
Modified Web Access Pattern (mWAP) Approach for Sequential Pattern
Mining

Jatin D Parmar1

 Sanjay Garg2

1Shri S’ad Vidya Mandal Institute of Technology
Bharuch, Gujarat - India

jatin_d_parmar@yahoo.co.in
2A.D Patel Institute of Technology

Vallabh Vidyanagar, Gujarat - India
gargsv_adit@yahoo.com

Abstract. With the explosive growth of data available on the World Wide Web, discovery and analysis of useful
information from the World Wide Web becomes a practical necessity. Web access pattern, which is the sequence of
accesses pursued by users frequently, is a kind of interesting and useful knowledge in practice. Sequential Pattern
mining is the process of applying data mining techniques to a sequential database for the purposes of discovering the
correlation relationships that exist among an ordered list of events. Web access pattern tree (WAP-tree) mining is a
sequential pattern mining technique for web log access sequences, which first stores the original web access
sequence database on a prefix tree, similar to the frequent pattern tree (FP-tree) for storing non-sequential data.
WAP-tree algorithm then, mines the frequent sequences from the WAP-tree by recursively re-constructing
intermediate trees, starting with suffix sequences and ending with prefix sequences. An attempt has been made to
modify WAP tree approach for improving efficiency. mWAP totally eliminates the need to engage in numerous re-
construction of intermediate WAP-trees during mining and considerably reduces execution time.

Keywords: WAP tree, data mining, sequential data mining, frequent pattern tree

(Received July 01, 2006 / Accepted January 03, 2007)

1 Introduction
Data Mining is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately
understandable patterns in data. With the wide spread
use of databases and the explosive growth in their sizes,
organization are faced with the problem of information
overload. The problem of effectively utilizing these
massive volumes of data is becoming a major problem
for all enterprises. Traditionally, we have been using
data for querying a reliable databases repository via
some well-circumscribed application for canned report-
generating utility. While this mode of interaction is
satisfactory for a large class of applications, there exist
many other applications which demand exploratory data
analyses. These applications support query-triggered
usage of data, in the sense that the analysis is based on a
query posed by a human analyst. On the other hand,
data mining techniques support automatic exploration of
data. Data mining attempts to source out patterns and
trends in the data and infers rules from these patterns.
With these rules the user will be able to support, review
and examine decisions in some related business or

scientific area. This opens up the possibility of a new
way of interacting with databases and data warehouses.

Sequential mining is the process of applying data
mining techniques to a sequential database for the
purposes of discovering the correlation relationships
that exist among an ordered list of events.

The objective of this work is to apply data mining
techniques to a sequential database for the purposes of
discovering the correlation relationships that exist
among an ordered list of events. Given a WASD (Web
Access Sequence Database) , the problem to find
frequently occurring Sequential patterns on the basis of
minimum support provided. The application of
sequential pattern mining are in areas like Medical
treatment, science & engineering processes, telephone
calling patterns. Sequential pattern mining Web usage
mining for automatic discovery of user access patterns
from web servers. It is used by an e-commerce
company, this means detecting future customers likely
to make a large number of purchases, or predicting
which online visitors will click on what commercials or
banners based on observation of prior visitors who have
behaved either positively or negatively to the

advertisement banners.

2. Background
Sequential Pattern Mining comes in Association rule
mining. For a given transaction database T, an
association rule is an expression of the form X Y,
where X and Y are subsets of A and X Y holds with
confidence , if % of transactions in D that support X
also Y. The rule X Y has support in the transaction
set T if % of transactions in T support X U Y.
Association rule mining can be divided into two steps.
Firstly, frequent patterns with respect to support
threshold min sup are mined. Secondly association rules
are generated with respect to confidence threshold
minimum confidence. Pattern Mining is of two types:
[1]Non Sequential Pattern Mining: The items
occurring in one transaction have no order.
[2] Sequential Pattern Mining: The items occurring in
one transaction have an order between the items
(events) and an item may re-occur in the same sequence.

WAP-tree, which stands for web access pattern tree.
The main steps involved in this technique are
summarized next. The WAP-tree stores the web log data
in a prefix tree format similar to the frequent pattern tree
(FP-tree) for non-sequential data. The algorithm first
scans the web log once to find all frequent individual
events. Secondly, it scans the web log again to construct
a WAP-tree over the set of frequent individual events of
each transaction. Thirdly, it finds the conditional suffix
patterns. In the fourth step, it constructs the intermediate
conditional WAP-tree using the pattern found in
previous step. Finally, it goes back to repeat Steps 3 and
4 until the constructed conditional WAP-tree has only
one branch or is empty.

