An Efficient On-Line Algorithm for Edge-Ranking of Trees

Muntasir Raihan Rahman¹ Md. Abul Kashem² Md. Ehtesamul Haque²

¹David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada ²Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka 1000, Bangladesh ¹mr2rahman@cs.uwaterloo.ca ²{kashem, ehtesam}@cse.buet.ac.bd

Abstract. An edge-ranking of a graph G is a labeling of the edges of G with positive integers such that every path between two edges with the same label γ contains an edge with label $\lambda > \gamma$. In the on-line edge-ranking model the edges $e_1, e_2 \dots, e_m$ arrive one at a time in any order, where m is the number of edges in the graph. Only the partial information in the induced subgraph $G[\{e_1, e_2, \dots, e_i\}]$ is available when the algorithm must choose a rank for e_i . In this paper, we present an on-line algorithm for ranking the edges of a tree in time $O(n^2)$, where n is the number of vertices in the tree.

Keywords: Algorithm, Edge-ranking, Graph, Tree, Visible Edge.

(Received November 27, 2007 / Accepted May 26, 2008)

1 Introduction

An *edge-ranking* of a graph G = (V, E) is an edgelabeling $\varphi : E \to \mathbb{N}$ such that every path in G between two edges with the same label γ contains an internal edge with label $\geq \gamma + 1$. The integer label $\varphi(e)$ of an edge e is called the *rank* of the edge. Clearly an edge-labeling is an edge-ranking if and only if, for any label γ , deletion of all edges with labels $\geq \gamma$ leaves connected components, each having at most one edge with label γ . Figure 1 shows an edge-ranking of a tree T using 5 ranks.

An edge-ranking of G using the minimum number of ranks(labels) is called an *optimal edge-ranking* of G. The *edge-ranking problem* is to find an optimal edgeranking of a given graph G. The optimal edge-ranking problem has important applications in scheduling the assembly steps in manufacturing a complex multi-part product [3]. Since the constraints for the edge-ranking problem imply that two adjacent edges cannot have the same rank, the edge-ranking problem is a restriction of the edge-coloring problem.

Figure 1: An edge-ranking of a tree T.

The edge-ranking problem is \mathcal{NP} -Complete in gen-

eral [9], although polynomial-time algorithms have been found for trees. Iyer *et al.* [3] gave an $O(n \log_2 n)$ time sequential approximation algorithm for finding an edgeranking of a tree *T* using at most twice the minimum number of ranks, where *n* is the number of vertices in *T*. Later Torre *et al.* [14] gave an exact algorithm to solve the edge-ranking problem on trees in time $O(n^3 \log_2 n)$ by means of a two-layered greedy method. Recently Lam *et al.* have given a linear-time algorithm for solving the edge-ranking problem on trees [10]. In [14] Torre *et al.* have given a parallel algorithm for solving the edge-ranking problem on trees in $O(\Delta^4 \log^3 n)$ parallel time using $O(2^{\Delta}n^{\Delta+1})$ operations on the CREW PRAM model.

Generalization of the edge-ranking problem was introduced in [15]. For a positive integer c, a c-edgeranking of a graph G is a labeling of the edges of Gwith positive integers such that, for any label γ , deletion of all edges with labels $> \gamma$ leaves (connected) components, each having at most c edges with label γ [15]. Clearly an ordinary edge-ranking is a 1-edge-ranking. The *c*-edge-ranking problem is to find an optimal *c*edge-ranking of a given graph G. Zhou *et al.* gave an algorithm to find an optimal *c*-edge-ranking of a given tree T for any positive integer c in time $O(n^2 \log \Delta)$, where Δ is the maximum vertex-degree of T [15]. A polynomial-time sequential algorithm and an $O(\log n)$ time parallel algorithm for solving the *c*-edge-ranking problem on partial k-trees with small treewidth for any positive integer c was given by Kashem et al. [5].

