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Abstract. Several scientific works have modeled medical problems with assistance of Bayesian net-
works, assisting doctors in the task of diagnosing a disease given the observed symptoms and evaluated
exams. This paper aims to present the execution time and convergence analyses for exact and approxi-
mate algorithms for probabilistic inference, which allow to apply the Bayesian reasoning in the support
to the medical diagnosis. The results of the analyses supply a criterion for the choice of the algorithm to
be implemented depending on the resources that are wished to optimize.
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1 Introduction

The evolution of reasoning in the interpretation of nat-
ural phenomena across time has brought as a conse-
quence the mathematic bases of scientific thought. In
Medicine, it was not different: the observation of bio-
logical phenomena, the search for solutions to decrease
the impact and the need to prove scientifically the ef-
fectiveness of protherapeutic method and of therapeutic
procedures opened the doors to what is named evidence-
based medicine. Thomas Bayes, an seventeenth century
English mathematician left us his theorem which es-
tablished that the post-test probability of a disease was
a function of sensitivity and specificity of the exami-
nation and prevalence of the disease in the population
(pre-test probability). The physicians in formulating
their diagnostic hypotheses, in interpreting laboratorial
exams and in prescribing a treatment, intuitively utilize

Bayes’ Theorem. Today, we live the high technology
age in which persons often tend to interpret the positive-
ness of a sophisticated and expensive exam as a synony-
mous of disease. We should not forget that all the exam-
inations, without any exception, since the current clini-
cal examination to a computerized tomography, are lim-
ited by the sensitivity, specificity and pre-test predictive
value. Bayesian networks are oriented acyclic graphs
which stand for dependences among variables in a prob-
abilistic model. This approach represents a good strat-
egy to deal with problems which are concerned with
uncertainties. As a Bayesian model is constructed in
a causal manner (direction of the arcos point from the
causes to the effect), the graphic representation of a di-
agnostic problem is relatively simple, using the knowl-
edge of the specialist of the domain. The fundamental
task of a system of support to the medical diagnostic,



with a Bayesian structure, is to compute the distribution
of a posteriori probability of a set of consultation vari-
ables ( Variables_Consultation) given the values of an-
other set variables (Variables_Evidence). Nevertheless,
in a Bayesian network, any variable can be regarded as
Varables_Consultation or Variables_Evi-
dence, allowing four distinct types of consultation:

• Diagnostic (from effects to the cause): for exam-
ple, given a S1 symptom S1 infer the probability
of disease D1, P(D1|S1);

• Causal (from the causes to the effect): for exam-
ple, given disease D2 find the most likely symp-
toms, P(S2| D2);

• Inter-causal (between causes of a common effect):
for example, given symptom S2 to infer P(D1|S2),
but adding the evidence that D2 is present pro-
vokes the slope of the probability of D1; in spite
of D1 and D2 being independent, the presence of
one makes the other less probable;

• Mixed (matches two or more of the previous ones).

In the literature, several proposals for the solving of
this problem of great practical importance are found,
but, one should be able to choose the best algorithm
to optimize the resources and widen the applications
of Bayesian networks. We could, for example, choose
an algorithm which can be implemented in mobile sys-
tems, which possess limited memory and processing re-
sources, for them to be able to be used making a pre-
consultation on patients in rows of overworked hospi-
tals. This work presents the analyses of algorithms for
probabilistic inference in Bayesian networks, supply-
ing a criterion for choice of the algorithm to be imple-
mented depending on the resources which are wished to
optimize.

2 Bayesian networks

Bayesian networks offer an approach to probabilistic
reasoning which encompasses graphs theory, for the es-
tablishment of the relationships among sentences and
still, probability theory, for attribution of trustability
levels, contemplating the needs to deal with uncertainty.
Bayes’ theorem, contemplated in the bases of probabil-
ity theory, supplies mechanisms to manipulate the prob-
abilities in a Bayesian model.

