
Location update schemes for mobile agents
RAMA SUSHIL1

RAMA BHARGAVA2

KUMKUM GARG3

1Asst. Prof. SGRRITS D. Dun, R/S Dept. of Maths, I. I. T. Roorkee, India, ramasushil@yahoo.co.in
2Prof. of Mathematics, I. I. T. Roorkee, India, bhargava_iitr@rediffmail.com

3Prof. of Computing, I. I. T. Roorkee, India, Sr. Member IEEE, kgargfec@iiternet.in

Abstract. For mobile agents roaming in a network, location management strategies still represent a
current research issue, for contacting and communicating with these agents. The cost of a location
management strategy mainly depends on the cost of location search and update. In order to save this
cost, mobile agents should not update their location every time they change the host. This paper discusses
three strategies in which mobile agents make decisions about when and where to update their location:
the time-based strategy, the movements-based strategy and the strategy based on counting the migrations
host wise and birth-region wise. We propose the birth-region wise movement based location update
strategy, named Broadcasting with Search by Path Chase (BSPC), which is an extension of SPC (Search
by Path Chase). We have analyzed and compared the performance of both SPC and BSPC and found that
BSPC costs less than SPC for low call to mobility ratio (CMR).

Keywords: Location management strategy, Mobile agent, mobile agent system, mobile agent host, cost
of location update, birth-region.

(Received August 27, 2007 / Accepted December 05, 2007)

1 Introduction

Mobile agent technology is one of the most vibrant and
active areas of research and development in information
technology. It is making significant impact upon almost
all aspects of the computing discipline. A mobile agent
is a running program that can move from host to host in
a network when and where it chooses. A mobile agent is
an extension of mobile code which itself is an extension
mobile object, in which an object (code and data) moves
from one host to another. The mobile agent abstraction
extends this notion further by moving code, data, and
a thread from one host to another [9, 14, 23]. Mobile
agents are used for network management, e-commerce,
information retrieval etc, and a university might let mo-
bile agents circulate to allow large scientific calcula-
tions to run during idle moments on university owned
workstations.

A mobile agent system is a platform that can create,

interpret, execute, transfer and terminate mobile agents
[17, 1, 10, 12, 24, 2, 22, 27]. A node in a network with
mobile agents is called a mobile agent host. A mobile
agent migrates from one node to another while perform-
ing a task autonomously on behalf of a user. When a
mobile agent migrates, it chooses the next destination
according to an itinerary, which is a predefined travel
plan, or dynamically according to execution results.

Because of the extremely dynamic nature of mobile
agents, mobile agent systems not only feature mobil-
ity, but also a technique to discover their position at any
time. This is called the mobile agent location manage-
ment strategy. It is needed in order to have control of
the agent by its owner and also for agent-agent com-
munication. The ability to locate mobile agents while
they are migrating from one node of the network to an-
other one is of great importance for the development of
agent-based applications, in geographically distributed
environment.

ramasushil@yahoo.co.in
bhargava_iitr@rediffmail.com
kgargfec@iiternet.in


The major issue with location management in mo-
bile agent computing is the high cost associated with
location update and search. The goal of an efficient lo-
cation management strategy should be to provide low
cost of location search and updates [16, 18]. The cost of
a location update and search is characterized by the time
taken for each operation, number of messages sent, size
of messages, or the distance the messages need to travel.
An efficient location management strategy should at-
tempt to minimize the combined cost of the location
search and update.

