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Abstract. Task scheduling is essential for the suitable operation of multiprocessor systems. The aim of 
task scheduling is to determine an assignment of tasks to processors for shortening the length of 
schedules. The problem of task scheduling on multiprocessor systems is known to be NP-complete in 
general. Solving this problem using by conventional techniques needs reasonable amounts of time. 
Therefore, many heuristic techniques were introduced for solving it. This paper presents a new heuristic 
algorithm for task scheduling, based on evolutionary method which embeds a new fast technique named 
Elitism Stepping into Genetic Algorithm (GA). By comparing the proposed algorithm with an existing 
GA-based algorithm, it is found that the computation time of the new algorithm to find a sub-optimal 
schedule is decreased; however, the length of schedule or the finish time is decreased too. 
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1 Introduction 

The problem of scheduling parallel tasks onto 
multiprocessors is to simply allocate a set of tasks to 
processors such that the optimal usage of processors 
and accepted computation time for scheduling 
algorithm are obtained. The assumption of this paper 
is based on the deterministic model, that is, the 
number of processors, the execution time of tasks, the 
relationship among tasks and precedence constraints 
are known beforehand. The precedence constraints 
between tasks are represented by a Directed Acyclic 
Graph (DAG). In addition, the communication cost 
between two tasks is negligible and the multiprocessor 
system is uniform and non-preemptive, that is, the 
processors are identical, and each processor completes 
the current task before the new one starts its 
execution. 
The complexity of the scheduling problem is very 
depended to the DAG, the number of processors, the 
execution time of tasks and also the performance 
criteria which would to be optimized. To date, many 
heuristic methods have been presented to schedule 
tasks on multiprocessor systems [1, 2, 3, 4, 6, 10]. 
Also, there are many studies have been used for task 
scheduling based on GAs [5, 8, 9, 11, 12, 13, 14]. GAs 
are a problem solving strategy, based on Darwinian 
evolution, which has been successfully used for 
optimization problems [7]. 

The aim of this paper is to present a GA which uses a 
novel proposed method, named Elitism Stepping to 
decrease the computation time for finding a sub-
optimal schedule. However, this new method is 
general and could be applied to any GA. 
The remainder of this paper is organized as follows: 
The task graph model or DAG is described in section 
2. The previous scheduling algorithm named, Basic 
Genetic Algorithm (BGA) is explained in section 3. In 
section 4, the proposed scheduling algorithm is 
described. The results of the simulation studies are 
presented in section 5. The paper concludes with 
section 6. 

2 Task Graph Model 

A set of tasks could be represented by a DAG. The 
task graph G=(V,E) is a DAG which has a set of nodes 
V and a set of directed edges E which connect the 
nodes to each other. The V is a set of m tasks to be 
executed, so V={T1,T2,…Tm}. The directed edges are 
represented by E={eij} which eij is an edge between 
two tasks Ti and Tj specifies that Ti must be completed 
before Tj can start; the notation of Ti ≥ Tj  is used for 
this purpose and Ti is a predecessor of Tj and Tj is a 
successor of Ti. 
If there is a path of the directed edges from Ti to Tj 
then Ti is an ancestor of Tj and Tj is a successor of Ti. 
A set of predecessors of task Ti is denoted by 
PRED(Ti). 



A set of successors of task Ti is denoted by SUCC(Ti). 
The height of a task is defined as Equation 1 [8]: 
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By definition, for any two tasks Ti and Tj, if Ti is an 
ancestor of Tj, then Ti has larger value of height than 
Tj. If there is no relationship between two tasks, then 
they could execute in any arbitrary order. A DAG 
which has eight tasks according to their height and 
their execution time (the time needed for a task to 
execute) is shown in Figure 1. 

 

 
Figure 1- An example of a DAG. 

Figure 2 shows a legal schedule on two processors for 
a DAG as shown in Figure 1, which precedence 
constraints are considered. The length of schedule or 
the total finish time is 11.  
 

P1 T1  T5 T4 T7  
P2 T2 T3 T6  T8 
time   0   2 3       5          8   10    11 

 
Figure 2- A legal schedule for a DAG of Figure 1 

3 Basic Genetic Algorithm (BGA) 

The genetic algorithms GAs have been widely and 
successfully used for many optimization problems [7]. 
GAs are probabilistic techniques that start from an 
initial population of generated potential solutions to a 
problem, and regularly evolve towards better solutions 
through a repetitive application of genetic operators 
such as crossover, mutation, selection and 
reproduction [8]. 
In this paper, the presented algorithm by Hou et al. [8] 
in multiprocessor task scheduling is chosen as a Basic 
Genetic Algorithm (BGA) which is discussed here. 