2.1 Bayes’ theorem

To reach Bayes’ theorem, one starts form basic princi-
ples. So the probability fro one to observe simultane-

ously an x event and a Y event is defined by the con-
ditional probability. That formulation is presented in
several manners which if combined; equation 1 is ob-
tained:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(1)

Equation (1) is known as Bayes’ theorem (or still
Bayes’ rule or Bayes’ Law). In this equation, P(X|Y)
is the probability of evidence X being observed, given
that Y is true. Namely, P(X|Y) is the possibility of the
occurrence of Y causing evidence Y [7].

In some situations, it is necessary to utilize a more
general version of Bayes’ theorem, conditioned upon
some evidence E known. This more general version is
represented by 2:

P (Y |X, E) =
P (X|Y,E)P (Y |E)

P (X|E)
(2)

Bayes’ theorem is an equation of great importance,
for it permits the computation or the utilization of con-
ditional probabilities as a an priori probability function
and possibilities.

2.2 Bayesian Reasoning

The Bayesian reasoning can be explained with an med-
ical example taken from [8]. Consider the problem:

1% of the women over 40 years old who took part in
routine examinations are carriers of breast cancer. 80%
of the women with cancer will have positive results of
mammography. 9.6% of the women without the disease
will also have positive results at the mammography. A
woman at his age comes across with a positive mam-
mography result, which is the probability for her carry-
ing breast cancer?

Second [8], most of the physicians would estimate
that the probability for the woman in issue, having breast
cancer would be between 70% and 80%. One can set-
tle the problem in a Bayesian manner to estimate the
correct probability.

In the first place, in a woman over 40 years old,
breast cancer (Cancer) can be either present or absent.
Those alternatives, mutually excluding, can be put into
a table. One can start the reasoning by the probability
of each alternative before we do any test. It is so called
a priori probability. Cancer=present or Cancer=absent.
Since 1% of the women over 40 years have breast can-
cer, the a priori probability of Cancer being present is
of 0.01 and being absent is of 0.99.

Now, let’s incorporate the mammography result. Can-
cer is present, the conditional probability of Mammog-
raphy being positive is of 0.80 (80%), and if Cancer is



absent, this probability is of 0.096 (9.6%). One can put
together that information in a conditional Cancer prob-
ability table, as in Table 1.

Table 1: Table of conditional probabilities

Mammography Cancer
present absent

positive 0,8 0,096
negative 0,2 0,904

Multiplying the a priori probability by the condi-
tional one, we obtain the joint probability of Cancer e
Mammography, shown in Table 2:

Table 2: Joint probabilities of Cancer and Mammography

Mammography Cancer
present absent

positive 0,01 x 0,8 = 0,008 0,99 x 0,096 = 0,09504
negative 0,01 x 0,2 = 0,002 0,99 x 0,904 = 0,89496

To cause the soma of each line of joint probability
becomes 1, it is needed to use a normalization: by mul-
tiplying each probability by the normalization constant,
which is given by 1 divided by the summation of each
line of the joint probability table. Obtaining thus the so
called the e a posteriori probability shown in Table 3.

Therefore, the Bayesian reasoning led us to con-
clude that the a posteriori, probability, namely, after the
tests, of a women over 40 years of posse de a mammog-
raphy examination the result of which is positive, that
is, a P (Cancer=present | Mammography=positive) is of
only 0.07764 (7.764%).

Table 3: A posteriori probabilities

Mammography Cancer
present absent

positive 0,07764 0,92236
negative 0,00223 0,99777

In [8] it is reported that when that problem was pre-
sented to several physicians and medical students, a trend
to overestimate the a posteriori probability of a disease
and only 46% of the interviewees estimated a probabil-
ity consistent with the correct answer. That fact points
out that the Bayesian reasoning is not intuitive. There
seems to be a general trend to ignore the fact that the a
priori probability of disease is small.

