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Abstract. : This paper presents the application of non-destructive evaluation by eddy currents for the
determination of the geometrical and physical parameters of metal sheet, obedient to a sensor of a double
coil (method of Adding-Opposing (A O)). The forward problem is solved by using an analytical model.
The electrical impedance for coil is measured for two frequencies ranging from 1 kHz and 1 MHz. The
inversion method is implemented using neural networks; it consists to introduce the real and imaginary
parts of the impedance for the evaluated thickness and conductivity. The neural network (NN) imple-
mentation of this problem is determined by the split-sample method and the adjustment of the internal
parameters of the neural networks so as to minimize the mean square error (MSE). The inversion results
obtained with both NN (MLP and RBF) are presented and compared. The presented approach has per-
mitted to achieve good parameters estimation in a very reasonable training time with respect to others
approaches.
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1 Introduction

In the industry, the various methods of non destructive
control (CND) are used currently for research and the
qualification of defect in the pieces on the one share,
and the characterization of the materials on the other
share. This CND application is by eddy current; its
flow in the part in a perpendicular direction to the flux
is parallel to the winding and the part surface. In most
eddy current instruments the exciter coil induces eddy
currents in a test part. The objective of this work is
the use of the method A-O [4], [5] who permits the de-

termination of the physical and geometrical parameters
of the immobile part simultaneously while using two
identical solenoids, connected in series, placed face-to-
face coaxialement, and disposed on the two sides of the
sheet metal under control. The total impedance of the
two coils when the current there passes in the same di-
rection and in the opposite directions is measured. The
difference of impedance between these two cases will
be used as an intermediate value that permits to esti-
mate these parameters of the sheet metal. With respect
to the approaches proposed in [1], [2] based on the an-
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alytical model developed by Dodd & Deeds, our ap-
proach is based on the analytical model developed by
Nonaka [4], [5]. For the evaluation of these parameters
one uses the external inverse method at basis of neural
networks, this method consists at finding the parame-
ters of the corresponding target to the signals creative
of the sensor, for that, it is simpler and faster to us-
ing the behavioural external modelling. The simplicity
of the structure of an external model and the fast in-
version that does not appeal to the successive iterations
makes their use very interesting. The application of the
neural networks to electromagnetic inversion is used in
the case of impedance measurement by eddy currents
of a metallic plan; the inversion method is investigated
to estimate the metallic parameters, and its impedance
is measured as a function of frequency [7]. The eddy
current probe impedance is given as input to the neural
network and the conductivity and thickness is evaluated
continuously by output of the neuron. In our case the
estimate of the sought parameters is carried out in a
non iterative direct way by creating an inverse model by
means of a NN. It’s a matter of the behavioural model-
ing, by opposition to a physical model of method A-O.

2 STATEMENT OF PROBLEM DESCRIPTION
AND THE FORWARD PROBLEM

The geometry of the problems considered is illustrated
schematically in Figure 1. The two identical solenoids
at an air-core circular coil of rectangular cross section,
connected in series. The solenoids are placed coaxiale-
ment, face to face and they are disposed of on the two
sides of the metal part under control, while the coils axis
is perpendicular to the target surface. The coils parame-
ters of importance are number of turns n, inner radius of
the coil r1, and outer radius r2, L the length of the coil,
lo the lift-off, s, e the conductivity, and the thickness
respectively of the layer. The width and the length of
sheet are supposed infinitely large. The surface upper
and that lower of sheet are tf and tb. The forward prob-
lem was solved by Nonaka [4], [5] who consists in the
determination of the winding impedance difference of
the probe and the parameters of the metal sheet. The
coil is excited by a constant alternative current of angu-
lar frequency; its impedance is measured as a function
of frequency. So the probe impedance Z is theoretically
given by. [1], [2]:

Z± = jK

∫ ∞
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Figure 1: Geometry and dimensions of the solenoids used in method
A-O for motionless sheets

Where
K = 4πwµ0(
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The radial dimensions of the coil are incorporated
via the function D, which is defined to be.