3.1 Condition of Height-ordering  

The height of tasks criterion is used for generating the 
first population. Therefore, the tasks are ordered in 
ascending order of their heights. Then, according to 
this order, the tasks are assigned to processors. For 
example, As shown in Figure 2 that height(T1) ≤ 
height(T5) ≤ height(T4) ≤ height(T7). 
If there is no relationship between two tasks, then the 
height-ordering condition will not be used. For 
example the tasks T5 and T6 could be executed in any 
arbitrary order. The optimal or sub-optimal schedule 
may not satisfy the height-ordering condition. So, the 
definition of height could be modified as Equation (2). 
height(Tj) is a random integer X which could be 
obtained from  Equation 2. 
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3.2 Fitness Value 

The GA uses multiple search nodes simultaneously. 
Each of the search nodes corresponds to one of the 
current solutions (schedules) and is represented by a 
chromosome. Each chromosome contains a string, 
called genes (tasks) and has an associated value called 
a fitness value, which is evaluated by a fitness 
function. The fitness function used for the genetic 
algorithm is based on the total finish time of the 
schedule which is obtained by Equation 3. 
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Where Np is the number of processors and FT(Pj) is 
the finish time of the final task in the processor Pj. 

3.3 Initial Population Generating 

In a GA, only chromosomes with better fitness values 
are likely to survive in the next generations. By 
evolving the chromosomes continuously, the solutions 
corresponding to the search nodes are improved 
gradually. A set of chromosomes at a given stage of a 
GA is called a population. The number of 
chromosomes in a population is called the population 
size. The following steps randomly create an initial 
population of a task graph for a multiprocessor with 
Np processors. 

1- Put the tasks in a list according to their height 
in ascending order. 

2- Repeat step 3 until all the tasks would be 
finished. 

3- Generate an integer number, r, between 1 and 
Np, then select the first task in the list and 
assign it to processor r and then delete it from 
the list.  
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4- By repeatedly applying the above steps (for 
the number of population size), initial 
population would be generated. 

3.4 Crossover operation 

The crossover starts with two parent chromosomes to 
exchange subparts of them to create two new children 
chromosomes as shown in Figure 3 like following 
steps. 

1- Select the crossover points where the list 

could be cut into two halves, according to the 
two next conditions.  

2- Exchange the bottom halves of processor P1 
in chromosome A and chromosome B. 

3- Exchange the bottom halves of processor P2 
in chromosome A and chromosome B. 

The crossover is applied with a certain crossover rate 
(Xr). 

 
Figure 3- Applying crossover to two chromosomes. 

 
If the crossover points satisfy two following 
conditions then, the new chromosomes will be legal. 

1- The height of the tasks next to the crossover 
points should be different. 

2- The height of all the tasks immediately in 
front of the crossover points should be equal. 

The crossover could be easily extended for Np 

processors. 

3.5 Mutation Operation 

The mutation selects a chromosome and then 
randomly exchanges the two tasks with the same 
height. The mutation is applied with a certain 
mutation rate (Mr) which is used to prevent the search 
process from converging to the local optima 
prematurely.  

3.6 Selection and Reproduction 

The selection is implemented by a biased roulette 
wheel [7] where each chromosome in the population 
occupies a slot size in proportion to its fitness value. 
Each time a generation is required, a simple spin of 
the biased roulette wheel yields a parent chromosome. 
Because chromosomes with higher fitness values will 
have larger slots, they are more likely to be selected 
and to be prepared for crossover and mutation.  
Elitism, the property of guaranteeing the best solution 
passes in the next generation, is used here to improve 
the selection method. 

4 The Proposed Algorithm 

We can make several modifications to improve the 
BGA which is described here. 

4.1 The new Initial Population Generating 

The bottom-level of a task is the length of the longest 
path from the task to an exit task (the task has no 
child). The bottom-level is obtained by two 
conditions: 

• If a task has no child, its bottom-level is 
equal to its execution time. 

• If a task has child, its bottom-level is equal to 
the maximum bottom-level of its children.  

Step 2 and step 4 of the proposed algorithm are new 
compared to the BGA. 

1- Sort the tasks according to their heights in 
ascending order. 

2- Sort the tasks with the same height according 
to their bottom-level in descending order. 

3- Repeat step 4 and step 5 until finish of all the 
tasks. 

4- Generate a permutation of processors. 
5- Assign tasks to processors in order. 
6- The above steps are repeated for the number 

of population size. 
A decrease in the computation time for the new 
algorithm is realized for the following reason: Step 2 
is not present in the GBA which means there is no 
priority between tasks with the same height.  The 
bottom-level prioritization orders tasks with equal 
height in the new algorithm. 

