
Task Effort Fuzzy Estimator for Software Development

RODRIGO PALUCCI PANTONI1

EDUARDO ANDRÉ MOSSIN2

DENNIS BRANDÃO3

EESC/USP - Sao Carlos Engineering School, University of Sao Paulo
Electric Engineering Department

Avenida Trabalhador São-Carlense, 400
13566-590 - São Carlos (SP) - Brazil

1rodrigoppantoni@yahoo.com.br
2emossin@yahoo.com.br

3dennis@sel.eesc.usp.br

Abstract. Software estimation has been one of the biggest challenges in Computer Science for the last
decades. This practice is essential for research and development companies, since it can provide cost and
deadline forecasting, for example. Most of the traditional techniques such as function points, regression
models, COCOMO, etc, require a long-term estimation process, which is unworkable for greatly dynamic
companies who demand short-term task estimation, that is, in days. Furthermore, such techniques need
historical data from past similar tasks, which may not exist when estimating an original task, a common
situation for companies developing high technology. A well-known technique for short-term task effort
estimation is the Use Case Points method, which only needs Use Case documents to start the estimation
process. Based on this context, this work aims to apply the Fuzzy systems theory to estimate the effort
for original software tasks in short-term, in a research and development company, based on the Use Case
Points technique. Information from a real software project is provided for this methodology and used to
validate the results. Results are validated by comparing the tasks planned with the Fuzzy estimator and
the Use Case Points technique, and the expended execution time.

Keywords: Effort estimator, Fuzzy systems, Use Case Points, software development, software engineer-
ing.

(Received December 04, 2007 / Accepted March 26, 2008)

1 Introduction

Software estimation has been one of the biggest chal-
lenges in computer science for the last decades [3], due
to its uncertain nature. Estimation is essential for re-
search and development companies, since it can pro-
vide cost control, delivery accuracy, among many other
benefits.

Based on this context, new paradigms such as Fuzzy
logic may be an alternative to estimate task effort in
software development.

This work intends to apply the Fuzzy Systems The-

ory to estimate the effort to develop original software
tasks, also estimating the effort time to develop tasks as
soon as possible in the software lifecycle, which would
improve the original technique created using Use Case
Points.

Data information used in this work is provided from
a real software project developed by Smar Equipamen-
tos Industriais [15]. Smar develops original fieldbus
automation software systems and has more than fifteen
patents in the USA and Europe.

Results are validated by comparing original tasks
planned in a real project using the Use Case Points tech-

rodrigoppantoni@yahoo.com.br
emossin@yahoo.com.br
dennis@sel.eesc.usp.br


nique and Fuzzy, and the expended execution time.

2 Problem Definition

Developers should be able to estimate the time to de-
velop software tasks by comparing similar tasks that
have already been developed. However, estimating tasks
has an uncertain nature, since it depends on several and
usually not evident factors, and it is hard to be mod-
eled mathematically [11] [13]. Researchers have pro-
posed several methodologies or models based on Func-
tion Points [2] [8], Use Case Points [16], COCOMO
(COnstructive COst MOdel) created by [1], among oth-
ers. These models are also applied to other techniques
(models), for example, in ordinary multiple regression,
although there are techniques also using regression mod-
els only (statistic modeling technique).

Some researches related to software estimation us-
ing Fuzzy have been conducted in the past years in an
attempt to improve the traditional techniques, as pro-
posed by [4] and [17], who use the function points es-
timation technique together with Fuzzy logic; other re-
searches use Fuzzy with the COCOMO model, as pro-
posed by [6] and [7]; there is also the work proposed
by [5], which suggested a technique using Fuzzy, the
COCOMO model and neural networks; and, finally, the
work of [10] using multiple regression together with
metrics such as the McCabe complexity to classify com-
plexity, Dhama coupling to classify coupling and lines
of code to classify the size.

The traditional models mentioned above are based
on the experience with similar tasks, such as informa-
tion related to lines of code, coupling between modules,
etc. The nature of the details and the large amount of in-
formation characterize a long estimation process using
traditional models (in weeks/months). Different from
the techniques mentioned previously, the Use Case Points
technique is used worldwide because it is characterized
by its advance estimation right at the beginning of the
software lifecycle, that is, the time to estimate tasks is
short (in days).

As noted, traditional models use project data from
similar tasks executed in the past, but due to this fact
it is not possible to use traditional techniques, even if
combined with Fuzzy or neural networks, when the goal
is to estimate original tasks that have no data for com-
parison. The Use Case Points technique is the excep-
tion, because it is only necessary to provide the specifi-
cation of requirements and Use Case documents. There-
fore, the Use Case Points estimation technique aggre-
gates two important characteristics considering the work
involved in this article: short-term estimation (1) and

task estimation based on few references from past ex-
periences (2).

