
MoVAL, a new approach to software architecture and its
comparison with existing views based approaches in software

engineering.

AHMAD KHEIR1,2

HALA NAJA2

MOURAD OUSSALAH1

1University of Nantes
LINA - Laboratoire d’Informatique de Nantes Atlantique

2Lebanese University
EDST - AZM platform for research in biotechnology

1(ahmad.elkheir,mourad.oussalah)@univ-nantes.fr
2hjazzar@ul.edu.lb

Abstract. Views and viewpoints are concepts usually adopted in an important number of works in
software engineering in different domains, like in requirements specification, system modeling, system
implementation, and mainly in software architectures.
This paper presents a survey about the use of viewpoints in these different domains, and leads a compar-
ative synthesis between different approaches in order to induce their limitations. Also, it briefly presents
the main characteristics of our views based approach MoVAL that solves two kinds of problems dur-
ing view-based software development: the stakeholders’ communication complexity and the lack of an
architecture definition process guiding architect during architecture construction.

Keywords: Software architecture, Viewpoint, View, abstraction level.

(Received April 16th, 2014 / Accepted July 2nd, 2014)

1 Introduction

The viewpoint concept, also called view, takes various
meanings across the field of computer science. In gen-
eral, we are interested in views as soon as we model
complex systems involving a large amount of data that
require the cooperation of several experts from different
fields of knowledge and different points of interest and
addressing a wide range of users. As discussed in [17],
a viewpoint links a designer, a universe of discourse (i.e.
the system), and the goal that the designer is trying to
achieve. The viewpoint enables a partial representation
of the system to be modeled, highlighting one or more
aspects of the latter and concealing others.

The first work on viewpoints falls within the field
of knowledge representation in artificial intelligence.

Here, we can mention the work of Minsky [15] fol-
lowed by KRL languages [3], LOOPS languages [2],
and ROME languages [5], which have all identified the
need to bestow several representations to the same ob-
ject.

In databases, viewpoint concept was introduced in
1975 for the first time in Ansi/Sparc’s report under the
name of external schema. An external schema repre-
sents the unique access point from which users can ac-
cess data from the database. This is a part of the base,
which interests a user or group of users and incorporates
the concept of access rights. A viewpoint restricts the
visibility of data and/or adapts their structure to the ap-
plication requirements. It helps solve problems related
to the configuration of user interface for data protec-
tion, for change in data organization without disrupting

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.

(ahmad.elkheir,mourad.oussalah)@univ-nantes.fr
hjazzar@ul.edu.lb


Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 27

the existing organization as well as for query optimiza-
tion.

In software engineering, the motivation of view-
point is the separation of concerns. Thus, points of
views are introduced as construction elements for the
management of complexities of artifacts products (such
as requirements specifications, design models and pro-
grams).

In section 2, we conduct a survey on views in four
areas of software engineering, which are requirements
specification, system modeling, system implementa-
tion, and software architectures. Then in section 3,
we extend the review to software architecture as it is
closely related with the purpose of our study, and we de-
tail some software architecture approaches and present
their limitations. In sections 4 and 5, a novel software
architecture approach will be introduced and compared
to the other approaches. Finally, section 6 concludes
the paper.

2 Views in software engineering

In this survey we have conducted a study of views in
three disciplines in software engineering, which are:

• Requirements specification: requirements specifi-
cation for a software system is a description of the
behavior of this system and the interactions users
may have with it.

• System modeling: system modeling is a technique
to express, visualize, analyze, and transform re-
quirements of a system in software engineering.

• System implementation: system implementation is
the process of defining how the information system
should be built, ensuring that it suits well the needs
of its users, and that it is operational.

2.1 Views in Requirements Specification

In 1979, Mullery developed a formal method for the
specification and modeling of complex computer sys-
tems called CORE [16]. This method, proposes to break
down the modeling process into several steps and, for
each of them, to identify the viewpoints associated with
them, so as to finally achieve a schematic representation
of the system while taking into account all viewpoints
of this system.

In [9] and [25] methods and tools are developed
for the derivation of the computer systems specifica-
tions from a dialogue between different points of views.
Delugash et al. [7] represented the needs associated
with each viewpoint in a conceptual graph. Then, an

integration of the different graphs into a single graph
is carried out. The obtained graph specifies the re-
quirements for the entire system. Nuseibeh et al. [20]
represent the links and relationships that can exist be-
tween the points of views through a given platform. Fi-
nally, in 1997, Sommerville proposed his Preview ap-
proach [27], which gives architects of computer sys-
tems a method and tools to discover and analyze the
requirements of different viewpoints.

2.2 Views in System Modeling

In terms of system modeling, in [17], the author defines
five properties that an object-oriented model should
have to make it a multiview object-oriented model.
These properties are: (1) a range of one viewpoint at
various levels, (2) multiple representation has a repos-
itory, (3) multiple representation is decentralized, (4)
partial representations exchange information between
them, and (5) multiple representations are consistent.

