
Proof Carrying Code
Manish Mahajan

mahajan_manish@rediffmail.com
Department of Computer Science and Engineering

Indraprastha Engineering College, Ghaziabad, India

Abstract - Proof-Carrying Code (PCC) is a technique that can be used for safe execution of
untrusted code. In a typical instance of PCC, a code receiver establishes a set of safety rules that
guarantee safe behavior of programs, and the code producer creates a formal safety proof that
proves, for the untrusted code, adherence to the safety rules. Then, the receiver is able to use a
simple and fast proof validator to check, with certainty that the proof is valid and hence the
untrusted code is safe to execute.
Keywords - Proof-Carrying Code, Verification Condition, VCGen, Safety-Policy, code consumer,
code producer, Proof Producer

(Received July 21, 2006 / Accepted October 19, 2006)

1. Introduction
High level programming languages usually
assume a closed environment where the entire
program or project will be constructed using the same
language, thereby ensuring that the safety precautions
laid down by the language like the type safety rules are
followed by all the program components. But what
practically happens is entirely different, with a project
using modules written in different languages like C,
ALP etc. thus we lose the guarantee provided by the
programming language unless we use costly measures
like sockets and processes. The problem is increased
manifold when we consider distributed and web
computing particularly when mobile code is
allowed.[2]
The problem is not limited to the realms of
programming languages. If we delve deeper at the
operating system level we again encounter a similar
paradigm. While executing application programs in an
operating system, we may need to run the code in the
same address space as the operating system kernel.
This may cause serious problems unless the kernel can
be sure that the application (which is usually from
an untrusted source) will respect the kernels internal
constraints.[12]
A code consumer must be convinced that the code
provided by the (often untrusted) code producer has
some (previously agreed upon) set of properties that
makes it safe to be executed at the code consumer.
This is called “establishing trust” between code
consumer and code producer.[1] This can also be

achieved by using cryptography to ensure that a trusted
person has developed the code. But this system has
the weakness that it depends on personal authorization.
Even trusted persons or compilers can make errors
either accidentally or with malicious intent.[7]
Proof-Carrying Code (PCC) is a technique by which a
code consumer (e.g., host) can verify statically that
code provided by an untrusted code producer adheres
to a predefined set of safety rules. This is done by
certifying the compilation process. The code consumer
in such a way chooses these rules, also referred to as
the safety policy, that they are sufficient guarantees
for safe behavior of programs. Using this safety
policy the code producer can provide binaries in a
predefined format called the “Proof Carrying Code” or
the PCC that contains, in addition to the native code, a
formal proof that this binary satisfies the safety policy.
The code consumer can easily verify the proof and
be sure that this application, although from an
untrusted source, is safe to use. [1,7]
 PCC has many uses in systems whose trusted
computing base is dynamic, either because of mobile
code or because or regular bug fixes or updates.
Examples include, but are not limited, to extensible
operating systems, Internet browsers capable of
downloading code, active network nodes and safety-
critical embedded controllers. For mobile code the code
consumer would be an Internet host (e.g., a web
browser) and the code producer a server that sends
applets. In operating systems, one can have the kernel
act as the host, with untrusted applications acting as
code producers that download and execute code in the

mailto:mahajan_manish@rediffmail.com

kernel's address space.[11]
The rest of the paper is organized as follows : In
section 2 I have listed the various features of PCC.
Section 3 discusses the architecture of PCC. The five
steps in the process of creation and application of PCC
are described in 4. The performance considerations
are discussed in 5 and 6 provides the concluding
remarks.

2. Features of PCC
• PCC does not rely on the usual methods of

authentication using cryptography and does not
need trusted third parties.[3]

• It requires the application or source to generate
the binaries in a predefined format- PCC

• No need for program analysis, code editing,
compilation or interpretation.

• PCC is quiet Fast as the safety check is done
only once and there is no need for any further
run time checking.

• The proof is linked to the native code so it is
difficult to tamper the code or proof
without rendering the resulting binary non
verifiable.[1]

• In the few cases where the code or the proof is
modified in such a manner that validation still
succeeds, the new code is still safe, it may not
give the expected results but it is safe to
execute. So PCC is intrinsically safe without
requiring external authentication.[3]

• The proof-checking algorithm is fast and
simple.

• The code consumer can easily validate the
proof without using cryptography and
without consulting any external trusted entity.