This work focuses on estimating the time effort to
implement a specific characteristic in a software system
by combining part of the Use Case Points technique
with the Fuzzy theory. It is important to emphasize
that the initialization phase (based on RUP - Rational
Unified Process) [14] and a small part of the software
lifecycle documentation (Use Case documents) should
have been concluded in order to qualify some of the in-
formation from the Fuzzy system (the inputs) and there-
fore obtain a better accuracy.

In this work, we consider that "effort" is the neces-
sary amount of days used to execute a task. Effort is not
the duration because duration is the total time including
non-working days such as public holidays and Sundays,
the time spent in the tasks not related to the project, etc.
The effort considers only working days, without inter-
vals, and executing only this very task.

3 Problem Solution

The variables generated from software metrics are used
in software project management models. For similar
tasks, and this case is not considered in this article,
other inputs are typically used to estimate future tasks,
such as lines of code information, coupling among mod-
ules, etc, and used in multiple regression estimation, for
example. Usually, researchers try to estimate with max-
imum accuracy, that is, with a minimum error (minutes
or few hours, at most), and the time needed for the esti-
mation does not matter.

However, software tasks estimation does not seem
to have the accuracy desired by researchers. For this
reason, this work focuses on other attributes used as in-
puts for the estimation system, aiming at a short-term
estimation time and providing significant results. Such
attributes are easily and quickly obtained for the estima-
tion, which means that it is not necessary to minutely
count and analyze each line of code to estimate a task
that may just require a little more development effort
time than the effort time required to estimate this task.

To apply the estimation methodology using Fuzzy,
this work includes a case study related to a project from
Smar Equipamentos Industriais named Syscon, a field-
bus network configuration software for industrial au-
tomation systems. The inputs, the Fuzzy rules and the
pertinence functions were defined according to the de-
velopment process for the software mentioned above.

The Fuzzy estimator proposed in this article has three
inputs and one output. The inputs are the complexity to
modify the modules, the experience of developers in the
C++ programming language and in the project, and the



size of the alteration. The output from the inference
system is the effort time estimated in days (Figure 1).

Figure 1: Fuzzy Inference System

To compose the Fuzzy effort estimator, the so-called
"fuzzification" transforms the linguistic variables and
their terms or sets. Figures 2 to 4 show the graphs from
the pertinence functions for the Fuzzy inputs. Figure 5
shows the pertinence function for the system output.

Figure 2: Complexity to modify the modules

The terms Low (L), Average (A) and High (H) were
defined for the variable "Complexity" in Figure 2.

The terms Low (L), Average (A) and High (H) were
defined for the variable "Experience" in Figure 3.

The terms Small (S), Medium (M) and Large (L)
were defined for the variable "Size" in Figure 4. Finally,
the terms Very Low (W), Low (L), Average (A), High
(H) and Very High (G) were defined for the output of
the Fuzzy system in Figure 5.

To calculate the complexity entered in the Fuzzy
system, the complexity factor (technical complexity fac-
tor) from the Use Case Points method [16] was used,
which includes functional and non-functional require-
ments (macro requirement) for the alteration. This work
will not describe the factor calculation in details due to
the large amount of steps needed to obtain this factor.
For further details, consult [16], [9] and [12].

Figure 3: Experience of Developer

Figure 4: Size of the alteration

Figure 5: Effort time



The experience of developers related to the C++ pro-
gramming language and to the project is determined ac-
cording to the number of years of professional experi-
ence. The universe of discourse considered in this work
varies from one to four years in the current project.

The size of the alteration uses the number of mod-
ules (cpp and c files) that will be altered and created,
that is, the sum of those numbers is represented by the
linguist variable "Size".

A specific software task may be estimated by the
system entering, for example, "0.9" as the complexity
(this value was calculated with the formula technical
complexity factor), which implies a high complexity;
"35" as the size (after estimating the number of files
to be altered), which characterizes a medium size; and
then, "1" as the experience of developer characterizing
an experience between low and average. Based on these
inputs and the Fuzzy linguistic rules, the system returns
the estimated effort.

The rules from the Fuzzy inference system that con-
tain the linguistic variables and their term sets related to
the project are described in Table 1. It is important to
note that those rules were adjusted or calibrated, as well
as all pertinence level functions, in accordance with the
tests and the characteristics of the project.

All rules use the connective "and" between the an-
tecedents, as indicated in the example below regarding
the first line of Table 1.

If Complexity is "Low" and Size is "Small" and
Experience is "Low" Then the Effort is "Very Low".

The generalized Modus-Ponens inference process was
used in the Fuzzy calculations, in addition to the Max-
Min composition operator, the Mandani implication op-
erator, and the Maximum operator for aggregation. The
defuzzification of the output "effort" used the Mean of
Maximum technique in this work because the resulting
values were more appropriate when compared to the
other evaluated techniques (Center of Area and First of
Maximum).