In the example above, the Bayesian reasoning al-
lowed to quantify the degree in which the positive mam-
mography result fitted an early estimate of chance for a

woman to have breast cancer. Under this standpoint,
medical test (or evidence) works as a modifier of opin-
ion, updating an early hypothesis (a prioi probability)
to generate another (a posteriori probability. This latter
encompasses both the previous belief (a priori proba-
bility) and the result of the test. The a posteriori prob-
ability becomes automatically the a priori probability
for subsequent tests [8]. In another example, we can
observe a simple domain modeled from a Bayesian net-
work. It is concerned with a hypothetical example, which
deals with the diagnostic of hepatitis. It possesses three
variables: Fever, Jaundice and Hepatitis (Figure 2.2). It
is found that the variables Fever and Jaundice are as-
sociated with status table which indicate their a priori
probabilities. The a priori probabilities are the element
responsible for the indetermination treatment. When
either it cannot be said or not know to say the value
of an evidence, the Bayesian network will use in the
inference, that a priori probability, which was de-
fined by the specialist as a species of "standard value".

Figure 1: Example of support of diagnostic with Bayesian networks.

2.3 Definition of Bayesian network

A Bayesian network is acyclic directed graph where the
knots stand for random variables and the directed arcs
stand for direct causal relationships between the con-
necting knots [7]. It was defined, in Bayesian networks,
if there is a arrow of the knot X as far as in the Y, it is
said that X is father to Y.

The direction of arcos, in general, stands for the
cause-effect relationships among the domain variables.
For example, if there is a arc going from a knot A to a
knot B, it is denoted that A stands for a cause of B, and
it is supposed that A is one of the parents of B, or in the
medical case, it could mean that X is a symptom and Y
is a disease.

In a Bayesian network, each knot is conditionally
independent of any subset of knots which are not their
descendents, known the parent knots of Xi (represented
by pa(Xi)).



3 Bayesian inference

The basic task which one wishes to perform in a Bayesian
network is to compute the distribution of the conditional
probability to a set of consultation variables, given the
values of a set of evidence variables, that is, to compute
the P(variable_consultation|variables_evidence).

That task is called the Bayesian inference and en-
ables to answer to a series of "consultations" on a do-
main of data. For example, in the medical area, the
main task consists in obtaining a diagnostic for a given
patient presenting certain symptoms (evidences). This
task consists in updating the probabilities of the vari-
ables as related to evidence. In the case of medical di-
agnostic, the probabilities of each of the possible dis-
eases is tried to know, given the symptoms observed in
the patient. Those are a posteriori probabilities.

3.1 Exact algorithms of Bayesian inference

One inference algorithm is called exact if it performs
the calculation of a posteriori probabilities from the prin-
ciples of Bayes’ theorem, by means of both sum and
combinations of values, without any other error except
the one of rounding out in the calculation [4].

The general idea of the exact inference methods is
evaluating equation 3, derived from Bayes’ theorem and
of the basic axioms of the probability theory, finding the
a posteriori probability of the consultation variable.

P (X|e) = αP (X, e) = α
∑

y

P (X, e, Y ) (3)

Where it is denoted that X is a consultation vari-
able, E the set of evidence variables, e the set of values
found for E, and Y the unobserved remaining variables
(named hidden variables) and α is the normalization
constant, which warrants that the sum of the resulting
distribution will be equal to 1. The exact inference al-
gorithms implemented were: Enumeration Algorithm
[7] and Elimination of Variables [2] [3].

3.2 Approximate Algorithms of Bayesian inference

The algorithms considered within the group of approx-
imate methods utilize distinct simulation techniques to
obtain approximate values of probabilities [4].

