An Efficient On-Line Algorithm for Edge-Ranking of Trees

Muntasir Raihan Rahman ${ }^{1}$
Md. Abul Kashem ${ }^{2}$
Md. Ehtesamul Haque ${ }^{2}$
${ }^{1}$ David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
${ }^{2}$ Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)
Dhaka 1000, Bangladesh
${ }^{1}$ mr2rahman@cs.uwaterloo.ca
2 \{kashem, ehtesam\}@cse.buet.ac.bd

Abstract

An edge-ranking of a graph G is a labeling of the edges of G with positive integers such that every path between two edges with the same label γ contains an edge with label $\lambda>\gamma$. In the on-line edge-ranking model the edges $e_{1}, e_{2} \ldots, e_{m}$ arrive one at a time in any order, where m is the number of edges in the graph. Only the partial information in the induced subgraph $G\left[\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right]$ is available when the algorithm must choose a rank for e_{i}. In this paper, we present an on-line algorithm for ranking the edges of a tree in time $O\left(n^{2}\right)$, where n is the number of vertices in the tree.

Keywords: Algorithm, Edge-ranking, Graph, Tree, Visible Edge.
(Received November 27, 2007 / Accepted May 26, 2008)

1 Introduction

An edge-ranking of a graph $G=(V, E)$ is an edgelabeling $\varphi: E \rightarrow \mathbb{N}$ such that every path in G between two edges with the same label γ contains an internal edge with label $\geq \gamma+1$. The integer label $\varphi(e)$ of an edge e is called the rank of the edge. Clearly an edge-labeling is an edge-ranking if and only if, for any label γ, deletion of all edges with labels $>\gamma$ leaves connected components, each having at most one edge with label γ. Figure 1 shows an edge-ranking of a tree T using 5 ranks.

An edge-ranking of G using the minimum number of ranks(labels) is called an optimal edge-ranking of G. The edge-ranking problem is to find an optimal edgeranking of a given graph G. The optimal edge-ranking problem has important applications in scheduling the assembly steps in manufacturing a complex multi-part product [3]. Since the constraints for the edge-ranking
problem imply that two adjacent edges cannot have the same rank, the edge-ranking problem is a restriction of the edge-coloring problem.

Figure 1: An edge-ranking of a tree T.

The edge-ranking problem is $\mathcal{N} \mathcal{P}$-Complete in gen-
eral [9], although polynomial-time algorithms have been found for trees. Iyer et al. [3] gave an $O\left(n \log _{2} n\right)$ time sequential approximation algorithm for finding an edgeranking of a tree T using at most twice the minimum number of ranks, where n is the number of vertices in T. Later Torre et al. [14] gave an exact algorithm to solve the edge-ranking problem on trees in time $O\left(n^{3} \log _{2} n\right)$ by means of a two-layered greedy method. Recently Lam et al. have given a linear-time algorithm for solving the edge-ranking problem on trees [10]. In [14] Torre et al. have given a parallel algorithm for solving the edge-ranking problem on trees in $O\left(\Delta^{4} \log ^{3} n\right)$ parallel time using $O\left(2^{\Delta} n^{\Delta+1}\right)$ operations on the CREW PRAM model.

Generalization of the edge-ranking problem was introduced in [15]. For a positive integer c, a c-edgeranking of a graph G is a labeling of the edges of G with positive integers such that, for any label γ, deletion of all edges with labels $>\gamma$ leaves (connected) components, each having at most c edges with label γ [15]. Clearly an ordinary edge-ranking is a 1 -edge-ranking. The c-edge-ranking problem is to find an optimal c -edge-ranking of a given graph G. Zhou et al. gave an algorithm to find an optimal c-edge-ranking of a given tree T for any positive integer c in time $O\left(n^{2} \log \Delta\right)$, where Δ is the maximum vertex-degree of T [15]. A polynomial-time sequential algorithm and an $O(\log n)$ time parallel algorithm for solving the c-edge-ranking problem on partial k-trees with small treewidth for any positive integer c was given by Kashem et al. [5].

The vertex-ranking problem [2] and the c-vertexranking problem [16] for a graph G are defined similarly. Iyer et al. presented an $O(n \log n)$ time algorithm to solve the vertex-ranking problem on trees [2]. Then Schäffer obtained a linear-time algorithm by refining their algorithm and its analysis [12]. On the other hand, Zhou et al. have obtained an $O(c \cdot n)$ time sequential algorithm to solve the c-vertex-ranking problem for trees [16]. Kashem et al. gave a polynomial-time sequential algorithm and $O(\log n)$ time parallel algorithm for solving the c-vertex-ranking problem on partial k-trees [6]. Recently, Kashem et al. gave an $O(\log n)$ time optimal parallel algorithm for solving the c-vertex-ranking problem on trees [4].