• The main practical difficulty in PCC is in
generating the proofs and this is the
one roadblock to its widespread use.[3]

3. PCC Architecture
Any implementation of PCC must contain at least four
elements: (1) a formal specification language used to
express the safety policy, (2) a formal semantics of
the language used by the untrusted code, usually in the
form of a logic relating programs to specifications, (3)
a language used to express the proofs, and (4) an
algorithm for validating proofs. A typical architecture is
shown in figure 1. The central component of any PCC
implementation is the safety policy which represents the

set of rules that define unambiguously whether a given
agent program is safe to execute. Before a code
consumer can accept PCC binaries, it must establish a
safety policy, which defines the actions that the
binary is allowed to perform and also the
circumstances when these actions are allowed. [3] The
safety policy is defined in advance by the code
consumer and is a trusted component of the
infrastructure. The safety policy defines what is meant
by safety and the interface that may exist between the
code consumer and any binary from the code producer.
The policy lays down explicit conditions under which
the code consumer considers the execution of an
external program safe.[10]
The safety policy comprises of two components –
Safety Rules – all the authorized operations and the
various preconditions associated with them.
Interface – the calling convention between the code
consumer and the foreign program ,i.e., the signature
against which the external program has been
compiled.[4]

Figure 1. The basic PCC architecture

The PCC binary, in its life cycle, undergoes three
phases :
In the first phase, called the certification phase, the
code producer generates the source code and ensures
that it adheres to the safety policy laid down by the code
consumer. The source program is then compiled and a
proof that this program confirms to
 the safety policy is generated. This verifies the
program with respect to the safety policy generated by
the code consumer. A proof of the successful
verification is generated and is encoded to avoid
tampering thereby producing the safety proof. This

safety proof, along with the native code, forms the
PCC binary that is eventually delivered to the code
consumer for use or is stored at the code producer for
further use.
In the second phase – validation, the code
consumer, upon receiving the PCC binary from an (often
un-trusted) source, validates the proof part of the
binary. If the validation succeeds, the native code is
loaded for execution. A fast and straightforward
algorithm does the validation making the process fast
and inexpensive.
As the proof is in-built with the native code in the PCC
binary, it is possible to carry out the validation off-line.
Moreover we need to validate the binary only once
irrespective of how many times it is intended to be
used. This becomes very significant in cases where the
validation of programs are complex, time consuming
and involves users as repeated verifications may
introduce a lot of overhead. [5]
In the last phase, the code consumer eventually loads the
validated and verified native code from the PCC binary
to be executed as many times as needed. No additional
run-time checks are needed as the validation stage
ensures that the program confirms to the safety policy.
The basic PCC Protocol is shown in figure 2.

4. The Process
4.1 Step One – Defining the Safety Policy
 PCC places no restrictions on the languages in
which the binaries can be generated. PCC can be
adapted to both high and low level languages to
maximize the performance of the binary. A given
code consumer may also receive binaries written in
multiple programming languages, thus the safety
policy must be adapted to each language. [4] The safety
policy has three components:

• A mathematical logic that defines the
preconditions under which the specific
operations are allowed. The logic also defines
the Verification Conditions (VC). This logic is
made available to the proof producers. This
logic is the language used by the PCC to define
and verify the preconditions.

• Safety policy also includes the specifications of
all the functions that the agent is supposed to
provide to the code consumer and also for the
functions of the code consumer that the agent is
allowed to invoke. The specifications are
defined as a pair of pre and post conditions,

which define the state of variables, the values
of invariables, relationship between variables
and actual arguments and return values.[3]

• Finally the safety policy contains a method for
inspecting the agent code and for discovering
the actions that an agent might perform and
under which circumstances. This is
accomplished by the VC generator which scans
the agent code and collects the set of all the
actions that might be performed during
execution, along with a partial description of
the program state when such actions would
be attempted. This information is expressed as
a predicate in the logic (the verification
condition).

An Example Safety Policy [8]
• All memory locations after a designated

location are readable.
• All memory locations after a designated

location are writable.
• Exiting by jumping to a designated address is

safe.
• The program counter is initially set to the first

instruction of the code.

4.2 Step Two – Generating the Annotated Agent
Code
The first stage of interaction between code
consumer and code producer through the PCC is the
preparation of binary as per the specifications laid down
by the safety policy or more specifically, by the VCGen
component of the safety policy. [2]
VCGen requires that the agent code is syntactically well
formed in the selected language, all functions defined
and used internally by the agent code are annotated
with a precondition and a post-condition, and also that
each loop have an associated loop invariant. The loop
invariants and the specifications for the internal
functions are referred to as annotations. If the
annotations are well formed predicates in the
selected logic, this will make the VCGen accept the
code, but just that.