Also, Dijkman et al. [8] presented a platform in
which the software architect can model different view-
points of the system by determining a collection of ba-
sic concepts that are common to all viewpoints, and
then by associating each viewpoint with a suitable level
of abstraction and by defining the relationships that may
exist between the viewpoints.

Still in modeling, UML notation embodies the
broader concept of the viewpoint. In fact, in its cur-
rent standard, the UML proposes 13 types of diagrams
where each type bestows an implied viewpoint, from
which a complex system will be approached, thus al-
lowing the decomposition of complex model of a sys-
tem into several less complex, more easily affordable
and intelligible supplementary sub-models. In addi-
tion, UML proposes an extension mechanism that al-
lows users to add or customize the predefined types of
diagrams and thus to add points of views.

In VUML approach [1, 18], an extension of UML
is proposed. It is based on the ability to coexist several
class diagram for the same system, and then to proceed
to an integration of these diagrams into a single one,
consistent with the proposed VUML meta-model.

2.3 Views in System Implementation

In the history of system implementation and program-
ming languages, the terms "decomposition" and "mod-
ularity" have always been keywords to reduce the com-
plexity of programs. Thus, we obtain less complex,
loosely coupled and easily reusable modules.

The separation of concerns aims to carry out a mod-
ularization of programs based on various concerns. The

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 28

idea is to consider a system as a core with extensions.
The core is the set of basic functional requirements for
which the system is primarily designed and the exten-
sions are additional secondary requirements, which add
functionalities to the core. An extension is a concern
that cross-cuts several basic functional requirements.
The implementation of a concern gives rise to an aspect.
Hence, the programming called "Aspect-Oriented Soft-
ware Development" (AOSD) [12, 13]. Other paradigms
exist based on the same principle; however, they di-
verge for several reasons, such as subject-oriented pro-
gramming [8] or view oriented programming [13]. We
do not extend the comparison between these different
paradigms. The interested reader can refer to [12] for
such a comparison.

3 Software architecture approaches and their
limitations

Within software architecture, it is almost impossible to
capture the architecture of a complex system in a single
model that is understood by all stakeholders. By stake-
holder, we include both the user of the future system
and the manufacturer of the latter. A manufacturer is
a person or a group of people that designs, develops,
tests, deploys or maintains the future system.

In each of these activities, each stakeholder has its
own needs, interests, requirements, and wishes that the
system considers. Understanding the role and aspira-
tions of each stakeholder is the role of the architect dur-
ing the development of the system.

The recommended solution for an architectural de-
scription (AD) is to partition it into a number of sepa-
rate and interdependent points of view, which collec-
tively describe the functional and non-functional as-
pects (such as performance, robustness, availability,
competition, and distribution) of the system. This so-
lution is not new; in fact, it goes back to the work of
Parnas in 1970 [22] and most recently, in 1990, to that
of Perry and Wolf [23].

In addition numerous approaches and frameworks
have been developed since that date, like the "4+1"
View Model [11], Siemens Model [28], and most re-
cently Rozanski and Woods approach [26], that targeted
the decomposition of a software architecture to differ-
ent predefined views in order to cover every aspect of a
software system. Also, the Reference Model of Open
Distributed Processing (RM-ODP) [24] is one of the
important frameworks in this field that targeted the stan-
dardization of ODP (Open Distributed Processing) sys-
tems by supporting mainly the distribution, interwork-
ing, and portability aspects of these systems. Views
and Beyond (V&B) [6] is an architecture description ap-

proach, in which authors have offered a detailed guide
to software architects for architecture documentation
using an organization of views and viewtypes. Zach-
man framework [29] have offered tools to classify a
software architecture’s artifacts in a matrix organization
decomposing the architecture to six different views and
defining for each of them six different focuses. Simul-
taneously, the IEEE standard have been defined for the
first time in 2000 as a try to bring all the important exist-
ing works in this field, and create based on them a stan-
dard for multi-views software architectures. This stan-
dard has been revised in many other occasions, most
recently in 2011 under the name IEEE 42010 standard
[10], to keep it synchronized with novel works in the
field.

In what follows, we describe five approaches, which
have provided satisfactory solutions to this problem.

3.1 "4+1" view model

The "4+1" View Model [11] proposed by P. Kruchten
of the Rational Software Corp, is based on five main
views, shown in Figure 1, which are as follows:

• The logical view covers mainly the functional re-
quirements of the system, or in other words, what
the system provides as services to users. The logi-
cal view shows the system objects and the relation-
ships between them.

• The process view represents a non-functional as-
pect of the system requirements such as perfor-
mance, availability, concurrence, distribution, and
integrity. This view divides the system into a set of
processes and represents the interactions that will
take place between these processes.