An algorithm is called off-line if all input data must be accessed before the output is produced. Most research done in graph theory concentrates on off-line algorithms. The edge-ranking and vertex-ranking algorithms mentioned above are all off-line algorithms. On the contrary, an on-line algorithm has to make (partial) decisions after seeing only a subset of the input. For example, for ranking (coloring) problems, there are two
natural on-line models: the input is given either vertex-by-vertex or edge-by-edge. The algorithm assigns a rank (color) to the current vertex or edge based only on past history and a rank (color) assigned to a vertex or edge cannot be changed later.

In this paper we are concerned with on-line rankings of graphs. Schiermeyer et al. characterized the class of graphs for which on-line vertex-ranking can be found using only three ranks [13]. They also proved that for $n \geq 2$, the greedy first-fit coloring heuristic can rank an n-vertex path using a maximum of $3 \log _{2} n$ ranks, independently from the arriving order of vertices. Bruoth et al. [1] improved this result by showing that the maximum number of ranks required for on-line ranking the vertices of an n-vertex path is $2\left\lfloor\log _{2} n\right\rfloor+1$, where $n \geq$ 2. They also obtained a similar bound for cycles. However none of these two papers provide efficient on-line algorithms for vertex-ranking of graphs. Recently Lee et al. gave the first on-line vertex-ranking algorithm for trees that runs in $O\left(n^{3}\right)$ time [7]. They also presented an on-line parallel algorithm for ranking the vertices of a tree in time $O\left(n \log ^{2} n\right)$ using $O\left(n^{3} / \log ^{2} n\right)$ processors on the CREW PRAM model [8].

In this paper we provide an $O\left(n^{2}\right)$ time on-line algorithm for ranking the edges of a tree, where n is the number of vertices in the tree. In an on-line setting, since the edges arrive one at a time in each iteration, only partial or incomplete information about the input graph is available at each step. So it is not possible to guarantee that an on-line algorithm can rank the edges of a graph with the minimum number of ranks. Therefore we use a greedy strategy in our algorithm to rank the newly arrived edge in each iteration with the least possible rank.

2 Preliminaries

Let $T=(V, E)$ be a tree. We denote $V(T)$ and $E(T)$ as the set of vertices and the set of edges in T, respectively. Let $|V(T)|=n$ and $|E(T)|=m$. When u and v are the endpoints of an edge $e=(u, v)$, they are adjacent and are neighbors. In that case, e is said to be incident to u and v. Two edges are adjacent if they have a common endpoint. We denote the degree of any vertex $v \in$ $V(T)$ by $d(v)$. Also for any two edges $e, e^{\prime} \in E(T)$, we denote the unique path from e to e^{\prime} by $P\left(e, e^{\prime}\right)$. The unique path from a vertex v to an edge e is denoted by $P(v, e)$.

Let e_{i} be the newly arrived edge at the i th iteration of an on-line algorithm. We denote T_{i} as the subgraph of T induced by $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$. Let $T\left(e_{i}\right)$ be the (connected) component of T_{i} which contains e_{i}, the newly arrived edge. Only $T\left(e_{i}\right)$ will be considered while rank-
ing e_{i}, since the edges in other components will not affect the ranks of edges in $T\left(e_{i}\right)$.

Let φ be an edge-labeling of a graph G with positive integers. We denote the rank(label) of an edge e by $\varphi(e)$. The concepts of visible rank and visibility list were introduced by Iyer et al. [2]. Consider any edge $e \in E\left(T\left(e_{i}\right)\right) \backslash\left\{e_{i}\right\}$. The rank $\varphi(e)$ of e is said to be visible from a vertex $v \in V\left(T\left(e_{i}\right)\right)$ under φ, if all the edges on $P(v, e)$ are labeled and have ranks $\leq \varphi(e)$. Such an edge e is then called a visible edge. The list of all ranks visible from a vertex v under φ is called the visibility list of v, and is denoted by $L(v)$. Let $e_{i}=(u, v)$, and let $L\left(e_{i}\right)=L(u) \cup L(v)$. Then we say that $L\left(e_{i}\right)$ is the visibility list of e_{i}. The list $L\left(e_{i}\right)$ will generally be a multi-set, where an element γ in $L\left(e_{i}\right)$ can appear more than once. A rank that is not visible from an endpoint of e_{i} under φ is called an invisible rank. For any integer γ we denote by $\operatorname{count}\left(L\left(e_{i}\right), \gamma\right)$ the number of γ 's contained in $L\left(e_{i}\right)$ [16].