D =
∫

α

xJ1(x)dx (3)

Where J1(x) is a first-order Bessel function.
Finally,
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And
α1 =

√
α2 + jwµsµ0σ1 (5)

In this first application, the parameters of the sheet were
set for this form (r1=5.35mm, r2=7.7mm, L=2.3mm),
whereas s was allowed to vary from 15MS/m to
25MS/m, e from 0.5mm to 1mm and the lift-off equal
at 0.5mm. The electrical impedance of the coil is
measured at two excitation frequencies (f1=1 kHz and
f2=1MHz). The signs + and - corresponding respec-
tively to the cases where the current circulates in the
solenoids in the same direction and in the opposite di-
rection. The difference in the impedance, ∆Z, which is
given by

∆Z = Z+ − Z− (6)

Where
∆Z = ∆R + j∆X (7)

With an aim of evaluating the parameters of the plate,
the real and imaginary parts of the complex impedance
will be used like inputs of the neural networks. The dia-
gram of the inversion model is illustrated schematically
by Figure 2:



Figure 2: Diagram of the inversion with neuronal inverse model

The estimation is carried out starting from the im-
pedance measurement at two fixed frequencies. The
probe is simulated by means of an analytical model
based on method A-O. The estimation of the sought pa-
rameters is carried out in a direct way (i.e. non iterative)
by creating an inverse model by means of a neural net-
work, thus, one observes the influence of the analytical
model (calculation of the probe impedance) on the un-
certainty estimate of the sought parameters.

3 INVERSION METHOD BY NEURAL NET-
WORK

The increasing interest to the neural network can be ex-
plained by their successful implementation in different
areas [6]. These methods are also widely used in non-
destructive testing by eddy currents. The artificial NN
proved to be effective because of their well known non
linear function approximation and system identification
capabilities.
The aim of inversion techniques is to estimate the set of
parameters allowing the model operator to explain the
available measures in the best way [2].
The application of NN to the inversion method of the
probe coil impedance is trained and tested to iden-
tify and evaluated the conductivity and thickness of the
metal sheet.
The NN input consists in the real and imaginary parts of
probe impedance at the two frequencies f1 and f2 while
its output provides the evaluated conductivity and thick-
ness [1], [2].
The MIMO employed network has thus 4 in-
puts and 2 outputs, the input and output vec-
tors were [Re(f1) Re(f2) Im(f1) Im(f2)]T and
[e σ]T respectively. The value relative error (RE) for
each input signal is defined according to deviation of
the real output signal value from the estimation value,
which is defined to be [1].

RE(P ) =

√√√√ 1
N

N∑

i=1

(
P̂i − Pi

Pi

)2

(8)

Where

• N , the number of example in the test set,

• Pi, the parameters desired,

• P̂i, the parameters estimated by NN .

3.1 THE OPTIMAL NN DETERMINATION

An important problem in the NN inversion process is
the selection of the network structure and the adjust-
ment of the internal parameters. The determination of
the optimal NN structure and the test are realized by the
split-sample method [9]. The data sets are created by
data thanks to the problem of physical analytical model
studying the electromagnetic interaction between the
probe and the specimen of the method A-O. Every set
contains the input-output data belonging to the evalua-
tion range. These sets are training, validation and test
sets.
The training set is constructed by estimating the output
of the real system, when inputs are generated randomly
in their corresponding specific intervals. The validation
set is destined to select the NN structure, it is a sub set
of the initial training one, but used only after the initial
training process to select the final NN structure. The
test set contains the data belonging to the same domain
of training but are different from the training data. The
test set is used to test the capacity of the NN to estimate
the real system outputs when submitted to new inputs.
The training set allows to train the NN, i.e. the adjust of
internal parameters of the neural networks is performed
by minimizing the mean square error (MSE) which is
used as a cost function, and measured between the out-
put of the network and the desired solution when the
corresponding inputs are presented to the NN [1], [6].
The mean square error value is computed by:

MSE(w) =
1
N

N∑

k=1

||Dk − S(Ek, w)||2 (9)

Where

• {Ek}: The input Vector,

• {Dk}: The desired output Vector,

• {w}: The constituted column Vector of the set of
the weights and bias of the network,

• S: The realised function by NN,

• N : The number of samples in the training set.

The training set for this application; contains 216 of
input (e) and output (s), with s = [e σ]T and e =
[Re(f1) Re(f2) Im(f1) Im(f2)]T , where Re(f) and
Im(f) are the real and imaginary part of the probe im-
pedance at the frequency f , respectively.



