for generating and
analyzing attack graphs. In Proceedings of formal
methods for component and Objects, 2005.

[6] Smith, E. and Eloff, J. Cognitive fuzzy model-
ing for enhanced risk assessment in a health care
institution. IEEE Intelligent systems & their ap-
plications, 15(2), 2000.

[7] Smith, E. and Eloff, J. Transaction based risk anal-
ysis using cognitive fuzzy techniques. Advances
in Information Security Management & Small Sys-
tems Security, 2001.

[8] Sodiya, A. S., Onashoga, A., S., and Oladun-
joye, B. A. Threat modeling using fuzzy logic
paradigm. Journal of Issues in Informing Science
and Information Technology. U. S. A, 15(4):53–61,
2007.

[9] Sodiya, A. S., Onashoga, S. A., and Oladunjoye,
O. B. Towards building secure software products.
Journal of Issues in Informing Science and Infor-
mation Technology, U. S. A, 13:635–646, 2006.

[10] Zadeh, L. A. Fuzzy sets. Information and Control,
1965.


	INTRODUCTION
	RELATED WORKS
	DESIGN METHODOLOGY
	DESIGN OF THE LINGUISTIC VARIABLES
	THE FUZZY SETS
	THE RULES OF THE FUZZY SYSTEM
	Procedure for building the initial fuzzy inference system

	IMPLEMENTATION PROCEDURE
	EVALUATION
	FUTURE WORK AND CONCLUSION