3 On-Line Edge-Ranking of Trees

The following theorem is the main result of this paper.
Theorem 1 The edges of a tree T can be ranked using an on-line algorithm in $O\left(n^{2}\right)$ time, where n is the number of vertices in T.

In the remainder of this section we prove Theorem 1 by giving an on-line algorithm for ranking the edges of a tree T in time $O\left(n^{2}\right)$. It is based on the greedy first-fit coloring heuristic. At the i th iteration, the algorithm takes as input the newly arrived edge e_{i}. We then rank e_{i} with the least possible rank without violating the edge-ranking property. To rank e_{i}, we construct the visibility list $L\left(e_{i}\right)$ by searching in $T\left(e_{i}\right)$ to find all visible ranks. The search is carried out by a recursive depth first search traversal. During the search, we keep track of the largest rank of an edge on a path starting from endpoints of e_{i} seen so far. As the traversal continues along a path, if an edge is traversed that has a rank greater than the current maximum, then that rank is added to $L\left(e_{i}\right)$ and the largest rank is updated. Since any edge adjacent to e_{i} is trivially visible from an endpoint of e_{i} under φ, its rank must belong to $L\left(e_{i}\right)$. To incorporate this case into the algorithm, the largest rank is set to 0 at the beginning of the search. As a result when an edge e adjacent e_{i} is traversed, its rank $\varphi(e)$ will be trivially greater than 0 and added to $L\left(e_{i}\right)$. The pseudo-code of the algorithm is given below.

```
Algorithm On_line_Edge_Ranking_Tree
begin
1 for }i=1\mathrm{ to }m\mathrm{ do {m= {E(T)|}
```

read a new edge e_{i};
let $E^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{p}^{\prime}\right\}$ be the set of edges adjacent to e_{i} in $\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}$; $L:=\emptyset ;\{$ Currently L is the visibility list of e_{i}, that is $\left.L=L\left(e_{i}\right)\right\}$ RankEdge (e_{i}, E^{\prime});
end
Procedure RankEdge $\left(e, E^{\prime}\right)$
begin
for $j=1$ to p do $\left\{p=\left|E^{\prime}\right|\right\}$
$\operatorname{BVL}\left(e, e_{j}^{\prime}, 0\right)$;
find minimum α such that $\alpha \notin L$ and $\operatorname{count}(L, \beta) \leq 1$, for each β satisfying $\alpha+1 \leq \beta \leq \max \{L\}$;
$4 \varphi(e):=\alpha ;\{$ rank e with $\alpha\}$
end
Procedure $\operatorname{BVL}\left(e, e^{\prime}, r_{\text {max }}\right)$
begin
if $\varphi\left(e^{\prime}\right)>r_{\max }$ then
$L:=L \cup\left\{\varphi\left(e^{\prime}\right)\right\} ;$
let $E\left(e^{\prime}\right)$ be the set of
edges adjacent to e^{\prime} in $T\left(e_{i}\right)$;
if $\left(E\left(e^{\prime}\right) \backslash\{e\}\right) \neq \emptyset$ then
for each edge $e^{\prime \prime} \in\left(E\left(e^{\prime}\right) \backslash\{e\}\right)$ do
$\operatorname{BVL}\left(e^{\prime}, e^{\prime \prime}, \max \left\{r_{\text {max }}, \varphi\left(e^{\prime}\right)\right\}\right)$;
end
We now prove the correctness of the algorithm.
When $i=1$, that is, when the first edge e_{1} arrives, it does not have any adjacent edges, and so it can be trivially ranked with 1 without violating the edge-ranking property. When $i>1$, we inductively assume that the edges e_{1}, \ldots, e_{i-1} have been properly ranked in the previous $i-1$ iterations. We now prove that e_{i} is properly ranked at the i th iteration. At first we show that the visibility list is correctly constructed at the i th iteration of the algorithm. We have the following lemma.

Lemma 1 Let $e_{i} \in E(T)$ be the newly arrived edge at the ith iteration, and let L be the list constructed by On_line_Edge_Ranking_Tree for the edge e_{i}. Then $L=L\left(e_{i}\right)$, that is,
(i) L contains all the ranks visible from an endpoint of e_{i} under φ; and
(ii) L does not contain any rank invisible from both endpoints of e_{i} under φ.