The vertex-ranking problem [2] and the *c*-vertexranking problem [16] for a graph *G* are defined similarly. Iyer *et al.* presented an $O(n \log n)$ time algorithm to solve the vertex-ranking problem on trees [2]. Then Schäffer obtained a linear-time algorithm by refining their algorithm and its analysis [12]. On the other hand, Zhou *et al.* have obtained an $O(c \cdot n)$ time sequential algorithm to solve the *c*-vertex-ranking problem for trees [16]. Kashem *et al.* gave a polynomial-time sequential algorithm and $O(\log n)$ time parallel algorithm for solving the *c*-vertex-ranking problem on partial *k*-trees [6]. Recently, Kashem *et al.* gave an $O(\log n)$ time optimal parallel algorithm for solving the *c*-vertex-ranking problem on trees [4].

An algorithm is called *off-line* if all input data must be accessed before the output is produced. Most research done in graph theory concentrates on off-line algorithms. The edge-ranking and vertex-ranking algorithms mentioned above are all off-line algorithms. On the contrary, an *on-line* algorithm has to make (partial) decisions after seeing only a subset of the input. For example, for ranking (coloring) problems, there are two natural on-line models: the input is given either vertexby-vertex or edge-by-edge. The algorithm assigns a rank (color) to the current vertex or edge based only on past history and a rank (color) assigned to a vertex or edge cannot be changed later.

In this paper we are concerned with on-line rankings of graphs. Schiermeyer et al. characterized the class of graphs for which on-line vertex-ranking can be found using only three ranks [13]. They also proved that for $n \geq 2$, the greedy first-fit coloring heuristic can rank an *n*-vertex path using a maximum of $3 \log_2 n$ ranks, independently from the arriving order of vertices. Bruoth et al. [1] improved this result by showing that the maximum number of ranks required for on-line ranking the vertices of an *n*-vertex path is $2|\log_2 n|+1$, where $n \ge 1$ 2. They also obtained a similar bound for cycles. However none of these two papers provide efficient on-line algorithms for vertex-ranking of graphs. Recently Lee et al. gave the first on-line vertex-ranking algorithm for trees that runs in $O(n^3)$ time [7]. They also presented an on-line parallel algorithm for ranking the vertices of a tree in time $O(n \log^2 n)$ using $O(n^3/\log^2 n)$ processors on the CREW PRAM model [8].

In this paper we provide an $O(n^2)$ time on-line algorithm for ranking the edges of a tree, where *n* is the number of vertices in the tree. In an on-line setting, since the edges arrive one at a time in each iteration, only partial or incomplete information about the input graph is available at each step. So it is not possible to guarantee that an on-line algorithm can rank the edges of a graph with the minimum number of ranks. Therefore we use a greedy strategy in our algorithm to rank the newly arrived edge in each iteration with the least possible rank.

2 Preliminaries

Let T = (V, E) be a tree. We denote V(T) and E(T) as the set of vertices and the set of edges in T, respectively. Let |V(T)| = n and |E(T)| = m. When u and v are the endpoints of an edge e = (u, v), they are adjacent and are *neighbors*. In that case, e is said to be incident to u and v. Two edges are adjacent if they have a common endpoint. We denote the degree of any vertex $v \in$ V(T) by d(v). Also for any two edges $e, e' \in E(T)$, we denote the unique path from e to e' by P(e, e'). The unique path from a vertex v to an edge e is denoted by P(v, e).

Let e_i be the newly arrived edge at the *i*th iteration of an on-line algorithm. We denote T_i as the subgraph of *T* induced by $\{e_1, e_2, \ldots, e_i\}$. Let $T(e_i)$ be the (connected) component of T_i which contains e_i , the newly arrived edge. Only $T(e_i)$ will be considered while ranking e_i , since the edges in other components will not affect the ranks of edges in $T(e_i)$.

Let φ be an edge-labeling of a graph G with positive integers. We denote the rank(label) of an edge eby $\varphi(e)$. The concepts of visible rank and visibility list were introduced by Iyer et al. [2]. Consider any edge $e \in E(T(e_i)) \setminus \{e_i\}$. The rank $\varphi(e)$ of e is said to be *visible* from a vertex $v \in V(T(e_i))$ under φ , if all the edges on P(v, e) are labeled and have ranks $\leq \varphi(e)$. Such an edge e is then called a visible edge. The list of all ranks visible from a vertex v under φ is called the visibility list of v, and is denoted by L(v). Let $e_i = (u, v)$, and let $L(e_i) = L(u) \cup L(v)$. Then we say that $L(e_i)$ is the visibility list of e_i . The list $L(e_i)$ will generally be a multi-set, where an element γ in $L(e_i)$ can appear more than once. A rank that is not visible from an endpoint of e_i under φ is called an *invisible rank.* For any integer γ we denote by $count(L(e_i), \gamma)$ the number of γ 's contained in $L(e_i)$ [16].