TID Web access
sequence

Frequent Subsequence

100 pqspr pqpr
200 tptqrp pqrp
300 opqupt qpqp
400 puqprur pqprr

Table 1. Sequence database for WAP-tree

Thus, with the WAP-tree algorithm, finding all frequent
events in the web log entails constructing the WAP-tree
and mining the access patterns from the WAP tree. The
web log access sequence database in Table 1 is used to
show how to construct the WAP-tree and do WAP-tree
mining. Suppose the minimum support threshold is set

at 75%, which means an access sequence, s should have
a count of 3 out of 4 records in our example, to be
considered frequent. Constructing WAP-tree, entails
first scanning database once, to obtain events that are
frequent. When constructing the WAP-tree, the non-
frequent part of every sequence is discarded. Only the
frequent sub-sequences are used as input. For example,
in Table 1, the list of all events is p, q, r, s, t, u and the
support of p is 4, q is 4, r is 3, s is 1, t is 2, and u is
2.With the minimum support of 3, only p, q, r are
frequent events. Thus, all non-frequent events (like s, t,
u) are deleted from each transaction sequence to obtain
the frequent subsequence shown in column 3 of Table 1.

With the frequent sequence in each transaction, the
WAP-tree algorithm first stores the frequent items as
header nodes so that these header nodes will be used to
link all nodes of their type in the WAP-tree in the order
the nodes are inserted. When constructing the WAP
tree, a virtual root (Root) is first inserted. Then, each
frequent sequence in the transaction is used to construct
a branch from the Root to a leaf node of the tree. Each
event in a sequence is inserted as a node with count 1
from Root if that node type does not yet exist, but the
count of the node is increased by 1 if the node type
already exists. Also, the head link for the inserted event
is connected (in broken lines) to the newly inserted node
from the last node of its type that was inserted or from
the header node of its type if it is the very first node of
that event type inserted. For example, as shown in
figure 1(a), to insert the first frequent sequence pqpr of
transaction ID 100 of the example database, since there
is no node labeled p yet, which is a direct child of the
Root, a left child of Root is created, with label p and
count 1. Then, the header link node for frequent event p
is connected (in broken lines) to this inserted a node
from the p header node. The next event q is inserted as
the left child of node p with a count of 1 and linked to
header node q, the third event p is inserted as the left
child of the node q having a count of 1, and the p link is
connected to this node from the inserted p. The fourth
and last event of this sequence is r and it is inserted as
the left child of the second p on this branch with a count
of 1 and a connection to r header node. Secondly, insert
the sequence pqrp of the next transaction with ID 200,
starting from the virtual Root (figure 1(b)). Since the
root has a child labeled p, the node p’s count is
increased by 1 to obtain (p: 2). similarly, (q: 2) is also in
the tree. The next event, r, does not match the next
existing node p, and new node r:1 is created and

Figure 1. Construction of WAP Tree

Inserted as another child of q node. The third sequence
qpqp of ID 300 and the fourth sequence pqprr are
inserted next to obtain figure 1(c) and (d) respectively.

Once the sequential data is stored on the complete
WAP-tree (figure 1(d)), the tree is mined for frequent
patterns starting with the lowest frequent event in the
header list, in our example, starting from frequent event
r as the following discussion shows. From the WAP-tree
of figure 1(d), it first computes prefix sequence of the
base r or the conditional sequence base of c as: pqp:2;
pq:1; pqpr:1; pqp:-1. The conditional sequence list of a