• The development view focuses on the modular or-
ganization of the system. Thus, in this view, the
system is broken down into several libraries or
subsystems that can each be implemented by a de-
veloper or a small team of developers. This view
covers the internal requirements of the implemen-
tation as reusability, compliance with standards
and constraints, etc.

• The physical view takes mainly into account the
non-functional system requirements such as avail-
ability, reliability, performance, and scalability. In
the physical view, software elements, such as pro-
cesses and objects, will be associated with differ-
ent physical components such as processors and
hard disks.

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 29

• Scenarios represent the integration of elements of
the previous four views using a small set of sce-
narios that seem important.

Figure 1: Kruchten’s "4+1" model

The views offered in this model are not completely in-
dependent. In fact, matches can be seen between these
views, for example as a match practice between a small
class or set of classes, which will normally be repre-
sented as a module or a set of modules in the develop-
ment view, or the process for the process view, which
will be associated with the physical media of the phys-
ical view to be performed.

It should be noted that this model has been adopted
in the iterative development process called unified pro-
cess (UP) [4].

This model was extended in the Rational Architec-
ture Description Specification (Rational ADS) approach
[19] in order to have a better behavior with more com-
plex systems. Thus, this approach added other views
to the model and defined how those views are inter-
dependent one to the other.

3.2 ISO/IEC/IEEE 42010

ISO/IEC/IEEE 42010 [10] was designed by the IEEE
APG in 1996, approved by the IEEE-SA standards
board and coded IEEE 1471-2000, then adopted by the
ISO/IEC JTC1/SC7 and named ISO/IEC 42010:2007.
This standard aims at formalizing the definition of soft-
ware architecture and its main elements, and also in or-
der to provide a common standard for the incorporation
and embodiment of the efforts made in this field.

IEEE 42010 defined an architecture or AD as being
the organization of a system, structured by a collection
of components (i.e. units) and software links or rela-
tionships defined between these components.

According to the model proposed in this stan-
dard and presented in [10]:

• an AD addresses a broad array of stakeholders
who have concerns. A concern may be covered
by viewpoints:

• a viewpoint is a specification of the construction
agreements of its own views. These agreements

may be defined in the architecture itself or im-
ported from an external entity called Model kind;

• a view is consistent to a viewpoint and consists of
a set of models;

• an AD is made up of a set of views, so that each
one complies with a viewpoint and is a set of mod-
els that describe the architecture.

3.3 Rozanski and Woods approach

Rozanski and Woods approach [26] complies with the
IEEE 42010 standard. The contribution of this ap-
proach is the definition of a fixed catalog of inter-
dependent viewpoints. Those viewpoints are:

• Context: describing the relationships, dependen-
cies, and interactions between the system and its
environment.

• Functional: describing the functional elements of
the system in execution time, their relationships,
interfaces, and interactions.

• Information: describing how the system stores,
manipulates, manage, and distribute the informa-
tion or data.

• Concurrency: describing the concurrency struc-
ture of the system and highlighting the concurrent
portions of some execution processes.

• Development: describing and communicating the
architectural aspects of the system among all the
stakeholders having concerns in the construction
of the system.

• Deployment: describing the environment in which
the system must be deployed, and the potential de-
pendencies among its elements.

• Operational: describing how the system must be
managed during execution time in its production
environment.

Also, Rozanski and Woods have defined the dependen-
cies between different viewpoints of the architecture, as
illustrated in Figure 2.

Note that this approach was fortified with a global
architectural description process that guides the soft-
ware architect defining effectively his architecture.

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 30

Figure 2: Rozanski and Woods approach viewpoints and their depen-
dencies, extracted from [26].

3.4 Views & Beyond approach

Within the SEI (Carnegie Mellon), Clements et al. de-
veloped the V&B approach [6] for documenting soft-
ware architectures. This approach, as its name suggests,
uses views to achieve a fundamental organization of
software architectures. In fact, V&B approach is based
on the principle that the documentation of a software
architecture begins with the documentation of its rele-
vant views and thereafter, documenting the information
linking these views together.

Basically, V&B approach is for all viewpoints in the
development process of the computer system, and aims
to provide documentation of a software architecture that
is decomposed into several views for different stake-
holders meeting their requirements.

In this approach, a three-level hierarchy is defined
as follows:

• The viewtypes: a viewtype represents a category
of views and is for one or a set of stakeholders.
There are three viewtypes: (1) module viewtype,
(2) component and connector (C&C) viewtype,
and (3) allocation viewtype.

• The styles: an architectural style also known as
architectural pattern is a high-level pattern that as-
sists to specify the basic structure of an applica-
tion. Any style helps to achieve an overall prop-
erty of the system, such as the adaptability of the
user interface or distribution. Styles are grouped
in viewtypes, which are considered as categories
of styles. The list of styles defined for each view-
type is illustrated in Figure 3.