As mentioned previously, the pertinence functions,
as well as the rules of the inference process, were ad-
justed. This adjustment implies altering the pertinence
functions (Figure 2, 3, 4 and 5) and/or the linguistic
rules (Table 1). It is quite usual to adjust results when
modeling Fuzzy system, more specifically when the feel-
ing of the developer is needed instead of an exact math-
ematical methodology as used for training neural net-
works, for example.

Twenty tasks or characteristics previously executed
in the Syscon project were analyzed to define the adjust-
ment. Then, the attributes (from the tasks and the de-

Table 1: Fuzzy Rules

Complexity Size Experience Effort

L S L W
L M L W
L L L L
A S L L
A M L A
A L L H
H S L H
H M L G
H L L G
L S A W
L M A L
L L A A
A S A L
A M A A
A L A H
H S A A
H M A H
H L A G
L S H W
L M H L
L L H H
A S H A
A M H A
A L H H
H S H A
H M H H
H L H G

veloper) were included one after the other in the system
and, in the end, the resulting output was monitored. Af-
ter carefully analyzing those twenty tests, the adjusted
pertinence functions and rules that were more appropri-
ate for all of the twenty tasks were kept.

Observe that the twenty tasks or characteristics used
for adjustment are not similar when compared to each
other or to the new developed tasks, which validated the
proposed estimator as detailed in the next sections.

4 Results

Once the Fuzzy system was developed, and the perti-
nence function and linguistic rules were included and
adjusted, ten new, original tasks, not similar to the Syscon
project, were estimated. These tasks will validate the
proposed estimator. The estimation of the tasks has
been executed for eleven days. Table 2 shows the values
for each new task.

Table 3 shows the difference among the time esti-
mated using UCP (Use Case Points) and Fuzzy, and the
time actually taken by the developers, for the same tasks
described in Table 2. EET is related to the Effort Exe-
cuted Time, EUCP to Error UCP and EF to Error Fuzzy.

The information related to the UCP estimation was
calculated considering one day of effort for each Use



Table 2: Estimated Characteristics

Task Complexity Size Experience Effort

1 0.11 9 0.4 2.6627
2 0.51 20 2 21.4014
3 0.15 15 4 3.2432
4 0.98 42 2 31.4314
5 0.53 12 1 11.3313
6 0.38 25 4 21.6016
7 0.80 22 4 31.7918
8 0.23 56 2 21.4815
9 0.64 8 2 11.5315

10 0.2 10 2.6 2.9830

Case Point. Notice that the adjustment process was also
executed for the UCP estimation technique, which has
been routinely applied at Smar for three years.

Table 3: Estimated versus Executed
Task UCP Fuzzy EET EUCP EF

1 2.323 2.6627 2.50 -7.0800 6.5080
2 29.23 21.4014 18.0 62.3889 18.8967
3 5.04 3.2432 3.40 48.2353 4.6118
4 29.07 31.4314 29.50 -1.4576 6.5471
5 13.78 11.3313 9.50 45.0526 19.2768
6 16.98 21.6016 18.50 -8.2162 16.7654
7 26.86 31.7918 27.00 -0.5185 17.7474
8 17.19 21.4815 20.30 -15.3202 5.8202
9 9.89 11.5315 16.30 -39.3252 -29.2546
10 3.10 2.9830 2.50 24.0000 19.3200

The error between the Fuzzy estimation and the real
effort and the error between the UCP estimation and the
real effort were calculated for each task, and the per-
centage will help the analyses of the results.

5 Analyses of the Results

Since this is a Fuzzy estimator, the system output is
composed by the Fuzzy algorithm through the rules as-
sociated to the three inputs, in accordance with the ex-
act values provided. However, the input "Complexity"
had the higher weight in most of the rules, among the
three inputs considered in this work. This weight was
determined by the rules from the inference system (Ta-
ble 1) /labeltable1. Tasks number 6 and 7 in Table 2 can
clearly show the influence of the complexity: the inputs
"Size" and "Experience" have close values but the vari-
able "Complexity" was "0.38" and "0.80", respectively.
The complexity increased the amount of days of effort
from "21.6016" to "31.7918".

Yet, for other projects, the feeling of the Fuzzy de-
signer is essential to distinguish the most significant
parameter, that is, the parameter that should have the

higher weight. The most significant parameter will be
determined after executing the tests of adjustment for
the system and the analysis of the response.

Particularly in this work, an output with more terms
or Fuzzy sets provided a better performance due to the
high granularity (or discretization with more points) de-
manded from the results.