Figure 2: The basic proof-carrying code protocol. The
wavy boxes represent data and code and the
rectangular boxes represent system components. The
white elements are trusted, while the grey elements are
not trusted. [2]

But it is not sufficient to guarantee that the code will
ultimately make it through all of the steps of the PCC
protocol. For this to happen, the annotations must also
be correct and sufficiently strong. [4]

• A loop invariant is a correct annotation if it is
indeed a valid predicate every time the
execution reaches the beginning of the loop.

• A function specification is correct if
the precondition holds every time the
function is invoked, and if the post-condition
holds every time the function returns.

• The weaker the annotation the easier it is
to ensure its correctness. For example, the
weakest loop invariant “true” is evidently a
correct invariant.

• A function precondition is sufficiently strong if,
by assuming that it holds at the beginning of
the function, one can prove that the body of
the function is safe to execute.

• The stronger the annotation the easier it is to
satisfy the sufficiently requirement.

• We see, thus, that annotations must be not too
strong and not too weak. This is what makes
the task of annotating the code a delicate one.

4.3 Step Three – Generating the Verification
Condition
The code consumer carries out a fast, detailed and
automatic inspection of the code it receives by using a
program, called the verification condition generator
(VCGen), which is one of the components of the
safety policy.[5]
 The verification condition generator (VCGen) is
implemented as a symbolic evaluator for the program
being checked. It scans the program in a forward
direction and at each program point it maintains a
symbolic value for each register in the program.
These symbolic values are then used at certain
program points (e.g. memory operations, function
calls and returns) to formulate checking goals for the
Checker module. VCGen checks the syntax of the
received code and emits a verification-condition
predicate for all agent instructions that might violate the
safety policy.[6]
 The syntactic checks that VCGen performs
depend on the particular safety policy. In addition,
VCGen can enforce restrictions on the set of
instructions or operations that might occur in the
agent code. The safety policy may choose to restrict the
syntax of the language so as to implement the desired
safety properties syntactically. For example, VCGen
could enforce termination if the safety policy disallows
function calls and backward branches. But this method
has the shortcoming that it can not be extended without
crippling the expressiveness of the language. Thus
most safety policies do allow potentially dangerous
actions but impose restrictions on their use. [5, 6]
The specific conditions under which an action is
considered safe is called the action precondition. In
practice, most action preconditions denote properties
that are difficult or even impossible to verify directly.
]These preconditions are expressed as a predicate in the
selected logic. The VCGen collects all the
preconditions and combines them with control flow
information and with the specification part of the
safety policy to create the verification condition for the
entire agent code.
 The VCGen must also have an good understanding of
the semantics of the language and the code in order to
detect the potentially hazardous instructions and to
construct meaningful verification conditions for them.

Figure 3: The relationship between the safety policy, the
verification-condition generator, validity of
verification conditions and provability of verification
conditions. [3

In order to achieve this efficiently, we adopt the
general design rule that whenever some information
about the behavior of the agent is difficult to discover,
the code producer must provide it in the form of code
annotations. However, in order to prevent mistakes
in the verification process due to erroneous
annotations, VCGen must take special care when using
them.

4.4 Step four – Proving the Verification Condition
Once the verification conditions are received, the proof
producer attempts to prove them according to the logic
specified in the safety policy. Because the code
receiver does not have to trust the proof producer,
any system (even the code producer) can be the proof
producer. Generally the proof generator is a general-
purpose theorem prover for predicate logic.
[11] A typical proof producer in a PCC system has three
requirements

• It must be able to prove verification conditions
efficiently.

• It should be able to generate detailed proofs of
the verification conditions.

• It must specify these proofs using the axioms
and inference rules specified as part of the
safety policy.

4.5 Step Five – Verifying the Proof
The last step in a PCC session is the validation and
verification by the code consumer of the proof generated
by the proof producer and contained in the PCC binary.

This is done using a proof checker that verifies that the
various inferences in the proof are in fact valid instances
of one of the axioms or inference rules specified as
part of the logic in the safety policy. Also, the proof
checker verifies that the proof
proves the same verification condition that was
generated in Step 3 and not some other predicate.[3]
A good technique for representing and validating proofs
must have the following desirable attributes:

• The representation of proofs and the proof
checking algorithm should be logic
independent so that the implementation can
be reused for multiple applications of proof
carrying code. The proof checking algorithm
must be simple so that it can be trusted easily.