Proof. (i) For a contradiction, assume that γ is a rank visible from an endpoint v of e_{i} under φ but $\gamma \notin L$. Let e be a visible edge with rank $\varphi(e)=\gamma$, where $e \in$ $E\left(T\left(e_{i}\right)\right) \backslash\left\{e_{i}\right\}$. Since γ is visible from the endpoint v
of e_{i}, all the edges on $P(v, e)$ have ranks $\leq \gamma$. Let e^{\prime} be the edge incident to v on $P(v, e)$ and $e^{\prime \prime}$ be the edge adjacent to e on $P(v, e)$. Since φ is a vertex-ranking, we have $\varphi\left(e^{\prime \prime \prime}\right)<\gamma$ for all edges $e^{\prime \prime \prime} \in E\left(P\left(e^{\prime}, e^{\prime \prime}\right)\right)$. Thus the largest rank seen so far from e^{\prime} to $e^{\prime \prime}$ on $P(v, e)$ is $<\gamma$. So when e will be traversed on $P(v, e)$, we have $\varphi(e)=\gamma>r_{\max }$. So γ must be added to L. This contradicts $\gamma \notin L$. Thus L contains all the ranks visible from an endpoint of e_{i}.
(ii) For a contradiction, assume that L contains a rank γ that is invisible from both endpoints u and v of e_{i} under φ. Let e be a vertex with $\varphi(e)=\gamma$. Let e^{\prime} be the edge incident to v on $P(v, e)$. Since γ is invisible from the endpoint v of e_{i}, there must be an edge $e^{\prime \prime} \in$ $E(P(v, e)) \backslash\{e\}$ such that $\varphi\left(e^{\prime \prime}\right)>\gamma$. At any edge on $P(v, e)$ traversed after $e^{\prime \prime}$, we have $r_{\max } \geq \varphi\left(e^{\prime \prime}\right)$. Since e is traversed after $e^{\prime \prime}$ on $P(v, e)$, at e, we have $r_{\max } \geq \varphi\left(e^{\prime \prime}\right)$ and $\varphi\left(e^{\prime \prime}\right)>\gamma$. Therefore at e, we have $r_{\max }>\varphi(e)$. So $\varphi(e)=\gamma$ cannot be added to L. So L cannot contain any invisible rank.
Q.E.D.

Next we show that the rank chosen for e_{i}, the current new edge, does not violate the edge-ranking property in $T\left(e_{i}\right)$.

Lemma 2 The rank α properly ranks the newly arrived edge $e_{i} \in E(T)$ at the i th iteration.

Proof. For a contradiction, assume that α does not properly rank e_{i}. So $T\left(e_{i}\right)$ will contain a path $P\left(e^{\prime}, e^{\prime \prime}\right)$ for some $e^{\prime}, e^{\prime \prime} \in E\left(T\left(e_{i}\right)\right)$ such that $e_{i} \in E\left(P\left(e^{\prime}, e^{\prime \prime}\right)\right)$, $\varphi\left(e^{\prime}\right)=\varphi\left(e^{\prime \prime}\right)=\gamma$, and $\varphi(e) \leq \gamma$ for all edges e $\in E\left(P\left(e^{\prime}, e^{\prime \prime}\right)\right)$. Let $e_{i}=(u, v)$. Then $\varphi\left(e_{i}\right)=\alpha$ $\leq \gamma$ and $\varphi\left(e^{\prime}\right)$ is visible from u and $\varphi\left(e^{\prime \prime}\right)$ is visible from v under φ. So $\operatorname{count}\left(L\left(e_{i}\right), \gamma\right) \geq 2$. Since by On_line_Edge_Ranking_Tree $\alpha \notin L\left(e_{i}\right), \alpha=\gamma$ is not possible. Thus $\gamma \geq \alpha+1$. But $\operatorname{count}\left(L\left(e_{i}\right), \beta\right) \leq 1$, for each β satisfying $\alpha+1 \leq \beta \leq \max \left\{L\left(e_{i}\right)\right\}$, according to On_line_Edge_Ranking_Tree. So α properly ranks e_{i}.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Proof of Theorem 1: For each execution of the RankEdge procedure, the visibility list is constructed by the BVL procedure using a recursive depth first search (DFS) traversal. For a tree, the complexity of DFS is $O(|E|)=O(|V|)=O(n)$, so it takes $O(n)$ time to build the visibility list. Since the size of the visibility list is $O\left(\left|E\left(T\left(e_{i}\right)\right)\right|\right)=O(|E|)=O(|V|)=O(n)$, searching in $L\left(e_{i}\right)$ to find the rank α in Line 4 of procedure RankEdge takes $O(n)$ time. So we can say that the RankEdge procedure takes time $O(n)$. Since the procedure RankEdge is called for each newly arrived edge, and the m edges $e_{1}, e_{2} \ldots, e_{m}$ arrive one at a time, the total time complexity of On_line_Edge_Ranking_Tree
is $\sum_{i=1}^{m} O(n)=O(m) \cdot O(n)=O(n) \cdot O(n)=O\left(n^{2}\right)$, since for a tree $m=n-1$.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