At one extreme, up-to-date information of the ex-
act location of all mobile agents is maintained at each
and every node in the network. This reduces the search
time to locate the mobile agent. But each time the lo-
cation of the mobile agent changes, a large number of
associated location databases must be updated, which
involves cost of location update. At the other extreme,
no information is stored at any site of the network. To
locate a mobile agent, a global search at all network
sites must be initiated; however, when the mobile agent
moves, no cost is associated with updating the loca-
tion database. Between these two extremes, various ap-
proaches that balance the cost of search against the cost
of updates are possible. In this paper, we concentrate on
location update schemes used in existing location man-
agement strategies [4, 7, 19, 28]. We propose a loca-
tion management technique which is based on search-
by-path-chase technique [29](SPC) and named Broad-
casting with Search-by-Path-Chase (BSPC). In BSPC,
we propose a location update scheme, which costs less
in applications having a low frequency of queries for
contacting mobile agents i.e. for low CMR. This is dis-
cussed in detail in section 4.1.2.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the time-based location update model.
Section 3 includes a discussion of movements-based lo-
cation update strategy (host wise). Broadcasting with
search by path chase protocol, which we propose, is de-
scribed in section 4. In section 5 there is a comparative
discussion of all the three basic location update models.
The paper concludes with a report on further work.

2 Time Based Location Update Model
The path concept provides functionality for locating a-
gents and for their termination. The idea of paths is
a well-known technique in the area of distributed sys-
tems [30] used for locating distributed objects. A path
is a distributed structure pointing towards the object in
question, and has to be followed to reach the object.
The single elements of the path, i.e. the data structures
on a node, are called proxies.

An agent moves through a mobile agent system in
an unforeseeable manner, i.e. normally no predictions
can be made about its location at a certain time. But
if every agent leaves information about its new location
on its old place when it migrates, i.e. leaves a proxy,
then a path of proxies is created. This path of proxies
can be followed if the place where the agent has been
created, called the anchor place, is known. This path ul-
timately leads to the agent place, i.e. the place at which
the agent resides currently. The main problem with this
approach is the house keeping, i.e. how the proxies can
be removed when the path is no longer valid, and the
dependence on the availability of a high number of par-
ticipants, the proxy nodes.

The path can be created by creating a proxy point-
ing to the destination place of an agent when it leaves.
Please refer to [15] for details. A variant of the path
concept that allows a decrease in the number of path
proxies, the time based location update model, is dis-
cussed in [5, 6]. In this model, information about the
location of the agent is sent to the anchor place. Setting
the target of the proxy at the anchor place to the new
place can shorten the path and this is done after a cer-
tain period of time. The MASIF proposal and the Aglets
system propose a similar mechanism to find agents [17].

3 Movement Based Location Update Model
(host-wise)

We now model a single agent visiting several hosts. At
some time an agent A1 visits Host1 and resides on it for
time T1 [15, 21]. Then it leaves Host1 and migrates to
Host2 within t1. It stays on Host2 for T2 and goes on.
We see that the mobile agent resides on a host it is vis-
iting for a generally distributed time interval and then
moves on to the next host. Notice that Ti is normally
far bigger compared to ti (i.e. the transmission time can
be ignored in a high speed LAN). Ti is the Host Resi-
dence Time (HRT) of the agent. For an agent perform-
ing some fixed tasks, the HRTs on different hosts may
have similar values, but vary within some thresholds,
due to network transmission and host execution delays.
The probability density function of the HRT is denoted
by fm(T )which has Laplace-Stieltjes transform fm(s)
and mean 1

λm
[3, 8, 20].

In this model, a roaming agent updates its current lo-
cation using the movement based location update scheme.
In this scheme, an agent updates its location after d
movements i.e. after crossing over d hosts, since its
last update. If d is assigned dynamically, the scheme
is called dynamic location update scheme. Each mo-
bile agent is simulated to follow a Poisson process with
rate λc since this is a stochastic process. Call to Mo-



bility Ratio is given by θ = λc

λm
where λc is the rate

of Poisson process describing the incoming call arrivals
and 1

λm
is the mean of probability density function of

HRT. The average number of location update costs per
request (Cu) is small for a large d. Derivation of Cu is
shown in [12, 27].

