
An Efficient On-Line Algorithm for Edge-Ranking of Trees

MUNTASIR RAIHAN RAHMAN1

MD. ABUL KASHEM2

MD. EHTESAMUL HAQUE2

1David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
2Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)
Dhaka 1000, Bangladesh

1mr2rahman@cs.uwaterloo.ca
2{kashem,ehtesam}@cse.buet.ac.bd

Abstract. An edge-ranking of a graph G is a labeling of the edges of G with positive integers such that
every path between two edges with the same label γ contains an edge with label λ > γ. In the on-line
edge-ranking model the edges e1, e2 . . . , em arrive one at a time in any order, where m is the number of
edges in the graph. Only the partial information in the induced subgraph G[{e1, e2, . . . , ei}] is available
when the algorithm must choose a rank for ei. In this paper, we present an on-line algorithm for ranking
the edges of a tree in time O(n2), where n is the number of vertices in the tree.

Keywords: Algorithm, Edge-ranking, Graph, Tree, Visible Edge.

(Received November 27, 2007 / Accepted May 26, 2008)

1 Introduction

An edge-ranking of a graph G = (V, E) is an edge-
labeling ϕ : E → N such that every path in G between
two edges with the same label γ contains an internal
edge with label ≥ γ + 1. The integer label ϕ(e) of
an edge e is called the rank of the edge. Clearly an
edge-labeling is an edge-ranking if and only if, for any
label γ, deletion of all edges with labels > γ leaves
connected components, each having at most one edge
with label γ. Figure 1 shows an edge-ranking of a tree
T using 5 ranks.

An edge-ranking of G using the minimum number
of ranks(labels) is called an optimal edge-ranking of G.
The edge-ranking problem is to find an optimal edge-
ranking of a given graph G. The optimal edge-ranking
problem has important applications in scheduling the
assembly steps in manufacturing a complex multi-part
product [3]. Since the constraints for the edge-ranking

problem imply that two adjacent edges cannot have the
same rank, the edge-ranking problem is a restriction of
the edge-coloring problem.

4
1 5

3 1

2

1
2

3

1
1

2
1

Figure 1: An edge-ranking of a tree T .

The edge-ranking problem isNP-Complete in gen-

mr2rahman@cs.uwaterloo.ca�
{kashem,ehtesam}@cse.buet.ac.bd�

eral [9], although polynomial-time algorithms have been
found for trees. Iyer et al. [3] gave an O(n log2 n) time
sequential approximation algorithm for finding an edge-
ranking of a tree T using at most twice the minimum
number of ranks, where n is the number of vertices in T .
Later Torre et al. [14] gave an exact algorithm to solve
the edge-ranking problem on trees in time O(n3 log2 n)
by means of a two-layered greedy method. Recently
Lam et al. have given a linear-time algorithm for solv-
ing the edge-ranking problem on trees [10]. In [14]
Torre et al. have given a parallel algorithm for solving
the edge-ranking problem on trees in O(∆4 log3 n) par-
allel time using O(2∆n∆+1) operations on the CREW
PRAM model.

Generalization of the edge-ranking problem was in-
troduced in [15]. For a positive integer c, a c-edge-
ranking of a graph G is a labeling of the edges of G
with positive integers such that, for any label γ, deletion
of all edges with labels > γ leaves (connected) compo-
nents, each having at most c edges with label γ [15].
Clearly an ordinary edge-ranking is a 1-edge-ranking.
The c-edge-ranking problem is to find an optimal c-
edge-ranking of a given graph G. Zhou et al. gave an
algorithm to find an optimal c-edge-ranking of a given
tree T for any positive integer c in time O(n2 log ∆),
where ∆ is the maximum vertex-degree of T [15]. A
polynomial-time sequential algorithm and an O(log n)
time parallel algorithm for solving the c-edge-ranking
problem on partial k-trees with small treewidth for any
positive integer c was given by Kashem et al. [5].