3 On-Line Edge-Ranking of Trees

The following theorem is the main result of this paper.

Theorem 1 The edges of a tree T can be ranked using an on-line algorithm in $O(n^2)$ time, where n is the number of vertices in T.

In the remainder of this section we prove Theorem 1 by giving an on-line algorithm for ranking the edges of a tree T in time $O(n^2)$. It is based on the greedy first-fit coloring heuristic. At the *i*th iteration, the algorithm takes as input the newly arrived edge e_i . We then rank e_i with the least possible rank without violating the edge-ranking property. To rank e_i , we construct the visibility list $L(e_i)$ by searching in $T(e_i)$ to find all visible ranks. The search is carried out by a recursive depth first search traversal. During the search, we keep track of the largest rank of an edge on a path starting from endpoints of e_i seen so far. As the traversal continues along a path, if an edge is traversed that has a rank greater than the current maximum, then that rank is added to $L(e_i)$ and the largest rank is updated. Since any edge adjacent to e_i is trivially visible from an endpoint of e_i under φ , its rank must belong to $L(e_i)$. To incorporate this case into the algorithm, the largest rank is set to 0 at the beginning of the search. As a result when an edge e adjacent e_i is traversed, its rank $\varphi(e)$ will be trivially greater than 0 and added to $L(e_i)$. The pseudo-code of the algorithm is given below.

Algorithm On_line_Edge_Ranking_Tree begin

```
1 for i = 1 to m do \{m = |E(T)|\}
```

```
2 read a new edge e_i;
```

- 3 let $E' = \{e'_1, e'_2, \dots, e'_p\}$ be the set of edges adjacent to e_i in $\{e_1, e_2, \dots, e_{i-1}\}$;
- 4 $L := \emptyset$; {Currently L is the visibility list of e_i , that is $L = L(e_i)$ }
- 5 RankEdge (e_i, E') ;

```
end
```

Procedure RankEdge(e, E') begin

- 1 **for** j = 1 to p **do** $\{p = |E'|\}$
- 2 **BVL** $(e, e'_i, 0)$;
- 3 find minimum α such that $\alpha \notin L$ and $count(L, \beta) \leq 1$, for each β satisfying $\alpha + 1 \leq \beta \leq max\{L\};$
- 4 $\varphi(e) := \alpha$; {rank e with α } end

Procedure BVL (e, e', r_{max}) begin

- 1 if $\varphi(e') > r_{max}$ then
- 2 $L := L \cup \{\varphi(e')\};$ 3 let E(e') be the set of
- edges adjacent to e' in $T(e_i)$;
- 4 if $(E(e') \setminus \{e\}) \neq \emptyset$ then 5 for each edge $e'' \in (E(e))$
- 5 for each edge $e'' \in (E(e') \setminus \{e\})$ do 6 BVL $(e', e'', max\{r_{max}, \varphi(e')\});$

We now prove the correctness of the algorithm.

When i = 1, that is, when the first edge e_1 arrives, it does not have any adjacent edges, and so it can be trivially ranked with 1 without violating the edge-ranking property. When i > 1, we inductively assume that the edges e_1, \ldots, e_{i-1} have been properly ranked in the previous i - 1 iterations. We now prove that e_i is properly ranked at the *i*th iteration. At first we show that the visibility list is correctly constructed at the *i*th iteration of the algorithm. We have the following lemma.

Lemma 1 Let $e_i \in E(T)$ be the newly arrived edge at the *i*th iteration, and let L be the list constructed by On_line_Edge_Ranking_Tree for the edge e_i . Then $L = L(e_i)$, that is,

- (i) L contains all the ranks visible from an endpoint of e_i under φ; and
- (ii) L does not contain any rank invisible from both endpoints of e_i under φ .