• The views: it represents collections of system ele-
ments and relationships that link them. Note that
the architectural views are documented in a tem-
plate defined by the designers of this approach.
In fact, an architectural view is always consistent
with a style.

Figure 3: Viewtypes, styles and views in V&B approach

V&B approach offers a three-step guide for the selec-
tion of relevant views necessary to document the archi-
tecture of a system:

1. Produce a list of candidate views: this step is to
construct a two-dimensional array (row-column)
as the rows represent the stakeholders that the ar-
chitect considers relevant to the current project and
the columns denotes grouped views into viewtypes
and the styles that can be applied. Then, fill in the
boxes of the table with values describing the level
of information required for each stakeholder and
each style. The level of information can be: d for
detailed information, s for some detail, and o for
overview information.

2. Combine the views: this step aims to minimize the
number of views obtained in step 1 by ignoring the
views whose architectural value is covered in other
views and by combining other views.

3. Sorting views: sorting the remaining views will
be carried out in the order of priority of the docu-
mentation, depending on the specific details of the
project.

The last phase of the documentation of a proposed ar-
chitecture by the V&B approach is the documentation
of inter-views information that are applied to multiple
views. This phase has been proposed to link the views
of the architecture together and give an overall picture
facilitating the understanding of the stakeholders.

3.5 Zachman framework

Zachman framework [29] was designed basically to
classify and to organize the models and artifacts of a

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 31

software architecture based on two parameters, which
are the viewpoint holding this model and its focus.
Hence, a software architecture could be represented in
Zachman framework via a matrix 6 × 6, where each
row represent a viewpoint and each column represent a
focus.
The six different views in Zachman framework, illus-

Figure 4: Different views and focuses defined in Zachman frame-
work

trated in Figure 4, are:

• Scope (Contextual): where the system context,
scope, and relationships with other systems are de-
fined.

• Business model (Conceptual): in this view the ar-
chitect must draw the vision of the system owner
towards the business entities and processes of the
system.

• Information system model (Logical): in this view,
designers of the system must model the system re-
quirements gathered in the previous views.

• Technology model (Physical): in this view, devel-
opers must show how to implement the design of
the last view considering a specific technology.

• Detailed specification (As Built): represent the de-
tailed implementation models.

• Actual system (Functioning).

Basically, in this framework each view is built by an-
swering different questions representing different fo-
cuses for each view. Those questions and focuses
are: data description (What), function description
(How), Network description (Where), people descrip-
tion (Who), time description (When), and motivation
description (Why).

3.6 Views contribution in Software Architecture

The introduction of viewpoints in software architecture
contributed to the improvement of the process of de-
scribing architecture in several ways [26]:

• Separation of concerns: the separation of multiple
aspects of a system using several different models
during the design process, analysis, etc., helps a
particular aspect while being able to focus on each
step.

• Communication with stakeholders groups: com-
munication between stakeholders groups with var-
ious concerns is a challenge for the architect. Ap-
proaches based on views provide an opportunity
for stakeholders to converge relatively quickly to-
ward the ADs that interest them and that respond
to their concerns.

• Managing complexity: all aspects of a system,
considered simultaneously in the same model, re-
sult into a complexity that a human being cannot
handle. The thought of breaking down the model
into models according to different views notably
reduces the complexity.

3.7 Limitations of current approaches in software
architecture

Within software architecture, approaches working on
the view concept have effectively contributed in the
software development process. In fact, they have led
to the reduction of the complexity of an AD by combin-
ing all the information and treatments related to specific
concerns; it is the complexity caused by the multitude
of concerns. However, some limitations may be noted.
Among these limitations, we note:

• The persistence of complexity within views: in
fact, if the views have solved the problem caused
by the complexity owing to the multitude of con-
cerns raised above, an AD must be able to pro-
vide some solutions for another form of complex-
ity: the intra-view complexity which is owing to
the need to consider a hierarchical description at
different levels. In fact, it is essential to take a hi-
erarchical approach that reveals different levels of
understanding in a view. In other words, the archi-
tect needs to decompose a view into several levels
and needs to specify the links and types of links
between these levels. Besides the fact that this
description in multiple levels helps to reduce the
complexity within a view, it assists to better meet
the requirements of stakeholders which, depend-
ing on the circumstance, need to study a detailed

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 32

or semi-detailed overall description of a view and
navigate between these levels of description.

• The proposal of a process of AD considering
different forms of complexity: for instance, the
Kruchten [11] and Clements [6] approaches pro-
posed a guide for the selection of viewpoints and
views, but none of them have formally integrated
levels of hierarchies, in conjunction with views.

• The problem of inconsistency between the views:
no approach has brought a formal solution to the
problem of inconsistency between the portions of
descriptions raised from different views which are
inevitably complementary and dependent.