4 Movement Based Location Update Model
(birth-region wise)

The model we propose is based on some assumptions
made on the distributed reference environment [26]. A
complete computing environment is considered as the
collection of regions. A region is a collection of mobile
agent hosts. Different hosts can spawn different mobile
agents. For a mobile agent spawned by a host, the re-
gion to which the host belongs is called the birth-region
of that agent.

We assume that in each region a site acting as Agent
Name Server (ANS) exists, which manages a database
called Region Agent Register (RAR), which stores in-
formation about all the agents that have been created
in the region or have transited through it. Each entry
of a RAR is in the form of (m, λ) where the field λ

represents the location information related to the agent
whose name is m (the primary key of the database). λ is
a GLI or a region name (GLI.region), which means that
the agent can be found on that location-or region-or it
has transited from that location or region. The ANS has
to export suitable services to allow remote access to the
RAR (tuple insertion, modification, query, or deletion),
but each service has to be executed atomically.

To find the ANS of a given region, we assume the
presence of a suitable network protocol, such as the In-
ternet DNS protocol which allows determination of the
name of the host acting as mail exchanger from a do-
main name [13, 25]. In the following, we will refer to
the RAR of a region named r with the notation RARr,
the RAR of the region of ownership of location λ will
be indicated with RARλ.region.

We also assume that, on each location, there is a
Site Agent Register (SAR), which contains information
about all the agents that have transited through (in the
past) or that are at that location. Each entry of SAR is
a tuple (m, α, λ) where λ represents the location infor-
mation related to the agent α whose name is m. In a
possible implementation, the symbol α plays the role
of agent identifier, and can have the form of, for exam-
ple, a numeric id, a reference, or a pointer to the object,
which encapsulates the agent, etc. Also, for the SAR,
the primary key is the agent name m. Here, λ is a GLI,
a region name (GLI.region), or the nil value.

The former case means that the agent can be found

at that location (or region) or it has transited through
that location (or region). The latter case means that the
agent is at the same location as the SAR. If the agent
does not reside on the location of the SAR (λ is not
nil), the α attribute is equal to nil. The right side of
Table 1 summarizes the cases. No assumption is made
about concurrency in accessing a SAR, but we assume
the use of an exclusive lock on each entry of the reg-
ister. This capability will be used not only to control
concurrent access to the SAR, but also to prevent some
inconsistencies, which may happen during concurrent
interaction and migration processes. In the following,
the SAR of a location λ, will be indicated by SARλ.

For fault handling, we assume that both the registers
are stored on a stable storage and that, after a site crash,
suitable management routines e.g., (the same used in
any DBMS) are able to restore the registers content.
The stability of SARs is required only if the mobile
agent framework supports the storage and check point-
ing of agents, allowing restart of computations after a
site crash. Otherwise, the stability of SARs is mean-
ingless. In addition, if a site crash does not happen, we
assume that accessing a SAR or RAR may fail only if
a network error occurs. Finally, we assume that when
a process holding a lock on the SAR crashes, the lock
is automatically released by the operating system (as
showed in Table 1).

Table 1: RAR/SAR tuples

RAR Meaning SAR Meaning
Tuple Tuple
(m, The agent is (m, nil, The agent is
GLI) at location GLI) at location

GLI or has GLI or has
traveled travelled

through it. through it.
(m,GLI. The agent is (m,nil, The agent is
region) at region GLI. at region

GLI or has region GLI.region
traveled

through it.
(m„ The agent is
nil) in the same

location as
the SAR

4.1 Broadcast with Search by Path Chase Protocol
(BSPC)

The protocol we propose is called Broadcast-Search-
by-Path-Chase (BSPC); its functioning is based on an
efficient algorithm which follows a part of the links the
agent has left on the registers of the visited sites or re-
gions and broadcasting to search if an agent is in its



birth region. Given the hypotheses made in the previous
section, we can assert that, for each location reached at
time tl by an agent named m, querying SAR at time
tq (with tq tl) will return a tuple containing either the
agent (if it has not yet changed location) or the name of
the location (or of the region) reached by the agent at
its next migration (after tl). A similar assertion can be
made for RAR, with respect to each region traversed by
the agent. This means that, at time tq, starting from any
site or region visited by the agent before tq, following
the links left in the registers implies reaching a subset
of the locations and regions of the itinerary followed by
the agent before tq, until the agent itself is caught.