Chromosome B  

Chromosome A  

P2  

P1  

P2  

P1  T1 T3 

T2 T4 

T5 T8 

T6 T7

T1 T4 T3 T7 T8 

T2 T5 T5 

FT=12  

FT=11   

Crossover  
points 



For example, Figure 4 shows a DAG and Table 1 
represent the priority of tasks’ execution based on 
their height and their bottom-level too.  

 

T1 T2 T3 T4 

T5 T6 T7 

T8 T9 T10 T11 

 
Figure 4- An example of a DAG. 

Finally, Figure 5 shows two schedules for three 
processors based on the different policies. 

Table 1- priority of execution of tasks based on their height and their bottom-level. 

Order of execution 
according to bottom-level 

Order of execution 
according to height Bottom-level Height Execution 

time 
Task 

number 
1 1 72 0 50 1 
4 2 41 0 1 2 
3 3 50 0 10 3 
2 4 60 0 20 4 
7 5 21 1 20 5 
6 6 22 1 2 6 
5 7 40 1 20 7 

11 8 1 2 1 8 
9 9 20 2 20 9 

10 10 19 2 19 10 
8 11 20 2 20 11 

          
 
  time      0                        50          70           90       109 
P1 T1 T4 T7 T10 

  time      0       1               50          70   71    90       110 
P2 T2  T5 T8  T11 

  time      0         10           50      52          72 
P3 T3  T6 T9  
                            b) 
 
  time      0                     50       51           71         90  

P1 T1 T2 T5 T10 
  time      0       1                       51          70       90       91

P2 T4  T7 T11 T8 
  time      0         10           50      52          72 

P3 T3  T6 T9  
                              a) 

Figure 5- Two schedules for three processors based 
on the different policies. a) Order of execution 

according to the bottom-level.  b) Order of 
execution according to the height. 

 
As it seen, by changing the policy (priority) of task 
assignment, the total finish time based on the priority 
of the tasks’ bottom-level is 91 while that, the total 
finish time based on the priority of the tasks’ height is 
110, which is significantly longer. Now, using the 
tasks’ bottom-level is considerably better than using 
the tasks' height when the number of tasks increases. 

In step 4, instead of choosing processors randomly, a 
permutation of processors is performed. Using of 
permutation has the following three advantages:   

• There are no idle processors after task 
assignment. 

• The tasks are distributed and are balanced 
across the processors. 

• The tasks with the same height are distributed 
as far as possible. 

Considering that, the tasks with the equal height can 
execute in parallel, so if there are several tasks with 
the same height for executing in a processor then, the 
parallel execution will become the sequential 
execution and the founded schedule will be not 
optimal or sub-optimal solution. 
On the other hand, if the tasks with the same height 
which is assigned to a processor have some successors 
then, their successors will start lately and these delays 
propagate to the task graph and generate a non optimal 
schedule. This question maybe asked that a load 
imbalance across processors will occurred only in the 
initial population and it will disappear in the further 
generations. But, it can be noticed that it takes some 
time for the several generations until balancing load 
among processors to distribute the tasks with the same 
height to the different processors. This means that, the 
BGA takes some time to distribute the tasks with 
equal height to the different processors. 



Figure 6 shows a schedule of eleven tasks of Figure 4 
on three processors, which the tasks with the same 
height are not distributed to the different processors. 
The total finish time of this schedule is 131, which is 
not good however, the processors are load balanced. 
 
  time      0                    50       70       90       92         112 
P1 T1 T4 T5  T9 

  time      0       1        11                                92        111       131
P2 T2 T3  T10 T11 

  time                                       70        90      92       93 
P3   T7 T6 T8 
 

Figure 6- A schedule of tasks of Figure 4 on three 
processors, which the tasks with the same height are not 

distributed to the different processors. 

4.2 New Selection and Reproduction 

1- Sort the chromosomes according to their 
fitness value in ascending order. 

2- Copy the NElite best chromosomes with the 
best fitness values to the new generation (the 
number of NElite will be discussed later in 
elitism stepping technique). 

3- Use a biased roulette wheel for the current 
generation.  

4- For (the number of population size – NElite)/2 
do step 5, 6 and 7. 

5- Select two chromosomes by using the biased 
roulette wheel and prepare them for 
crossover. 

6- With probability Xr apply the crossover to the 
chromosomes and move the children to the 
next generation; otherwise, prepare them for 
mutation.  

7- With probability Mr apply the mutation to the 
two chromosomes and move the generated 
chromosomes to the next generation; 
otherwise, they go into the next generation 
with no change. 

Typically, above steps would be terminated after a 
certain number of generations or if a convergence 
would be reached. 
It can be noticed that the population size of each 
generation stays fixed by applying the above steps. 