3.2 INVERSION USING TO THE MULTILAYER PER-
CEPTRON NEURAL NETWORKS (MLP NN)

One of the most popular structures of artificial neural
networks is the MLP NN. The input layer is given as
an input vector, which thus constitutes the first layer
of the network. Also, in a MLP-network there is at
least one hidden layer and one output layer of nodes or
neurons which enable the network to solve non-linear
problems. The connections between the layers are
represented by weight factors, which can initially be
selected randomly.
In the first application one was interested in MLP
network structure illustrates by Figure 3. The MLP
structure which was used in the present study is con-
stituted of one hidden layer having hyperbolic tangent
activation functions and an output layer with linear
activation functions. The training of the MLP-network
is done by using Levenberg-Marquard algorithm of
non-linear optimisation [8]. The number of the hidden
layer has to be fixed, in this application; the number
of neurons of the hidden layer is varied from 1 to 50
neurons. A typical neural network implementation of
this problem is determined by the split-sample method,
this range is determined heuristically and should be
modified if it necessary. This method determined the
optimal hidden layer of NN.

Figure 3: Structure of MLP NN

Where

• F1: hyperbolic tangent activation function

• F2: Linear activation function

When implementing the Split-sample method, several
tests are realized for each structure of NN planned in
order to try to avoid a bad initialization of the weights
of the NN.
The adjustment of the weights of a MLP NN illustrated
by Figure 4 is realized by means of an examples base

(training bases) giving the desired output of the NN for
a given input. In the case, the MLP NN is trained to
identify the unknown conductivity and thickness of a
metallic plate. Figure 5 shows the evolution of the MSE
on training set and validation and test sets according to
the optimal number of neurons in the impedance mea-
surements. The optimal number of neurons in the hid-
den layer is 35.

Figure 4: The weights adjustment of the MLP NN

Figure 5: the evolution Mean Square Error on the tree sets for the
MLP NN

3.3 INVERSION USING TO THE RADIAL BASIS
FUNCTION NEURAL NETWORKS (RBF NN)

Radial-basis function RBF NN is a class of networks
that are widely used for solving multivariate function
approximation problems and it is used for the resolution
of the nonlinear problems. In the second application
one was interested in RBF network structure illustrates
by Figure 6, with a function of Gaussian activation on
the hidden layer.
The number of neurons in the hidden layer is equal to
the number of examples in the training set. The train-
ing is based on simulated data, involving the impedance



of the probe coil, which is measured by two excita-
tion frequencies. Moreover, the hidden neurons centers
are identical to the values of examples of input on the
training set. The values of the widths of the Gaussian
functions are identical for all the neurons of the hidden
layer. This value of width is determined by the split-
sample method, and for a variation of the width, one
will choose that which corresponds to the lowest MSE
on the validation set.
Finally, the output layer having linear activation func-
tions while the training leads to linear system resolu-
tion. The training consists in the adjustment of the layer
weights values for the output neural networks. The RBF
NN is trained to identify the unknown conductivity and
thickness of a metallic plate. In the case, Figure 7 shows
the evolution of the MSE on training set and validation
and test sets according to the width in the impedance
measurements. The optimal value of the width is 1.618.

Figure 6: Structure of RBF NN

Where

• F1: Gaussian activation function

• F2: Linear activation function

4 INVERSION RESULTS

The results of inversion by NN for evaluation of the
conductivity and the thickness of the metal sheet re-
sulted to the following figures, this inversion is done by
two types of neurons networks excited to their inputs
by two frequencies one is small and the other is very
big (1kHz and 1MHz).

These results show the effectiveness of the proposed
NN inverse problem solution in the estimation of the pa-
rameters of the metal sheet by eddy current testing. The
estimate offers the advantage of obtaining well-defined
results of the parameters estimated with the real para-
meters. The evaluation of the real values of the thick-
ness and conductivity by MLP and RBF one has given
the values of the relative uncertainty errors for every
parameter:

Figure 7: The evolution Mean Square Error on the tree sets for the
RBF NN

Figure 8: The evaluation vs real values of the conductivity and the
thickness on the test set (+) per RBF NN



Figure 9: The evaluation vs real values of the conductivity and the
thickness on the test set (+) per MLP NN

Using Network Thickness Conductivity
MLP NN 0.8774% 0.3096%
RBF NN 0.093% 0.0098%

Table 1. The indication of the relative uncertainty of
the thickness and the conductivity for an application of

the NN

5 Conclusion

In this paper we have presented the application of the
neural networks for the evaluation of a metallic plate
obedient at the use of the method A-O. This application
has been achieved by the inversion method based on the
networks of neurons MLP and RBF. We have used for
the training, the validation and testing of the NN re-
sponses which estimate the conductivity and thickness
obtained by the inverse model. The use of two exci-
tation frequencies (1 kHz, 1 MHz) is input to the NN
permitted to estimate with a good sought precision of
the parameters.

The application of the neural network for evaluation
of parameters has also some advantages:

• Simplicity and flexibility;

• Reliability of estimation.
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