Most of the tasks planed with the Fuzzy estimator
resulted in a more accurate estimative when compared
to the UCP technique, and also compared to the time
spent in executing the tasks. Among the ten analyzed
tasks, only three of them (4, 6 and 7) resulted in a more
accurate estimative using UCP estimation.

For some of the planed tasks, for example, tasks 2,
5, 9 and 10, the error percentage was high but the Fuzzy
estimation is still better than UCP because the estima-
tion was executed right at the first steps of the project
lifecycle (a short-term estimation), and also because the
technique was used to estimate tasks that have never
been developed in a similar manner.

6 Conclusions

This article demonstrates that the effort estimation tech-
nique using Fuzzy may be a good alternative when es-
timating tasks with few previous references, because in
this case there is no similar historic information data
and/or developers intend to estimate tasks in a short-
term deadline.

Evidently for long-term estimation, other method-
ologies (traditional or not) result in more accurate dead-
lines, since there are more input references from es-
timating models, for example, when factors use func-
tion points, COCOMO and multiple regression. On the
other hand, considering the software development pro-
cess model adopted by the company, a long-term esti-
mation is not feasible because the development team is
required to estimate the effort in days.

Another important detail in this work that differs
from researches in the area is the type of the inputs se-
lected for the proposed estimator system (complexity,
size and experience), which would theoretically pro-
vide a lower accuracy when compared to techniques de-
manding fully detailed analyses, such as function points,
COCOMO or multiple regression. However, this article
shows that these inputs are significant for the estima-
tion using Fuzzy systems, as demonstrated by the re-
sults, and, moreover, they are simple, easy and fast to
be obtained in order to determine the estimation in the
shortest time.

There is a decisive problem on how to interpret the
development experience of different analysts, which causes
the proposed methodology very dependent on the ana-



lyst and the project. There is no recipe to adjust the in-
ference rules and the Fuzzy pertinence functions. Tests
are crucial to discover the system model and, at the
end, the best option for all obtained responses should
be used. This is exactly the proposal of the Fuzzy logic
for smart computing systems: providing a method that
brings the computational decision process near to the
human decision, through linguistic rules that generate
fuzzy systems.

References

[1] Boehm, B. W. Software engineering economics.
Prentice Hall, 1981.

[2] Bradley, M. Function point counting practices
manual release 4.1. International Function Point
Users Group, 1999.

[3] Brooks, F. P. The great challenges for half-
century-old computer science. Journal of the
ACM, 50(1):25–26, January 2003.

[4] Gray, S., A.; MacDonell. Applications of fuzzy
logic to software metric models for develop-
ment effort estimation. IEEE Proceedings of
NAFIPS’97, 1997.

[5] Huang X., R. J., Ho D. and L.F., C. A neuro-fuzzy
tool for software estimation. 20th IEEE Interna-
tional Conference on Software Maintenance, page
520, September 2004.

[6] Huang X., R. J., Ho D. and L.F., C. A soft com-
puting framework for software effort estimation.
Soft Computing, Springer, 10(2):170–177, Jan-
uary 2006.

[7] Huang X., R. J., Ho D. and L.F., C. Improving
the cocomo model with a neuro-fuzzy approach.
Applied Soft Computing Journal, 7:29–40, 2007.
Elsevier Science.

[8] Kemerer, C. F. Reliability of function points mea-
surement: a field experiment. Communications of
the ACM, 36(32):85–97, 1993.

[9] Kusumoto, F. I. K. H. S. M. Y., S.; Matukawa. Es-
timating effort by use case points: method, tool
and case study. Proceedings. 10th International
Symposium on Software Metrics, 2004.

[10] Martin, J. Y. C. T. A., C.L.; Pasquier. Software
development effort estimation using fuzzy logic:
A case study. Sixth Mexican International Con-
ference on Volume, pages 113 – 120, September
2005.

[11] McCabe, T. A complexity measure. IEEE Trans-
action on Software Engineering, SE-2:308–320,
December 1976.

[12] Mohagheghi, B. C. R., P. Anda. Effort estimation
of use cases for incremental large-scale software
development. ICSE 2005. Proceedings. 27th In-
ternational Conference on Software Engineering,
2005.

[13] Pressman, R. Software engineering. McGraw
Hill, 5th ed, 2001.

[14] RUP. <http://www.wthreex.com/rup/>. 2007.

[15] Smar. <www.smar.com>. 2007.

[16] Smith, J. The estimation of effort based on use
cases. Rational Software, Cupertino, CA.TP-171.,
1999.

[17] Xia W., H. D. and L.F., C. Calibrating function
points using neuro-fuzzy technique. 21st Interna-
tional Forum on Systems, Software and COCOMO
Cost Modeling, November 2006.


	Introduction
	Problem Definition
	Problem Solution
	Results
	Analyses of the Results
	Conclusions