4 MoVAL Novel approach for software archi-
tecture

In light of the study presented above, the motivations
and goals of a novel approach have been fixed. It is a
software architecture definition and documentation ap-
proach that aims to reduce different kinds of complexi-
ties that reside inside an architecture description. Thus,
it addresses three problems during software develop-
ment.

• Separation of concerns need: as it is claimed to
be a view-based approach, it adopts views as a key
concept to achieve the separation of concerns issue
already identified in almost all approaches.

• Inner views complexity: usually a view is built
using a huge amount of models. Not organizing
those models would lead to a misunderstanding of
the models purposes and links between them.
Our approach proposes to use two refinement prin-
ciples in order to organize models in an efficient
and appropriate way. The two principles are:
(1) Refinement to detail and (2) Refinement to
achieve. Those principles are ensured via achieve-
ment and description levels.

• The lack of an architecture definition process for
a well-organized views approach: this approach
proposes an architecture definition process guid-
ing the architect through the architecture definition
task, integrating steps to define well-organized
models inside views as well as means to specify
links between different views.

The triptych of Figure 5 illustrates the intensions and
aims of this approach. In this figure, the architecture
hierarchy axis illustrates the entities that will compose

Figure 5: Triptych representing the intensions of the novel approach

the architecture, which are the views, achievement lev-
els, then description levels.
The second axis, the Architecture Definition Process
(ADP) axis, presents the four different phases of the
process proposed in this approach, which are the incep-
tion phase, elaboration phase, construction phase, and
transition phase.
The modeling level axis describes how this approach
addresses the needs of stakeholders at different model-
ing levels. Like the software architects, analysts, and
designers at the M1 modeling level, and the application
architect (deployment engineers), and users at the M0
modeling level.

4.1 MoVAL Key concepts and characteristics

MoVAL (Model, View, and Abstraction Level based
software architecture) is a software architecture that in-
tends to offer to the software architect tools that sim-
plify the tasks of construction and documentation of un-
derstandable software architectures that could be easily
manipulated by different stakeholders.
MoVAL is a multi-viewpoints software architecture that
consists on the description of a software architecture
via multiple views, then hierarchize each view to dif-
ferent abstraction levels of two different types: (1) the
achievement levels, and (2) the description levels.
In fact, this approach was designed primarily to ful-
fill the industrial needs. Thus, it complies with the
most widespread software architecture standards, like
the IEEE 42010 [10], MOF (Meta-Object Facility) [21],
and MDA (Model Driven Architecture) [14].

4.1.1 Achievement level

An achievement level in MoVAL is a set of artifacts that
defines an architecture at a specific phase of the devel-

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 33

opment process. Thus, an achievement level must al-
ways provide further implementation details comparing
with the other preceding levels. In other words, it an-
swers better to the "How to" question. For instance, the
answer of a "How to" question, given a UML use case
diagram, would be sequence diagram. Indeed, the use
case diagram refer to use cases names, as the use case
sequences shows the realization of the latter use cases
(i.e. their scenarios).

4.1.2 Description level

This type of abstraction levels in MoVAL allows the
architect to provide multiple descriptions with different
granularity description levels of the artifacts. A descrip-
tion level expands descriptions given in preceding lev-
els. It answers better to "What more about" question.
For instance, an answer to this question given a set of
components names, would be to specify their interfaces.

4.1.3 Multi-levels architecture

Actually, a MoVAL architecture is a multi-views archi-
tecture. Thus, this architecture is decomposed into mul-
tiple views in order to reduce its structural complexity.
Then, each view defines a set of achievement levels re-
lated each other by some formal architectural elements
called "Links" that ensure the consistency between the
view’s achievement levels. From another side, each
achievement level is described in multiple related de-
scription levels, leading to a significant reduction of the
description complexity in the entire resulting architec-
ture.

4.2 Case study

In order to clarify MoVAL concepts and confirm its
contribution and utility in software engineering and
complex systems development field, a case study will
be considered.

This case study consists of an eCommerce WebApp,
in which multiple stores would be registered and given
virtual spaces to expose their products for sale.

In this context, three views could be considered:

• Physical view: which represent the view of the
system deployer. Thus, it manipulates the hard-
ware and software resources used for the deploy-
ment of such systems.

• Functional view: representing the functionalities
that must be offered by the system.

• Site administrator view: representing the system
as seen by the system administrator and consider-
ing his requirements.

• Store administrator view: representing the system
as seen by the registered store administrator.

For the functional view for example, two distinct
achievement levels could be considered. In the first
achievement level, the functionalities offered by the
system could be represented in one single description
level, using "Boxes-and-lines" notation as illustrated in
Figure 6.

Then, for the second achievement level, those func-

Figure 6: "Boxes-and-lines" model representing the first achievement
level related to Functional view.

tionalities could be represented in a little more ad-
vanced technical way, using components structure. In
this context, two distinct description levels could be
considered for the achievement level of the functional
view, representing in the first description level only the
components as illustrated in Figure 7, and the com-
ponents with their interfaces in the second description
level.