The vertex-ranking problem [2] and the c-vertex-
ranking problem [16] for a graph G are defined simi-
larly. Iyer et al. presented an O(n log n) time algorithm
to solve the vertex-ranking problem on trees [2]. Then
Schäffer obtained a linear-time algorithm by refining
their algorithm and its analysis [12]. On the other hand,
Zhou et al. have obtained an O(c ·n) time sequential al-
gorithm to solve the c-vertex-ranking problem for trees
[16]. Kashem et al. gave a polynomial-time sequen-
tial algorithm and O(log n) time parallel algorithm for
solving the c-vertex-ranking problem on partial k-trees
[6]. Recently, Kashem et al. gave an O(log n) time op-
timal parallel algorithm for solving the c-vertex-ranking
problem on trees [4].

An algorithm is called off-line if all input data must
be accessed before the output is produced. Most re-
search done in graph theory concentrates on off-line al-
gorithms. The edge-ranking and vertex-ranking algo-
rithms mentioned above are all off-line algorithms. On
the contrary, an on-line algorithm has to make (partial)
decisions after seeing only a subset of the input. For
example, for ranking (coloring) problems, there are two

natural on-line models: the input is given either vertex-
by-vertex or edge-by-edge. The algorithm assigns a
rank (color) to the current vertex or edge based only
on past history and a rank (color) assigned to a vertex
or edge cannot be changed later.

In this paper we are concerned with on-line rankings
of graphs. Schiermeyer et al. characterized the class of
graphs for which on-line vertex-ranking can be found
using only three ranks [13]. They also proved that for
n ≥ 2, the greedy first-fit coloring heuristic can rank an
n-vertex path using a maximum of 3 log2 n ranks, inde-
pendently from the arriving order of vertices. Bruoth et
al. [1] improved this result by showing that the maxi-
mum number of ranks required for on-line ranking the
vertices of an n-vertex path is 2blog2 nc+1, where n ≥
2. They also obtained a similar bound for cycles. How-
ever none of these two papers provide efficient on-line
algorithms for vertex-ranking of graphs. Recently Lee
et al. gave the first on-line vertex-ranking algorithm for
trees that runs in O(n3) time [7]. They also presented
an on-line parallel algorithm for ranking the vertices of
a tree in time O(n log2 n) using O(n3/ log2 n) proces-
sors on the CREW PRAM model [8].

In this paper we provide an O(n2) time on-line al-
gorithm for ranking the edges of a tree, where n is the
number of vertices in the tree. In an on-line setting,
since the edges arrive one at a time in each iteration,
only partial or incomplete information about the input
graph is available at each step. So it is not possible to
guarantee that an on-line algorithm can rank the edges
of a graph with the minimum number of ranks. There-
fore we use a greedy strategy in our algorithm to rank
the newly arrived edge in each iteration with the least
possible rank.

2 Preliminaries

Let T = (V, E) be a tree. We denote V (T) and E(T) as
the set of vertices and the set of edges in T , respectively.
Let |V (T)| = n and |E(T)| = m. When u and v are
the endpoints of an edge e = (u, v), they are adjacent
and are neighbors. In that case, e is said to be incident
to u and v. Two edges are adjacent if they have a com-
mon endpoint. We denote the degree of any vertex v ∈
V (T) by d(v). Also for any two edges e, e′ ∈ E(T),
we denote the unique path from e to e′ by P (e, e′). The
unique path from a vertex v to an edge e is denoted by
P (v, e).

Let ei be the newly arrived edge at the ith iteration
of an on-line algorithm. We denote Ti as the subgraph
of T induced by {e1, e2, . . . , ei}. Let T (ei) be the (con-
nected) component of Ti which contains ei, the newly
arrived edge. Only T (ei) will be considered while rank-

ing ei, since the edges in other components will not af-
fect the ranks of edges in T (ei).