The most utilized approximate algorithms belong to
the group of stochastic simulation algorithms. The main
idea of this method is using the model of Bayesian net-
work to simulate the flow of impact or influence of ev-
idence on the other variables [6]. In this type of algo-
rithm, according to the conditional probability tables of
the network, a set of randomly selected samples, then,

inference is performed, this is, the probabilities of the
"consultation" variables are approached by the frequency
of their appearances in the sample. The accuracy of
the results is to depend on the size of the samples (on
the number of simulations which generate the samples)
and, differently from the exact methods, the net struc-
ture is not relevant in the calculation of inference, that
being one of its main advantages.

The approximate inference algorithms implemented
were: Forward Sampling [7], Likelihood Weighting [7]
[5] and Gibbs Sampling [7] [4] [1].

4 Results

To investigate the implemented algorithms, a computer
with a Pentium III 1.2GHz processor with 512MB RAM
was utilized. All the algorithms were implemented us-
ing the programming language JAVA (J2SE).

4.1 Exact algorithms

To compare the efficiency of exact algorithms, random
networks with different numbers of variables (always
booleans) were generated and a consultation in the net-
work was performed, always with only a evidence se-
lected, and the execution time of the algorithm was mea-
sured. Table 4 presents the measured times.

Table 4: Execution time of the exact algorithms

Execution time (milliseconds)
Enumeration Algorithm Number of variables
Algorithm of variable elimination

15 15 3
21 20 24
38 32 5
47 45 7
67 59 8

124365 40215 20

The increase of the size of the net implies into an
increase of the execution time in a non-linear form. It
is known that the complexity of time of both the imple-
mented exact algorithms is exponential relative to the
net size [7]. However, the algorithm of elimination of
variables, as foreseen, eliminates repeated calculations
supplying again the efficiency of that algorithm in rela-
tion to the enumeration algorithm.

One should stress that the ordering of the variables
influences the execution time of the Elimination of Vari-
ables algorithm [4] [7], and that the implementation of
that work always uses the ordering of the leaves to the
roots.



4.2 Approximate algorithms

The implemented algorithms were tested in different
topology networks, however, Asia, DogProblem and Car-
Diagnostic networks were chosen to present the results
(Figures 4.2, 4.2 and 4.2 respectively).

Figure 2: Structure of Asia network

Figure 3: Structure of DogProblem network

Asia network is a multi-connected network associ-
ated to the eight booleans variables; DogProblem prob-
lem, is a classic example found in the literature, simpler,
with five booleans variables; CarDiagnostic network is
a more complex network with 20 discrete variables with
several layers, which can be applied to the diagnostic of
bad functioning of self-propelling vehicles.

The Gibbs Sampling inference algorithm presents
some problems inherent to its characteristics; and some
suggestions of solutions were implemented. For the
problem of not having an optimum initial configuration,
the method proposed by [6] was implemented, which is
discard from 5 to 10% of the initial configurations. The
algorithm with that method will be identified by Gibbs

Figure 4: Structure of CarDiagnostic network.

Sampling Burn-in in the figures which present the re-
sults.

In coming into contact with the approximate infer-
ence techniques, the idea of mixing characteristics of
two approximate algorithms which presented more in-
teresting solutions, and e on pretence of validation, the
results of that algorithm, baptized Gibbs Weighting, will
be included in the comparisons. Gibbs Weighting gen-
erates the sample of the events exactly as Gibbs Sam-
pling, but it does the updating of posteriori probability
and according to the weighing function of Likelihood
Weighting algorithm.

Therefore, the inference algorithms evaluated were:
Forward Sampling, Likelihood Weighting, Gibbs Sam-
pling, Gibbs Weighting Sampling, Gibbs Sampling Burn-
in, Enumeration and Elimination of Variables.

To compare the implemented inference algorithms
convergence analyses were done, depending on the num-
ber of interactions and time to evaluate the efficiency of
each of them.

The exact results, which served as a comparison base,
were obtained from the Enumeration algorithms and Vari-
able Elimination, which showed identical results (ignor-
ing the rounding out of errors).

Figures 4.2, 4.2 and 4.2, showed the convergence
curves of the algorithms for the proposed test networks,
considering the number o iterations.