4.3 MoVAL architecture definition process

MoVAL approach is endowed a specific architecture
definition process, namely MoVAL-ADP, that complies
with the Unified Process (UP) [4] and that was inspired
from the process presented by Rozanski and Woods in
[26].
This process is a set of activities and milestones that
must be performed by the software architect in order
to construct an appropriate software architecture that
meets the stakeholders’ requirements.

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 34

Figure 7: Components model representing the second achievement
level related to Functional view.

Normally, as this process complies with the Unified
Process, it defines four different phases, which are
the inception, elaboration, construction, and transition
phase.
In the inception phase, the architect must define the
scope and context in which the target system shall be
running, identify the main stakeholders, and capture the
first-cut concerns and risks. Then, in the elaboration
phase, the architect identifies the viewpoints of the ar-
chitecture and creates the candidate architecture. Next,
in the construction phase, he builds each view apart and
defines its achievement and description levels and the
links that relates them each other. Finally in the tran-
sition phase, the architect collects the implementation
feedbacks and updates his architecture upon them. Due
to space limitation, we will not detail MoVAL-ADP.

5 Comparison between MoVAL and other
software architecture approaches

Following the previously discussed study, we make a
comparative summary (see Table 1) between the five
software architecture approaches and MoVAL approach
based on the following seven criteria:

• Covered area:

– the area covered by "4+1" View Model is the
design of a software intensive system guided
by scenarios and agreeing with incremental
development processes such as RUP;

– IEEE 42010 refers to the standardization of
concepts and practices related to the descrip-
tion of a software-intensive system architec-
tural design;

– the area covered by Rozanski approach and
MoVAL is the AD of a software inten-
sive system walking through a specific ADP.

MoVAL considers also hierarchizing the
views of the architecture.

– V&B approach is the documentation of an
AD that is decomposed into several views for
various stakeholders meeting their require-
ments.

– Zachman framework covers also the design
of software systems but while building a con-
crete software architecture.

• Approach focused on:

– IEEE 42010, Rozanski approach, V&B ap-
proach, and MoVAL approach are based on
the requirements of various stakeholders of
the system being built;

– the "4+1" View Model and Zachman frame-
work are rather focused on the different
phases of system development.

• Status/number of views: by status, we mean if the
views are fixed and predefined by the approaches
or if they can be created by the architect (by in-
stantiating a meta-concept):

– in "4+1" View Model, Rozanski approach,
and Zachman framework: the views are fixed
and their number is 5, 7, and 6 respectively.
Notwithstanding this, all projects are not re-
quired to specify all the views, mainly in the
"4+1" View Model and Rozanski approach
but possibly a subset of them. The architect
chooses this subset;

– in V&B approach, combining existing views
can create new views but the architect cannot
introduce new styles and new categories of
styles (viewtypes);

– views in IEEE 42010 standard and MoVAL
approach are not fixed neither predefined, but
the architect define multiple views based on
the domain and concerns of the system and
associate them to different stakeholders.

• Categorization of views:

– "4+1" View Model and Zachman framework
have not defined a clear organizing principle
for their views.

– in IEEE 42010, Rozanski approach, and
MoVAL approach, architectural views are
categorized in viewpoints. A viewpoint is a
specification of the construction agreements
and the use of a view. A view must conform
to a viewpoint;

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 35

– in V&B approach, views are organized in
viewtypes. A viewtype represents the struc-
ture of the system in terms of a set of el-
ements and relationships between them ac-
cording to agreements and notations defined
in different styles;

• Architectural styles associated with views:

– in "4+1" View Model, Kruchten noted the
possibility of applying styles to different ar-
chitectural views as, for instance, the object-
oriented style for the logical view and the
Pipes and Filters style for the process view,
etc. However, he did not formalize the appli-
cation of these styles;

– IEEE 42010, Rozanski approach, and Zach-
man framework did not consider architec-
tural styles for views.

– in V&B approach, architectural styles are ex-
plicitly and formally associated with differ-
ent viewtypes like the Pipes and Filters style
associated with the C&C viewtype;

– in MoVAL approach, architectural styles are
not explicitly and formally associated with
different views, but MoVAL-ADP specifies
when and how those styles must be chosen.

• Integration of views:

– within "4+1" View Model, the four main
views (logical, development, process, and
physical) are integrated through a fifth view,
which is the "scenario" view, whereby the
notation "4+1" view model emanates;

– IEEE 42010 standard has not mentioned ex-
plicitly how different views must be inte-
grated;

– in Rozanski approach the dependencies map
between different viewpoints of the architec-
ture is provided in Figure 2;

– in V&B approach, the view integration is
considered in the second stage of the guide,
where the designer combines the views
which, according to him, seem close to one
another and neglects the other views that fo-
cus on the details included in the other views.