4.3 The Elitism Stepping Technique 

It is obvious that a fixed elitism with a few elites has a 
low convergence rate (a high computation time) but it 
can find a sub-optimal schedule. On the other hand, 
the fixed elitism with a lot of elites has fewer solutions 
in the search nodes and can not find a sub-optimal 
schedule, however it converges fast. Therefore, a new 
method, named elitism stepping is introduced here 
which uses the advantages of two mentioned fixed 
elitism. The aim of this technique is to decrease the 
computation time of the algorithm to find an 
acceptable sub-optimal schedule.  

In this technique, the number of elites in the first 
generation is two and after that, by increasing the 
number of generations, the number of elites increases 
too, until they reach to the population size. So, the 
convergence is happened and a sub-optimal schedule 
is founded. 
By performing some simulation of a GA for the 
different DAGs and by studying diagrams of the 
average finish time of schedules in different 
generations, it is seen that the stepping elite has 
suitable behavior according to the nature of task 
scheduling problem. Figure 7 shows the average finish 
time of a GA for a set of 15 random DAGs consist of 
20 to 90 tasks for scheduling in 3 to 6 processors 
where, each simulation has 200 generations. 
The average finish time for the first generation is 
883.18, for the 100th generation is 747.64 and for 200th 
generation is 732.28. If the number of generation is 
divided to three parts then, the first one-third has the 
most effectiveness to improve the solutions. The 
second part improves the solution slowly and in the 
last one-third, the average finish time usually 
converges to one value. 
It is obvious that by using the elitism stepping 
technique, there are more areas in the search nodes at 
first because the first solutions has more ability of 
improvement. Then, as the number of generations 
increases, the ratio of improvement decreases, so this 
technique causes fewer areas exist in the search nodes 
and all solutions converge to a sub-optimal schedule. 
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Figure 7- The average finish time for 200 

generations. 

5 Experimental Results 

A set of simulation is performed under one set of 
common assumptions by MATLAB7 for comparison 
of the proposed algorithm and the previous BGA. A 
Pentium IV-2.8MHz with RAM 512M based 
computer is used to implement both algorithms. A 
random-graph-generating program is written by C++ 
language, which is capable of making random graphs 
that meet initial constraints. For this purpose a set of 
15 graphs consists of 20 to 90 tasks with random 
execution time are generated. These tasks would be 
scheduled on a multiprocessor system with 3 to 6 
processors as shown in Table 2. 



Table 2- Specifications of the tasks and the 
multiprocessors would be scheduled. 

Number of 
processors 

Number 
of tasks 

Graph 
number 

3 20 1 
3 25 2 
3 30 3 
4 35 4 
4 40 5 
4 45 6 
5 50 7 
5 55 8 
5 60 9 
5 65 10 
5 70 11 
5 75 12 
6 80 13 
6 85 14 
6 90 15 

 
After generating the data, the parameters of the both 
algorithms need to be determined. The number of 
generation is set to 200, so stop condition is 200 
iterations. In order to achieve a proper search nodes 
and whereas the number of generation is fixed then, 
the population size is chosen proportionate to the 
number of tasks and it is set to 1.6 times the number 
of tasks. The crossover and mutation rates are set to 
0.8 and 0.06 respectively. 
Each graph in Table 2 is scheduled for both 
algorithms three times. The average computation time 
of two algorithms for finding a sub-optimal schedule 
and their average finish time (fitness values) are 
calculated for each graph and then, the total average 
time are obtained for 15 graphs. 
The average computation time of two algorithms for 
200 generations is shown in Figure 8. The average 
computation time varies linearly according to the 
increas in the number of generations in the BGA. 
Since, the average computation time of generation 200 
(a sub-optimal schedule) is 18.45s for BGA and is 
10.06s for the proposed algorithm. Therefore, the 
speed up of the new algorithm is almost 1.85 times of 
the GBA. 
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Figure 8- The average computation time of two 

algorithms for 200 generations.  

The average finish time (the average fitness values of 
schedules) of two algorithms for 200 generations is 
shown in Figure 9. As it seen, the average finish time 
of generation 200 in the proposed algorithm is better 
than GBA. 
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Figure 9- The average finish of two algorithms for 

200 generations.  

6 Conclusions 
In this paper, we presented a genetic algorithm which 
uses a new method, named elitism stepping technique 
for the task scheduling problem in multiprocessor 
systems, with the objective to reduce the schedule 
length within an acceptable computation time. In order 
to show the effectiveness of the proposed algorithm, 
we performed experimental simulations by applying 
the algorithm to various kinds of task graphs. 
Additionally, we compared the new algorithm with the 
previous genetic algorithm, BGA proposed by Hou. 
As a result, under the same conditions, the proposed 
algorithm obtains better schedule length or finish time 
than the BGA. Moreover, the results show that the 
computation time of the new algorithm is much 
smaller than the previous one. 
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