Let ϕ be an edge-labeling of a graph G with pos-
itive integers. We denote the rank(label) of an edge e
by ϕ(e). The concepts of visible rank and visibility list
were introduced by Iyer et al. [2]. Consider any edge
e ∈ E(T (ei)) \ {ei}. The rank ϕ(e) of e is said to be
visible from a vertex v ∈ V (T (ei)) under ϕ, if all the
edges on P (v, e) are labeled and have ranks ≤ ϕ(e).
Such an edge e is then called a visible edge. The list
of all ranks visible from a vertex v under ϕ is called
the visibility list of v, and is denoted by L(v). Let
ei = (u, v), and let L(ei) = L(u)∪L(v). Then we say
that L(ei) is the visibility list of ei. The list L(ei) will
generally be a multi-set, where an element γ in L(ei)
can appear more than once. A rank that is not visible
from an endpoint of ei under ϕ is called an invisible
rank. For any integer γ we denote by count(L(ei), γ)
the number of γ’s contained in L(ei) [16].

3 On-Line Edge-Ranking of Trees

The following theorem is the main result of this paper.

Theorem 1 The edges of a tree T can be ranked
using an on-line algorithm in O(n2) time, where n is
the number of vertices in T .

In the remainder of this section we prove Theorem
1 by giving an on-line algorithm for ranking the edges
of a tree T in time O(n2). It is based on the greedy
first-fit coloring heuristic. At the ith iteration, the al-
gorithm takes as input the newly arrived edge ei. We
then rank ei with the least possible rank without violat-
ing the edge-ranking property. To rank ei, we construct
the visibility list L(ei) by searching in T (ei) to find all
visible ranks. The search is carried out by a recursive
depth first search traversal. During the search, we keep
track of the largest rank of an edge on a path starting
from endpoints of ei seen so far. As the traversal con-
tinues along a path, if an edge is traversed that has a
rank greater than the current maximum, then that rank
is added to L(ei) and the largest rank is updated. Since
any edge adjacent to ei is trivially visible from an end-
point of ei under ϕ, its rank must belong to L(ei). To
incorporate this case into the algorithm, the largest rank
is set to 0 at the beginning of the search. As a result
when an edge e adjacent ei is traversed, its rank ϕ(e)
will be trivially greater than 0 and added to L(ei). The
pseudo-code of the algorithm is given below.

Algorithm On_line_Edge_Ranking_Tree
begin

1 for i = 1 to m do {m = |E(T)|}

2 read a new edge ei;
3 let E′ = {e′1, e′2, . . . , e′p} be the set of

edges adjacent to ei in {e1, e2, . . . , ei−1};
4 L := ∅; {Currently L is the visibility

list of ei, that is L = L(ei)}
5 RankEdge(ei, E′);

end

Procedure RankEdge(e, E′)
begin

1 for j = 1 to p do {p = |E′|}
2 BVL(e, e′j , 0);
3 find minimum α such that α /∈ L and

count(L, β) ≤ 1, for each β satisfying
α + 1 ≤ β ≤max{L};

4 ϕ(e) := α; {rank e with α}
end

Procedure BVL(e, e′, rmax)
begin

1 if ϕ(e′) > rmax then
2 L := L ∪ {ϕ(e′)};
3 let E(e′) be the set of

edges adjacent to e′ in T (ei);
4 if (E(e′) \ {e}) 6= ∅ then
5 for each edge e′′ ∈ (E(e′) \ {e}) do
6 BVL(e′, e′′, max{rmax, ϕ(e′)});

end

We now prove the correctness of the algorithm.
When i = 1, that is, when the first edge e1 arrives, it

does not have any adjacent edges, and so it can be triv-
ially ranked with 1 without violating the edge-ranking
property. When i > 1, we inductively assume that
the edges e1, . . . , ei−1 have been properly ranked in the
previous i− 1 iterations. We now prove that ei is prop-
erly ranked at the ith iteration. At first we show that the
visibility list is correctly constructed at the ith iteration
of the algorithm. We have the following lemma.

Lemma 1 Let ei ∈ E(T) be the newly arrived edge
at the ith iteration, and let L be the list constructed
by On_line_Edge_Ranking_Tree for the edge ei. Then
L = L(ei), that is,

(i) L contains all the ranks visible from an endpoint
of ei under ϕ; and

(ii) L does not contain any rank invisible from both
endpoints of ei under ϕ.