Proof. (i) For a contradiction, assume that γ is a rank visible from an endpoint v of e_i under φ but $\gamma \notin L$. Let e be a visible edge with rank $\varphi(e) = \gamma$, where $e \in E(T(e_i)) \setminus \{e_i\}$. Since γ is visible from the endpoint v of e_i , all the edges on P(v, e) have ranks $\leq \gamma$. Let e' be the edge incident to v on P(v, e) and e'' be the edge adjacent to e on P(v, e). Since φ is a vertex-ranking, we have $\varphi(e''') < \gamma$ for all edges $e''' \in E(P(e', e''))$. Thus the largest rank seen so far from e' to e'' on P(v, e) is $< \gamma$. So when e will be traversed on P(v, e), we have $\varphi(e) = \gamma > r_{max}$. So γ must be added to L. This contradicts $\gamma \notin L$. Thus L contains all the ranks visible from an endpoint of e_i .

(ii) For a contradiction, assume that L contains a rank γ that is invisible from both endpoints u and v of e_i under φ . Let e be a vertex with $\varphi(e) = \gamma$. Let e' be the edge incident to v on P(v, e). Since γ is invisible from the endpoint v of e_i , there must be an edge $e'' \in E(P(v, e)) \setminus \{e\}$ such that $\varphi(e'') > \gamma$. At any edge on P(v, e) traversed after e'', we have $r_{max} \ge \varphi(e'')$. Since e is traversed after e'' on P(v, e), at e, we have $r_{max} \ge \varphi(e'')$ and $\varphi(e'') > \gamma$. Therefore at e, we have $r_{max} \ge \varphi(e)$. So $\varphi(e) = \gamma$ cannot be added to L. So L cannot contain any invisible rank. $Q.\mathcal{E.D}$.

Next we show that the rank chosen for e_i , the current new edge, does not violate the edge-ranking property in $T(e_i)$.

Lemma 2 The rank α properly ranks the newly arrived edge $e_i \in E(T)$ at the *i*th iteration.

Proof. For a contradiction, assume that α does not properly rank e_i . So $T(e_i)$ will contain a path P(e', e'')for some $e', e'' \in E(T(e_i))$ such that $e_i \in E(P(e', e''))$, $\varphi(e') = \varphi(e'') = \gamma$, and $\varphi(e) \leq \gamma$ for all edges $e \in E(P(e', e''))$. Let $e_i = (u, v)$. Then $\varphi(e_i) = \alpha \leq \gamma$ and $\varphi(e')$ is visible from u and $\varphi(e'')$ is visible from v under φ . So $count(L(e_i), \gamma) \geq 2$. Since by $On_line_Edge_Ranking_Tree \ \alpha \notin L(e_i), \ \alpha = \gamma$ is not possible. Thus $\gamma \geq \alpha + 1$. But $count(L(e_i), \beta) \leq 1$, for each β satisfying $\alpha + 1 \leq \beta \leq max\{L(e_i)\}$, according to $On_line_Edge_Ranking_Tree$. So α properly ranks e_i . $Q.\mathcal{E.D}$.

Proof of Theorem 1: For each execution of the RankEdge procedure, the visibility list is constructed by the BVL procedure using a recursive depth first search (DFS) traversal. For a tree, the complexity of DFS is O(|E|) = O(|V|) = O(n), so it takes O(n) time to build the visibility list. Since the size of the visibility list is $O(|E(T(e_i))|) = O(|E|) = O(|V|) = O(n)$, searching in $L(e_i)$ to find the rank α in Line 4 of procedure RankEdge takes O(n) time. So we can say that the RankEdge procedure takes time O(n). Since the procedure RankEdge is called for each newly arrived edge, and the *m* edges $e_1, e_2 \dots, e_m$ arrive one at a time, the total time complexity of $On_line_Edge_Ranking_Tree$

is $\sum_{i=1}^{m} O(n) = O(m) \cdot O(n) = O(n) \cdot O(n) = O(n^2)$, since for a tree m = n - 1. Q.E.D.