Given this, since locating an agent could require fol-
lowing a long path before reaching it, the update op-
erations performed during the migration phase are de-
signed in order to shorten this path, thus increasing in-
teraction efficiency and reducing overhead.Locating an
agent entails the following steps: First, the name of the
agent’s region of birth is extracted from its name m,
then the relative ANS is contacted; the latter’s register
will contain an indication of the location the agent could
be on or the name of its current region- if it is different
from that of birth. In the latter case, the ANS of the new
region is contacted and the search is repeated. In the
former case, the SAR of the location is queried: If the
resulting tuple contains a non-zero value for , then the
agent is found, otherwise is used to restart the search. In
particular, if refers to a GLI, the relevant SAR is con-
tacted, while, if refers to a region, the relevant RAR is
contacted. It is up to the binding and migration phase
to maintain consistency of location information in the
registers in such a way as to always allow agent finding
(unless a system or network crash occurs).

During location finding, each time a SAR is queried
for an agent m, an exclusive lock is set on the relevant
tuple and reset only if the agent does not reside in that
place (i.e. the value of is nil), otherwise the lock is
maintained. As we will see in the next section, keep-
ing the SAR locked prevents the agent from migration,
allowing performing interaction, after finding it.

4.1.1 Register Update in the BSPC Protocol

Performance and reliability of the location-finding pha-
se of the BSPC protocol, strongly depends on the reg-
ister update operations made during binding and migra-
tion. To avoid the burden of agent migration, the pro-
tocol aims to minimize interregional messages as com-
pared to intraregional ones. This can reduce overhead
and improve efficiency if we assume that connections
between sites in the same region are faster and more re-
liable than connections between different regions. This

hypothesis is not restrictive for a distributed environ-
ment and reflects a common practice in WANs like In-
ternet: Sites belonging to the same subnetwork are of-
ten connected by LAN (ten to hundred MB per sec),
while connections between sub networks are point-to-
point links working at a lower speed sixty four Kb/s to
two Mb per sec.

Figure 1: Operations performed during agent name binding

The binding phase (figure 1), occurring when agent
α is spawned, entails the registration of the agent’s name
m and the birth location λm of α in RARm:region

(m.region is the region of birth). This is handled by a
two-step protocol performed by the platform executing
at location λs. First, RARm:region is contacted and,
here the tuple (m, λs) is registered. Then, the tuple
(m,α, nil) is stored in SARs. Before starting the up-
date operations, an exclusive lock is placed on the entry
of the SARλs

relevant to m; it is released when regis-
tration is over or an error occurs.

The migration phase involves updating the location
information of the migrating agent. Given λs and λd,
the source and destination locations, the sequence of
operations can be split into two steps, performed in λs

and λd respectively, before and after agent transfer. The-
se steps vary according to whether λs and λd belong to
the same region or not. In the case of intraregional mi-
gration λd.region =λs.region and it is the birth region
then the aim is to not to update the entries relevant to
the migrating agent in both SARλs

and RARλd.region
.

But the RAR of the birth region is updated only when
the agent crosses the region. If λs and λd belong to
two different regions (interregional migration), the mi-
gration protocol has to update SAR?d, RARm:region.
if λd.region 6= m.region, by writing λd.region as the
location; it also updates by writing RARλd.region

as the
location and, finally SARλs

, to register the presence of
the agent.