It can be observed that all the algorithms converge
to the exact result, increasing the number of iterations.

Gibbs Sampling algorithms and their variation with
the implemented Burn-in method, proved the most effi-
cient, needing of lower number of iterations to converge
to the exact result. One can notice that, in small net-
works, which need of few iterations to warrant a precise
result, the discard of the initial samples influence nega-
tively the result, but, to a greater number of iterations,
Burn-in supplies a significant help to the precision of
the result.



Figure 5: Graphic. Result X Num. of iterations for a consultation in
Asia network.

Figure 6: Graphic .Result X Num. of iterations for a consultation in
the DogProblem network.

The Likelihood Weighting algorithm proves a pow-
erful method taking into consideration the number of
simulations. One can notice that for some cases of the
tested networks, the behavior of that algorithm proved
similar to that of Gibbs Sampling. One should stress the
ease of implementing that algorithm as compared with
the most efficient methods.

Forward Sampling algorithm presented a good be-
havior when a consultation was performed in the Asia
network, but for consultations in DogProblem and Car-
Diagnostic networks, that algorithm seems unviable.
This fact can be accounted for by the great number of
rejected samples. According to Segundo [7], the por-
tion of rejected samples grows exponentially according
to the number of evidence variables does, and so the al-
gorithm is simply useless for complex problems. That
fact can be corroborated experimentally, observing the
behavior of the algorithm of figure 4.2.

The number of iterations necessary to a convergence
for the exact result is a good indicator of efficiency of
algorithms. But, each has an average rate of execution
per iteration. To compare which algorithm converges
faster for the exact result, we stipulated time for the ex-
ecution instead the number of simulations. Figure 4.2,
4.2 and 4.2 show the behavior for that analysis.

One can observe that Gibbs Sampling algorithm con-
verges faster for the exact result, followed by Likeli-
hood Weighting. That behavior is only stood out in

Figure 7: Graphic .Result X NÂo of iterations for a consultation in
CarDiagnostic network.

Figure 8: Graphic. Result X time for a consultation in Asia network.

larger networks.
The good amount of random number generated con-

stitutes the secret for the efficiency and good conver-
gence of the approximate inference algorithms. In the
implemented algorithms, an efficient generator of ran-
dom numbers was employed, MersenneTwister [7], which
is available on the Internet.

The choice of the ideal inference algorithm depends
upon the size of Bayesian network and on the resources
one wishes to optimize. The exact inference consumes
processing exaggeratedly in small networks and con-
sumes too much time in very large networks, becoming
unviable to certain real problems, mainly if we take into
account that the algorithms could be intended to solve
problems in real time or to be implemented in mobile
systems and/or embarked with the restriction of pro-
cessing and memory.

Out of the approximate algorithms, Gibbs Sampling
proved, in general, the most powerful method to accom-
plish inference, deserving special attention fro possible
improvements and adaptations which make inference
still more efficient. Likelihood Weighting algorithm
also proved a powerful method (having performance
similar in several cases to the one of Gibbs Sampling),
mainly if we take into account its easy implementation.

Gibbs Weighting algorithm proposed by the author,
demonstrated behavior similar in relation to their pre-
cursors (Gibbs Sampling and Likelihood Weighting),



Figure 9: Graphic. Result X time for a consultation in DogProblem
network.

Figure 10: Graphic. Result X time for a consultation in DogProblem
network.

presenting a good convergence in relation to the num-
ber of iterations, by demanding a lot of time for conver-
gence.

5 Conclusions

From the use of Bayesian networks and the probabilistic
reasoning, it is possible to construct systems which act
as specialists in the support to the medical diagnostic.
The present work demonstrates briefly that Bayesian in-
ference algorithms found in the literature can be easily
implemented and adapted to meet systems with restric-
tions of processing and memory, as embarked systems
or web systems, by means of a previous study of the
complexity of the problem which will be modeled.
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