4 Conclusion

In this paper, for the first time, we have presented an $O(n^2)$ time on-line algorithm for ranking the edges of a tree. Since only a subset of the input graph(tree) is available in each iteration, and an assigned rank cannot be changed later, an on-line edge-ranking algorithm cannot guarantee optimality. Therefore we use a greedy strategy for our on-line algorithm to find the least possible rank for each new edge. Experimental simulation results have shown that the algorithm properly ranks the edges of a tree in quadratic time. It is interesting to note that the corresponding problem on vertices, that is, the on-line vertex-ranking problem for trees can be solved in $O(n^3)$ time [7]. Rahman *et al.* improved the run-time by showing that the vertices of a tree can be ranked in $O(n^2)$ time [11]. Thus the on-line edge-ranking problem, which is more complex than the vertex counterpart, runs in the same time complexity.

References

- E. Bruoth, and M. Horňák, "On-line ranking number for cycles and paths", *Discussiones Mathematicae, Graph Theory*, vol. 19, pp. 175-197, 1999,.
- [2] A. V. Iyer, H. D. Ratliff, and G. Vijayan, "Optimal node ranking of trees", *Information Processing Letters*, vol. 28, pp. 225-229, 1998.
- [3] A. V. Iyer, H. D. Ratliff, and G. Vijayan, "On an edge-ranking problem of trees and graphs", *Discrete Applied Mathematics*, vol. 30, pp. 43-52, 1991.
- [4] M. A. Kashem, and M. Z. Rahman, "An optimal parallel algorithm for *c*-vertex-ranking of trees", *Information Processing Letters*, vol. 92, pp. 179-184, 2004.
- [5] M. A. Kashem, X. Zhou, and T. Nishizeki, "Algorithms for generalized edge-rankings of partial k-trees with bounded maximum degree", Proceedings of the 1st International Conference on Computer and Information Technology (ICCIT), pp. 45-51, 1998.
- [6] M. A. Kashem, X. Zhou, and T. Nishizeki, "Algorithms for generalized vertex-rankings of partial *k*-trees", *Theoretical Computer Science*, vol. 240, pp. 407-427, 2000.

- [7] C. Lee, and J. S. Juan "On-line ranking algorithms for trees", *Proceedings of the International Conference on Foundations of Computer Science, Monte Carlo Resort, Las Vegas, USA*, pp. 46-51, 2005.
- [8] C. Lee, and J. S. Juan, "Parallel algorithm for on-line ranking in trees", *Proceedings of the* 22nd Workshop on Combinatorial Mathematics and Computational Theory, National Cheng Kung University, Tainan, Taiwan, pp. 151-156, 2005.
- [9] T. W. Lam, and F. L. Yue, "Edge ranking of graphs is hard", *Discrete Applied Mathematics*, vol. 85, pp. 71-86, 1998.
- [10] T. W. Lam, and F. L. Yue, "Optimal edge ranking of trees in linear time", *Algorithmica*, vol. 30, pp. 12-33, 2001.
- [11] M. R. Rahman, M. E. Haque, M. Islam, and M. A. Kashem, "On-line algorithms for vertexrankings of graphs", *Proceedings of the International Conference on Information and Communication Technology (ICICT 2007)*, pp. 22-26, 2007.
- [12] A. A. Schäffer, "Optimal node ranking of trees in linear time", *Information Processing Letters*, vol. 33, pp. 91-96, 1989.
- [13] I. Schiermeyer, Zs. Tuza, and M. Voigt, "Online rankings of graphs", *Discrete Mathematics*, vol. 212, pp. 141-147, 2000.
- [14] P. de la Torre, R. Greenlaw, and A. A. Schäffer, "Optimal edge ranking of trees in polynomial time", *Algorithmica*, vol. 13, pp. 592-618, 1995.
- [15] X. Zhou, M. A. Kashem, and T. Nishizeki, "Generalized edge-rankings of trees", *The Institute of Electronics, Information and Communication Engineers (IEICE) Transactions on Fundamentals of Electronics, Communications and Computer Science*, vol. 81-A-2, pp. 310-320, 1998.
- [16] X. Zhou, N. Nagai, and T. Nishizeki, "Generalized vertex-rankings of trees", *Information processing Letters*, vol. 56, pp. 321-328, 1995.