• Proof checking must be relatively fast and
inexpensive.

• Proofs and predicates must be represented in a
compact form in order to minimize the cost of
communication between the code receiver and
the proof producer.

5. Performance Considerations
The complete process of generating the proof,
attaching it to the binary and subsequent verification by
the code consumer has a significant impact on the
performance of the binary.

• The development life cycle of the binary is
bound to be elongated due to the complex
process of generating the proof and attaching
it to the binary. This overhead can be reduced
to some extent by using a generic method
to describe the verification conditions and
to separate the process of proof generation
by making it a generalized one.

• The effort of generating the binary and
subsequently the cost will be more, though with
appropriate measures this cost increase can be
reduced.

• There is added responsibility on the
code consumer as he has to explicitly
specify the safety policy and publish it
beforehand.

• The speed of execution of the binary at the
code consumer end may suffer due to the
added overhead of verification of the proof.
Using fast and efficient proof checkers, this
delay can be greatly minimized. This is also
offset by the fact that the validation and

verification needs to be carried out only once
by the receiver.

• Maintainability could also become a serious
issue if not given proper consideration at
the beginning. As the safety proof is tightly
linked to the native code, any modification
to the later may have serious implications for
the former and may render the binary non-
verifiable.

• Reliability of a PCC binary is significantly
higher as not only is the binary fully tested for
bugs, but it is also ensured to follow the
restraints laid down by the code consumer.

• The size of binary will be increased due to the
inclusion of the safety proof. This is one of the
major areas where further work needs to be
done to reduce the size of the proof and
consequently that of the binary.

6. Conclusion
 This paper discusses a methodology of ensuring the
code consumer that the binary received from the code
producer is safe to work with. Although the PCC
methodology has, at this time, a number of
limitations but it promises to provide a better solution to
the “safe un-trusted code” issue. The method
provides significant benefits over the contemporary
techniques being used for the purpose and provides
marked benefits in establishing trust.

7. References
[1] Thomas A. Henzinger1 Ranjit Jhala1 Rupak
Majumdar, George C. Necula1 Gr´egoire Sutre2
Westley Weimer1, Temporal-Safety Proofs for System
Code - Proc. of Conference on Computer Aided
Verification, 2002.
[2] Andrew W. Appel, Foundational Proof-Carrying
Code., in 16th Annual IEEE Symposium on Logic
in Computer Science (LICS '01), June 2001
[3] George Necula. Proof-carrying code – Design
and Implementation. In Twenty-Fourth Annual ACM
Symp. on Principles of Prog. Languages, New York,
Jan 1997. ACM Press
[4] George Necula and Peter Lee. Safe, un-trusted
agents using proof-carrying code. In Special Issue on
Mobile Agent Security, volume 1419 of Lecture Notes
in Computer Science. Springer- Verlag, October 1997.
[5] J. Feigenbaum and P. Lee. Trust management and
proof carrying code in secure mobile code applications

(A position paper). Submitted to the DARPA Workshop
on Foundations for Secure Mobile Code, Monterey,
California, March, 1997.
[6] George Necula and Peter Lee. Efficient
representation and validation of logical proofs.
Technical Report CMU-CS-97-xxx, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, January 1997
[7] Andrew W. Appel, Protection against un-trusted
code IBM Developer Works, September 1999.
[8] Andrew W. Appel and Amy P. Felty, A
Semantic Model of Types and
Machine Instructions for Proof-Carrying Code, 27th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL '00), pp. 243-253,
January 2000.
[9] Evans D., and A. Twyman. Policy-directed code
safety. In Proceedings of the 1999 IEEE
Symposium on Security an Privacy, Oakland, CA,
May, 1999.
[10]Andrew W. Appel, Neophytos G. Michael, Aaron
Stump, and Roberto Virga A Trustworthy Proof
Checker, Princeton University CS TR-648-02, April
2002
[11] George Necula, Peter Lee Safe Kernel
extension without run time checking ,Second
Symposium on Operating Systems Design and
Implementation (OSDI '96), Seattle,
Washington, October 28-31, 1996
[12] Andrew W. Appel and David McAllester, An
Indexed Model of Recursive Types for Foundational
Proof-Carrying Code..ACM Transactions on
Programming Languages and Systems 23 (5) 657-683,
September 2001.
[13]Yasuyuki Tsukada, Proof-based Approach to
Safe Software Distribution, Ph.D. Thesis,
Department of Computer Science, Tokyo Institute
of Technology (March 2006).