4 Conclusion

In this paper, for the first time, we have presented an $O\left(n^{2}\right)$ time on-line algorithm for ranking the edges of a tree. Since only a subset of the input graph(tree) is available in each iteration, and an assigned rank cannot be changed later, an on-line edge-ranking algorithm cannot guarantee optimality. Therefore we use a greedy strategy for our on-line algorithm to find the least possible rank for each new edge. Experimental simulation results have shown that the algorithm properly ranks the edges of a tree in quadratic time. It is interesting to note that the corresponding problem on vertices, that is, the on-line vertex-ranking problem for trees can be solved in $O\left(n^{3}\right)$ time [7]. Rahman et al. improved the run-time by showing that the vertices of a tree can be ranked in $O\left(n^{2}\right)$ time [11]. Thus the on-line edge-ranking problem, which is more complex than the vertex counterpart, runs in the same time complexity.

References

[1] E. Bruoth, and M. Horňák, "On-line ranking number for cycles and paths", Discussiones Mathematicae, Graph Theory, vol. 19, pp. 175-197, 1999,.
[2] A. V. Iyer, H. D. Ratliff, and G. Vijayan, "Optimal node ranking of trees", Information Processing Letters, vol. 28, pp. 225-229, 1998.
[3] A. V. Iyer, H. D. Ratliff, and G. Vijayan, "On an edge-ranking problem of trees and graphs", Discrete Applied Mathematics, vol. 30, pp. 43-52, 1991.
[4] M. A. Kashem, and M. Z. Rahman, "An optimal parallel algorithm for c-vertex-ranking of trees", Information Processing Letters, vol. 92, pp. 179184, 2004.
[5] M. A. Kashem, X. Zhou, and T. Nishizeki, "Algorithms for generalized edge-rankings of partial k-trees with bounded maximum degree", Proceedings of the 1st International Conference on Computer and Information Technology (ICCIT), pp. 45-51, 1998.
[6] M. A. Kashem, X. Zhou, and T. Nishizeki, "Algorithms for generalized vertex-rankings of partial k-trees", Theoretical Computer Science, vol. 240, pp. 407-427, 2000.
[7] C. Lee, and J. S. Juan "On-line ranking algorithms for trees", Proceedings of the International Conference on Foundations of Computer Science, Monte Carlo Resort, Las Vegas, USA, pp. 46-51, 2005.
[8] C. Lee, and J. S. Juan, "Parallel algorithm for on-line ranking in trees", Proceedings of the 22nd Workshop on Combinatorial Mathematics and Computational Theory, National Cheng Kung University, Tainan, Taiwan, pp. 151-156, 2005.
[9] T. W. Lam, and F. L. Yue, "Edge ranking of graphs is hard", Discrete Applied Mathematics, vol. 85, pp. 71-86, 1998.
[10] T. W. Lam, and F. L. Yue, "Optimal edge ranking of trees in linear time", Algorithmica, vol. 30, pp. 12-33, 2001.
[11] M. R. Rahman, M. E. Haque, M. Islam, and M. A. Kashem, "On-line algorithms for vertexrankings of graphs", Proceedings of the International Conference on Information and Communication Technology (ICICT 2007), pp. 22-26, 2007.
[12] A. A. Schäffer, "Optimal node ranking of trees in linear time", Information Processing Letters, vol. 33, pp. 91-96, 1989
[13] I. Schiermeyer, Zs. Tuza, and M. Voigt, "Online rankings of graphs", Discrete Mathematics, vol. 212, pp. 141-147, 2000.
[14] P. de la Torre, R. Greenlaw, and A. A. Schäffer, "Optimal edge ranking of trees in polynomial time", Algorithmica, vol. 13, pp. 592-618, 1995.
[15] X. Zhou, M. A. Kashem, and T. Nishizeki, "Generalized edge-rankings of trees", The Institute of Electronics, Information and Communication Engineers (IEICE) Transactions on Fundamentals of Electronics, Communications and Computer Science, vol. 81-A-2, pp. 310-320, 1998.
[16] X. Zhou, N. Nagai, and T. Nishizeki, "Generalized vertex-rankings of trees", Information processing Letters, vol. 56, pp. 321-328, 1995.