– Zachman framework has ordered its views in
the main matrix of Figure 4, thus the inte-
gration of those views lies in this order for
the reason that each view must offer every
needed detail for the construction of the next
view;

– in MoVAL the integration of different views
of the architecture is guaranteed in some ar-
chitectural elements named links that offer to
the architect tools to define and formalize the
consistency between those views.

• Abstraction levels associated with views:

– in "4+1" View Model, the IEEE 42010 stan-
dard, and Rozanski approach do not imple-
ment or mention any kind of abstraction;

– to our knowledge, V&B approach is the
only approach that (implicitly) introduced
abstraction levels or information. These lev-
els are considered in the first step of the pro-
cess during which the designer must specify
the level of information for each cell of the
table built (detailed information, some infor-
mation, and overview information);

– Zachman framework has not mentioned ex-
plicitly the concept of abstraction but it de-
fines six different focuses for each of its
views. Those multiple focuses allow the ar-
chitect to ignore some of the view’s details in
each focus. Thus, this feature could be con-
sidered similar in a way to the abstraction;

– MoVAL appraoch has explicitly defined an
hierarchy for each view of the architecture.
This hierarchy contain two different type of
abstraction, the achievement and description
abstraction.

6 Conclusion

In this paper, a literature review is made on different
approaches based on viewpoints and views arising from
four fields related to software engineering, namely: re-
quirements specification, system modeling, system im-
plementation, and finally software architectures. In the
field of software architecture, we identified the benefits
and limitations of approaches, in which, in their propos-
als, the views, viewpoints, and abstraction levels have
been incorporated.

Also, we have emphasized that the views and points
of views are insufficient to develop the complex model
of a software architecture and suggested the need for
an hierarchical approach that reveals different levels of
understanding in a view, thereby gradually controlling
complexity.

Finally, we introduced our approach called MoVAL,
which offers a description of a software architecture
based on views, viewpoints, and abstraction levels. It
helps to divide an AD into several views, each view

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 36
Table 1: A comparison between the three different approaches

"4+1" View
Model

ISO/IEC/IEEE
42010

Roazanski
approach

V&B Zachman
framework

MoVAL

Area covered Software
design

Architectural
description

Architectural
description

Architectural
documentation

Software
design

Architectural
description

Approach
centered on

Different
design phases

Stakeholders Stakeholders Stakeholders Different
design phases

Stakeholders

Status/number
of views

Fixed/Five
views

Variable/number
defined by the

architect

Fixed/Seven
views

Variable/number
defined by the

architect

Fixed/Six
views

Variable/number
defined by the

architect
Categorization

of views
Informal Viewpoint Viewpoint Viewtype Informal Viewpoint

Styles
associated
with views

Yes – – Yes – Yes

Integration of
views

Through the
scenario view

– Dependencies
between the
viewpoints

Through step
2 of the guide

(combine
views)

Views order in
the matrix

Inter-views
links

Abstraction
associated
with views

– – – Informal
(level of

information)

Multiple
focuses

Achievement
and

Description
levels

containing models organized into two kinds of hierar-
chy: the first based on achievement levels; the second
based on description levels.

As result, this approach helps for reducing the com-
plexity of the models achieved and better meeting the
expectations of various stakeholders, namely in the per-
sonalization of models, in their representations at grad-
ual levels of complexities and thereafter, in a straight-
forward understanding of the models.

Currently, we are prototyping a MoVAL-specific
tool that allow software development enterprises to
adopt MoVAL approach and build hierarchical multi-
views software architectures that complies with the
IEEE 42010 standard.

7 Acknowledgment

Authors would like to thank all who have contributed to
the achievement of this preliminary and on-going study,
especially the Lebanese National Council for Scientific
Research (LNCSR), the Lebanese association for sci-
entific research (LASeR), and CAPACITÉS association
for funding this research project.

References

[1] Anwar, A., Dkaki, T., Ebersold, S., Coulette, B.,
and Nassar, M. A formal approach to model com-

position applied to VUML. In Engineering of
Complex Computer Systems (ICECCS), 2011 16th
IEEE International Conference on, pages 188–
197, 2011.

[2] Bobrow, D. G. and Stefik, M. The Loops Manual:
Preliminary Vision. Intelligent Systems Labora-
tory, Xerox Corporation, 1983.

[3] Bobrow, D. G. and Winograd, T. An overview of
KRL, a knowledge representation language. Cog-
nitive Science, 1(1):3–46, Jan. 1977.

[4] Booch, J. I., Grady and Rumbaugh, J. The unified
software development process. Addison-Wesley,
1999.

[5] Carré, B., Dekker, L., and Geib, J.-M. Multiple
and evolutive representation in the rome language,
towards an integrated company information sys-
tem. TOOLS 1990, 1990.