This allows the location finding protocol, which star-
ts from the agent’s region of birth, to reach the its cur-
rent region and, finally its current location. At loca-
tion λd first the entry of the SAR is locked, then, af-
ter agent transfer, the tuple (m, nil, λd.region) is stored
on the SAR, then the tuple(m, λd.region) is stored on
RARλd.region

and finally, the lock is released. At the
destination location λd when the agent transfer begins,
a lock is placed on the entry of the SAR and the
RARλd.region

is updated with λd as location. When
migration ends, first SARλd

is updated by storing the
tuple (m,α, nil) then the lock in the SAR is released,
and finally, agent execution is resumed. At this time,
if λd.region 6= m.region, a background (concurrent)
process is started in λd to remotely update RARm.region

by writing a tuple with λd.region as location.
In the proposed protocol, SAR locks play a funda-

mental role: They not only ensure exclusive access to
SAR, but also help to resolve several inconsistencies
which may happen between migration and interaction.
In fact, an interaction request may arrive when the agent
is migrating; i.e. it is neither at location λs nor at loca-
tion λd but on the net, and cannot be contacted at all. To
take care of such a situation, a simple solution adopted
by some existing frameworks entails the generation of
an error condition, forcing the interacting agent to retry
in the future. In the authors opinion, a better solution is
to wait for migration to complete and then contact the
agent at the destination location. In our protocol, this is
automatically performed exploiting SAR locks.

4.1.2 Message complexity calculation

In the BSPC protocol, for intraregional migration que-
ries, (when mobile agent is in its birth region only), one
message comes first to the birth region of the queried
agent, and suppose there are a maximum of m hosts in
a region and a minimum 1, then m messages will be
broadcast to all hosts and only one massage will be sent
back from the host where the agent is residing. Let us
suppose nh is the number of hosts in a region. Then
Message complexity is:
nh + 2 Where nh = m irrespective of the number of
hops of the mobile agent. The message complexity for
the SPC protocol is: nh + 2 where 1 ≤ nh ≤ m, and
depends on the number of mobile agent hops. Figure
2 shows the simulation results: message complexity in
BSPC is equal to the maximum possible limit in SPC
but not more. Even with more message complexity,
BSPC has several advantages over SPC discussed in de-
tail in section 4.1.3

For interregional migration, message complexity for
SPC and BSPC is the same and is calculated as follows:

Let the agent migrate from its birth region through at
the most n regions. Assume that there are m sites in
each region. Of the n regions, one is the birth region.
So

1 ≤ nr ≤ n

If the mobile agent crossed nrregions and in the final
destination region, it goes to only one site, one message
is required to reach from RAR to SAR. Now if it is on
the same SAR, the agent is found by using nr + 2. If
there are at most m migrations within that region, then
message complexity is: nr + 1 + nh where

1 ≤ nh ≤ m

and nh is the number of migrations within a destination
region.

0

5

10

15

20

25

m
e
s
s
a
g

e

c
o

m
p

le
x
it

y

1 3 5 7 9

no. of sites m igration

intraregional m igration

BSPC

SPC

Figure 2: Number of sites migration in birth region vs. message
complexity for 10 hosts in a region

4.1.3 Advantage of BSPC over SPC

1. In SPC there is an update operation at each migra-
tion whether the agent is in its birth region or any
other, while in BSPC, these update operations get
canceled for an agent which is in its birth region,
so the cost of update is reduced. Figure 3 shows
the same for 10 hosts in a region. Assuming that
the cost of location update is proportional to the
number of update operations, Figure 3 shows that
cost of update is zero as no update operation is per-
formed for migrations within the birth region. This
improves the speed of processing of the agent, as
no time is wasted in leaving proxies or contacting
the home location.



2. BSPC is very effective for very large networks,
with large number of regions and where each re-
gion does not have a large number of hosts, as
broadcasting is expensive for a large area (in our
protocol it is limited by broadcasting in birth re-
gion only).

3. BSPC gives best possible results when there is less
frequency of queries for an agent, which has less
number of interregional migrations and high fre-
quency of intraregional migrations (in birth region).