Proof. (i) For a contradiction, assume that γ is a
rank visible from an endpoint v of ei under ϕ but γ /∈ L.
Let e be a visible edge with rank ϕ(e) = γ, where e ∈
E(T (ei)) \ {ei}. Since γ is visible from the endpoint v

of ei, all the edges on P (v, e) have ranks≤ γ. Let e′ be
the edge incident to v on P (v, e) and e′′ be the edge ad-
jacent to e on P (v, e). Since ϕ is a vertex-ranking, we
have ϕ(e′′′) < γ for all edges e′′′ ∈ E(P (e′, e′′)). Thus
the largest rank seen so far from e′ to e′′ on P (v, e) is
< γ. So when e will be traversed on P (v, e), we have
ϕ(e) = γ > rmax. So γ must be added to L. This
contradicts γ /∈ L. Thus L contains all the ranks visible
from an endpoint of ei.

(ii) For a contradiction, assume that L contains a
rank γ that is invisible from both endpoints u and v of
ei under ϕ. Let e be a vertex with ϕ(e) = γ. Let e′ be
the edge incident to v on P (v, e). Since γ is invisible
from the endpoint v of ei, there must be an edge e′′ ∈
E(P (v, e)) \ {e} such that ϕ(e′′) > γ. At any edge
on P (v, e) traversed after e′′, we have rmax ≥ ϕ(e′′).
Since e is traversed after e′′ on P (v, e), at e, we have
rmax ≥ ϕ(e′′) and ϕ(e′′) > γ. Therefore at e, we have
rmax > ϕ(e). So ϕ(e) = γ cannot be added to L. So
L cannot contain any invisible rank. Q.E .D.

Next we show that the rank chosen for ei, the current
new edge, does not violate the edge-ranking property in
T (ei).

Lemma 2 The rank α properly ranks the newly ar-
rived edge ei ∈ E(T) at the ith iteration.

Proof. For a contradiction, assume that α does not
properly rank ei. So T (ei) will contain a path P (e′, e′′)
for some e′, e′′ ∈E(T (ei)) such that ei ∈E(P (e′, e′′)),
ϕ(e′) = ϕ(e′′) = γ, and ϕ(e) ≤ γ for all edges e
∈ E(P (e′, e′′)). Let ei = (u, v). Then ϕ(ei) = α
≤ γ and ϕ(e′) is visible from u and ϕ(e′′) is visible
from v under ϕ. So count(L(ei), γ) ≥ 2. Since by
On_line_Edge_Ranking_Tree α /∈ L(ei), α = γ is not
possible. Thus γ ≥ α+1. But count(L(ei), β)≤ 1, for
each β satisfying α + 1 ≤ β ≤max{L(ei)}, according
to On_line_Edge_Ranking_Tree. So α properly ranks
ei. Q.E .D.

Proof of Theorem 1: For each execution of the
RankEdge procedure, the visibility list is constructed by
the BVL procedure using a recursive depth first search
(DFS) traversal. For a tree, the complexity of DFS is
O(|E|) = O(|V |) = O(n), so it takes O(n) time to
build the visibility list. Since the size of the visibility
list is O(|E(T (ei))|) = O(|E|) = O(|V |) = O(n),
searching in L(ei) to find the rank α in Line 4 of proce-
dure RankEdge takes O(n) time. So we can say that the
RankEdge procedure takes time O(n). Since the proce-
dure RankEdge is called for each newly arrived edge,
and the m edges e1, e2 . . . , em arrive one at a time, the
total time complexity of On_line_Edge_Ranking_Tree

is
∑m

i=1 O(n) = O(m)·O(n) = O(n)·O(n) = O(n2),
since for a tree m = n− 1. Q.E .D.