[6] Clements, P., Bachmann, F., Bass, L., Garlan, D.,
Ivers, J., Little, R., Nord, R., and Stafford, J. A
practical method for documenting software archi-
tectures. 2002.

[7] Delugach, H. S. Using conceptual graphs to an-
alyze multiple views of software requirements.
1990.

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.



Kheir, Naja and Oussalah MoVAL, a new approach to software architecture and its comparison with existing views based approaches in SE 37

[8] Dijkman, R. M., Quartel, D. A. C., and van Sin-
deren, M. J. Consistency in multi-viewpoint de-
sign of enterprise information systems. Infor-
mation and Software Technology, 50(7):737–752,
2008.

[9] Finkelstein, A. and Fuks, H. Multiparty specifi-
cation. In ACM SIGSOFT Software Engineering
Notes, volume 14, pages 185–195, 1989.

[10] ISO/IEC/IEEE. Systems and software engineer-
ing – architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007
and IEEE Std 1471-2000), 2011.

[11] Kruchten, P. The 4+ 1 view model of architecture.
Software, IEEE, 12(6):42 – 50, 1995.

[12] Mcheick, H., Mili, H., Sadou, S., and El-Kharraz,
A. A comparison of aspect oriented software de-
velopment techniques for distributed applications.
IADIS press, pages 324–333, 2006.

[13] Mili, H., Dargham, J., Mili, A., Cherkaoui, O.,
and Godin, R. View programming for decentral-
ized development of OO programs. In Technology
of Object-Oriented Languages and Systems, 1999.
TOOLS 30. Proceedings, pages 210–221, 1999.

[14] Miller, J. and Mukerji, J. MDA guide version 1.0.
1. Object Management Group, 234:51, 2003.

[15] Minksy, M. A framework for representing knowl-
edge. The Psychology of Computer Vision,
McGraw-Hill, pages 211–277, 1975.

[16] Mullery, G. P. CORE-a method for controlled re-
quirement specification. In Proceedings of the 4th
international conference on Software engineering,
pages 126–135, 1979.

[17] Naja, H. La représentation multiple d’objets pour
l’ingénierie. Revue l’Objet: logiciel, bases de
données, réseaux, 4(2):173–191, 1998.

[18] Nassar, M. VUML: a viewpoint oriented UML
extension. In Automated Software Engineering,
2003. Proceedings. 18th IEEE International Con-
ference on, pages 373–376, 2003.

[19] Norris, D. Communicating complex architectures
with UML and the rational ADS. In Proceedings
of the IBM Rational Software Development User
Conference, 2004.

[20] Nuseibeh, B., Kramer, J., and Finkelstein, A. A
framework for expressing the relationships be-
tween multiple views in requirements specifica-
tion. Software Engineering, IEEE Transactions
on, 20(10):760–773, 1994.

[21] OMG. OMG meta object facility (MOF) core
specification. In OMG’s industry-standard envi-
ronment, 2013.

[22] Parnas, D. L. Information distribution aspects of
design methodology. 1971.

[23] Perry, D. E. and Wolf, A. L. Foundations for the
study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40–52, 1992.

[24] Raymond, K. Reference model of open distributed
processing (RM-ODP): introduction. In Open
Distributed Processing, pages 3–14. Springer,
1995.

[25] Robinson, W. N. Negotiation behavior during re-
quirement specification. In Software Engineer-
ing, 1990. Proceedings., 12th International Con-
ference on, pages 268–276, 1990.

[26] Rozanski, N. and Woods, E. Software systems ar-
chitecture: working with stakeholders using view-
points and perspectives. Addison-Wesley, 2011.

[27] Sommerville, I. and Sawyer, P. Viewpoints: prin-
ciples, problems and a practical approach to re-
quirements engineering. Annals of Software Engi-
neering, 3(1):101–130, 1997.

[28] Soni, D., Nord, R. L., and Hofmeister, C. Soft-
ware architecture in industrial applications. In
Software Engineering, 1995. ICSE 1995. 17th In-
ternational Conference on, pages 196–196. IEEE,
1995.

[29] Technology, M. Mdg technology for zachman
framework user guide. Technical report, Zachman
Entreprise, 2008.

INFOCOMP, v. 13, no. 1, p. 26-37, June 2014.


	Introduction
	Views in software engineering
	Views in Requirements Specification
	Views in System Modeling
	Views in System Implementation

	Software architecture approaches and their limitations
	"4+1" view model
	ISO/IEC/IEEE 42010
	Rozanski and Woods approach
	Views & Beyond approach
	Zachman framework
	Views contribution in Software Architecture
	Limitations of current approaches in software architecture

	MoVAL Novel approach for software architecture
	MoVAL Key concepts and characteristics
	Achievement level
	Description level
	Multi-levels architecture

	Case study
	MoVAL architecture definition process

	Comparison between MoVAL and other software architecture approaches
	Conclusion
	Acknowledgment