4. Locating agents is comparatively faster in BSPC
as following a long path is not needed.

5. BSPC uses memory more efficiently by reduction
in saving of proxies at host machines.

update operations vs. birth intraregional

m igrations

0

2

4

6

8

10

12

0 2 4 6 8 10 12

no. of m igrations

n
o

.
o

f
u

p
d

a
te

o
p

e
ra

ti
o

n
s

SPC

BSPC

Figure 3: Number of update operations Vs. no. of intraregional
migrations (birth region)

5 Comparison and Evaluation
The path concept allows agents to roam the network
without contacting their home node, as location is not
updated at the home node (the node at which the agent
is spawned) but proxies are left at the source nodes. The
disadvantage results from the path not being limited in
length. Here message complexity is proportional to the
length of the path. If the path is extended with time to
live (ttl) [5], the location update is done at the anchor
node after time ttl.

Movement based location update - host wise [21] al-
lows agents to roam the network without contacting the
home location and comparatively reducing the location
update operation which takes place not at every hop but
after some optimal threshold migrations. Here message
complexity is proportional to the number of hops.

SPC allows the agents to roam the network with-
out contacting its home node in a region. Contact with
the home node of the birth region and the Agent Name
Server of the current region are needed when the mo-
bile agent crosses regions. Here message complexity is
proportional to the number of migrations.

BSPC allows agents to roam more freely in their
birth region without contacting the home node and with-
out leaving the proxy at source node in the birth re-
gion. Here message complexity is equal to the number
of nodes in the birth region if agent roams in its birth
region. If not, message complexity is proportional to
the number of migrations.

6 Conclusion and further work
To come back to the issue of when a mobile agent should
update its location, we find that although the aim re-
mains is to minimize the location update cost, a balance
is to be made between the update cost and search cost.
So the mobile agent can update its location at any one
or more of the following times:

1. At every hop.

2. After d (optimal number) hops.

3. After d hops, where d is decided dynamically.

4. After a certain period of time.

5. After crossing its birth region.

Instead of broadcasting, multicasting [11] can be used
by the ANS (Agent Name Server) for mobile agents
generated by it, wherever they may be either in their
birth or in any other region. We intend to try this ap-
proach next.

References
[1] Grasshopper home page

http://www.grasshopper.de, 2002.

[2] Object Space Voyager,
http://www.objectspace.com, 2002.

[3] Akyildix, I. F., Ho, J., and Lin, Y. Movement
based location update and selective paging for
pcs networks. IEEE/ACM Trans. Networking,
4(4):629–638, August 1996.

[4] Awerbuch, B. and Peleg, D. Concurrent online
tracking of mobile users. ACM, 21(4):221–233,
October 1991.

http://www.grasshopper.de
http://www.objectspace.com 


[5] Baumann, J. A comparision of mechanisms for
locating mobile agents. TR 1999/11, Univ. of
Stuttgart, Faculty of Computer Science, 1999.

[6] Baumann, J. Control alorithms for mobile agents.
PhD thesis, IPVR, Stuttgart, 1999.

[7] Bhattacharya, A. and Das, S. K. Lezi update:
An information theoritic approach to track mobile
users in pcs networks. In proc. of MOBICOM’99,
17-19August 1999.

[8] Feller, W. An Introduction to Probability Theory
and its Applications. New York: Wiley, 1966 edi-
tion.

[9] Fuggetta, A., Picco, G. P., and Vigna. Understand-
ing code mobility. IEEE Trans. Software Eng.,
24(5):342–361, May 1998.

[10] Gray, R. S. Agent tcl: A transportable agent sys-
tem. In Proceedings CIKM Workshop Intelligent
Information Agents, December 1995.

[11] Hartroth, J. and Hofmann, M. Using ip multi-
cast to improve communication in large scale mo-
bile agent systems. In Proceedings of the Thirty
First Hawaii International Conference, volume 7,
pages 64 –73, 1998.