4 Conclusion

In this paper, for the first time, we have presented an
O(n2) time on-line algorithm for ranking the edges of
a tree. Since only a subset of the input graph(tree) is
available in each iteration, and an assigned rank can-
not be changed later, an on-line edge-ranking algorithm
cannot guarantee optimality. Therefore we use a greedy
strategy for our on-line algorithm to find the least pos-
sible rank for each new edge. Experimental simulation
results have shown that the algorithm properly ranks the
edges of a tree in quadratic time. It is interesting to note
that the corresponding problem on vertices, that is, the
on-line vertex-ranking problem for trees can be solved
in O(n3) time [7]. Rahman et al. improved the run-time
by showing that the vertices of a tree can be ranked in
O(n2) time [11]. Thus the on-line edge-ranking prob-
lem, which is more complex than the vertex counter-
part, runs in the same time complexity.

References

[1] E. Bruoth, and M. Horňák, “On-line ranking num-
ber for cycles and paths”, Discussiones Math-
ematicae, Graph Theory, vol. 19, pp. 175-197,
1999,.

[2] A. V. Iyer, H. D. Ratliff, and G. Vijayan, “Opti-
mal node ranking of trees”, Information Process-
ing Letters, vol. 28, pp. 225-229, 1998.

[3] A. V. Iyer, H. D. Ratliff, and G. Vijayan, “On an
edge-ranking problem of trees and graphs”, Dis-
crete Applied Mathematics, vol. 30, pp. 43-52,
1991.

[4] M. A. Kashem, and M. Z. Rahman, “An optimal
parallel algorithm for c-vertex-ranking of trees”,
Information Processing Letters, vol. 92, pp. 179-
184, 2004.

[5] M. A. Kashem, X. Zhou, and T. Nishizeki, “Al-
gorithms for generalized edge-rankings of par-
tial k-trees with bounded maximum degree”, Pro-
ceedings of the 1st International Conference on
Computer and Information Technology (ICCIT),
pp. 45-51, 1998.

[6] M. A. Kashem, X. Zhou, and T. Nishizeki, “Algo-
rithms for generalized vertex-rankings of partial
k-trees”, Theoretical Computer Science, vol. 240,
pp. 407-427, 2000.

[7] C. Lee, and J. S. Juan “On-line ranking algo-
rithms for trees”, Proceedings of the International
Conference on Foundations of Computer Science,
Monte Carlo Resort, Las Vegas, USA, pp. 46-51,
2005.

[8] C. Lee, and J. S. Juan, “Parallel algorithm for
on-line ranking in trees”, Proceedings of the
22nd Workshop on Combinatorial Mathematics
and Computational Theory, National Cheng Kung
University, Tainan, Taiwan, pp. 151-156, 2005.

[9] T. W. Lam, and F. L. Yue, “Edge ranking of graphs
is hard”, Discrete Applied Mathematics, vol. 85,
pp. 71-86, 1998.

[10] T. W. Lam, and F. L. Yue, “Optimal edge rank-
ing of trees in linear time”, Algorithmica, vol. 30,
pp. 12-33, 2001.

[11] M. R. Rahman, M. E. Haque, M. Islam, and
M. A. Kashem, “On-line algorithms for vertex-
rankings of graphs”, Proceedings of the Interna-
tional Conference on Information and Communi-
cation Technology (ICICT 2007), pp. 22-26, 2007.

[12] A. A. Schäffer, “Optimal node ranking of trees
in linear time”, Information Processing Letters,
vol. 33, pp. 91-96, 1989.

[13] I. Schiermeyer, Zs. Tuza, and M. Voigt, “On-
line rankings of graphs”, Discrete Mathematics,
vol. 212, pp. 141-147, 2000.

[14] P. de la Torre, R. Greenlaw, and A. A. Schäf-
fer, “Optimal edge ranking of trees in polynomial
time”, Algorithmica, vol. 13, pp. 592-618, 1995.

[15] X. Zhou, M. A. Kashem, and T. Nishizeki, “Gen-
eralized edge-rankings of trees”, The Institute of
Electronics, Information and Communication En-
gineers (IEICE) Transactions on Fundamentals of
Electronics, Communications and Computer Sci-
ence, vol. 81-A-2, pp. 310-320, 1998.

[16] X. Zhou, N. Nagai, and T. Nishizeki, “Generalized
vertex-rankings of trees”, Information processing
Letters, vol. 56, pp. 321-328, 1995.