[12] Karnik, N. M. and Tripathi, A. R. Design issues in
mobile-agent programming systems. IEEE Con-
currency, 6(3):52–61, July-Sept 1998.

[13] Kotzanikolaou, P. and et al. Secure transac-
tions with mobile agents in hostile environments.
LNCS, ACISP, 4(1841):289–297, june 2000.

[14] Lange, D. and Oshima, M. Programming Mobile
Agents in Java with the Java Aglet API. Addison
Wesley, 1998 edition.

[15] Li, T. and Lam, K.-Y. An optimal location up-
date and searching algorithm for tracking mobile
agent. In proc. of AAMAS02, 15-19July 2002.

[16] Lin, Y. B. Reducing location update cost in a pcs
network. IEEE/ACM Trans. Networking, 5(1):25–
33, Feb. 1997.

[17] Milojacic, D., Breugst, M., Bussee, I., Campbell,
J., Covaci, S., Friedman, B., Kosaca, K., Lange,
D., Ono, K., Oshima, M., Tham, C., Sankar,
V., and White, J. Mobile agent system interop-
erability facilities specification. TC Document
orbos/97-10-05, OMG, 1999.

[18] Noy, A. B., Kessler, I., and Sidi, M. Mobile users:
To update or not to update? ACM- baltzer J. Wire-
less Networks, 1(2):175–186, July 1995.

[19] Pitoura, E. and Samaras, G. Locating objects in
mobile computing. IEEE Trans. Knowledge and
Data Eng., 13(4), July/Aug 2001.

[20] Ross, S. M. Stochastic Processes. New York: Wi-
ley, 1993 edition.

[21] Roth, V. and Peters, J. A scalable and se-
cure global tracking service for mobile agents.
In LNCS, MA. Springer Berlin/Heidelberg, April
2001.

[22] Santoro. Arca: A framework for mobile agent pro-
gramming white paper. Technical Report 4, Univ.
of Catania, 1998.

[23] Silva, A., romao, A., Deugo, D., and da Silva, M.
Towards a reference model for surveying mpbile
agent systems. Autonomous agents and multiagent
systems, 4(3):187–231, September 2001.

[24] S.Milojicic, D., LaForge, W., and Chauhan, D.
Mobile objects and agents (moa). Distributed Sys-
tem Eng., 5(4):214–227, Dec. 1998.

[25] Steen, F. J. V., Homburg, H. P., and Tanenbaum,
A. S. Locating objects in wide-area systems.
IEEE Communication Magazine, 5(4):104–109,
Jan. 1998.

[26] Steen, M. V., Homburg, P., and Tanenbaum, A. S.
Globe: A wide-area distributed system. IEEE
Concurrency, 44(44):70–78, Jan.-Mar. 1999.

[27] Stefano, A. D. and Santoro, C. The coordina-
tion infrastructure of the arca framework. In
Proc. Fourth Intl. ACM Conf. Autonomous Agents
Agents 2000, pages 4–5, 4-8 June 2000.

[28] Stefano, D., Bello, L. L., and Santoro, C. Nam-
ing and locating mobile agents in an internet envi-
ronment. In Proc. Third Intl. Conf. on Enterprise
Distributed Objects EDOC 99, pages 4–5, Sept.
1999.

[29] Stefano, D. and Santoro, C. Locating mobile
agents in wide distributed environment. IEEE
transactions on parallel and distributed systems,
8(13):4–5, August 2002.

[30] Tanenbaum, A. S. Modern Operating Systems.
McGaw Hill, 1991 edition.


	Introduction
	Time Based Location Update Model
	Movement Based Location Update Model (host-wise)
	Movement Based Location Update Model (birth-region wise)
	Broadcast with Search by Path Chase Protocol (BSPC)
	Register Update in the BSPC Protocol
	Message complexity calculation
	Advantage of BSPC over SPC


	Comparison and Evaluation
	Conclusion and further work