suffix event is obtained by following the header link of
the event and reading the path from the root to each
node (excluding the node). The count for each
conditional base path is the same as the count on the
suffix node itself. The first sequence in the list above,
pqp represents the path to the first r node in the WAP
tree. When a conditional sequence in a branch of a
WAP-tree, has a prefix subsequence that is also a
conditional sequence of a node of the same base, the
count of this new subsequence is subtracted because it
has contributed before. Thus, the conditional sequence
list above pqp with counts of -1. This is because, when
the subsequence, pqpr is added to the list, its
subsequence pqp was already in the list. Thus, the count
of pqp with -1 has to be added to prevent it from
contributing twice. To qualify as a conditional frequent
event, one event must have a count of 3. Therefore, after
counting the events in sequences above, the conditional
frequent events are p(4) and q(4) and r with a count of
1, which is less than the minimum support, is discarded.
After discarding the non-frequent part r in the above
sequences, the conditional sequences based on r are
listed as: pqp:2; pq:1; pqp:1; pqp:-1.
 Using these conditional sequences, a conditional
WAP tree, WAP-tree|r, is built using the same method
as shown in figure 1. The new conditional WAP-tree is
shown in figure 2(a). Recursively, based on the WAP-
tree in figure 2(a), the next conditional sequence base
for the next suffix subsequence, qr is found as p(3).
With p as the only frequent pattern in this base, the
frequent sequence base of qr used to construct the next
WAP tree shown in figure 2(b) is p(3). This ends the re-
construction of WAP trees that progressed as suffix
sequences |r, |qr and the frequent patterns found along
this line are r, qr and pqr. The recursion continues with
the suffix path |r, |pr. Thus, the conditional sequence
base for suffix pr is computed from figure 2(a) as Ø,
pq:3. This list is used to construct the WAP tree of
figure 2(c). The algorithm keeps running, finding the
conditional sequence bases of qpr as p: 3. from the list,
the conditional frequent events of pqr is only p: 3. Then,
the conditional WAP-tree|qpr is built as shown in figure
2(d). Now back to completing the mining of frequent
patterns with suffix pr, figure 2(c) is mined for
conditional sequence bases for suffix ppr and we get
NULL.

Root

q:2

p:2

Header
Table

p

q

r

r:1

p:1 r:1

p:1

p:1

q:1

q:1

p:1

(c) After inserting qpqp

Root

q:3

p:3

Header
Table

p

q

r

r:2

p:2 r:1

p:1

p:1

q:1

q:1

p:1

r:1

(d) Complete Tree

Root

q:2

p:2

Header
Table

p

q

r

r:1

p:1 r:1

p:1

(b) After inserting
pqrp

Root

p:1

q:1

r:1

p:1

Header
Table

p

q

r

(a) After inserting
pqpr

Figure 2. Reconstruction of WAP trees for mining
conditional pattern base r.

The conditional search of r is now finished. The
search for frequent patterns that have the suffix of other
header frequent events (starting with suffix base |q and
then |p) are also mined the same way the mining for
patterns with suffix r is done above. After mining the
whole tree, discovered frequent pattern set is: {r, qpr,
pqpr, pr, pqr, qr, qb, pq, p, pp, qp, pqp}.

WAP-tree algorithm scans the original database only
twice and avoids the problem of generating explosive
candidate sets as in Apriori-like algorithms. Mining
efficiency is improved sharply, but the main drawback
of WAP-tree mining is that it recursively constructs
large numbers of intermediate WAP-trees during mining
and this entails storing intermediate patterns, which are
still time consuming operations.
 Pre-Order linked WAP [14] tree algorithm is a
version of the WAP tree algorithm that assigns unique
position code to each tree node and performs the header
node linkages pre-order fashion. Both the pre-order
linkage and binary position codes enable the PLWAP to
directly mine the sequential patterns from the one initial

WAP tree starting with prefix sequence, without re-
constructing the intermediate WAP trees.

3 Related Work
Sequential mining was proposed, using the main idea of
association rule mining presented in Apriori algorithm
of Agrawal and Srikant [2]. Later work on mining
sequential patterns in web log include the GSP[2], the
PSP[12], the G sequence and the graph traversal[11]
algorithms. Agrawal and Srikant proposed three
algorithms (Apriori, AprioriAll, AprioriSome) to handle
sequential mining problem. Following this, the GSP
(Generalized Sequential Patterns) [2] algorithm, which
is 20 times faster than the Apriori algorithm in Agrawal
and Srikant[1] was proposed. The GSP Algorithm
makes multiple passes over data. The first pass
determines the frequent 1-item patterns (L1). Each
subsequent pass starts with a seed set: the frequent
sequences found in the previous pass (Lk-1). The seed
set is used to generate new potentially frequent
sequences, called candidate sequences (Ck). Each
candidate sequence has one more item than a seed
sequence. In order to obtain k-sequence candidate Ck,
the frequent sequence Lk-1 joins with itself Apriori-gen
way. The GSP algorithm uses a hash tree to reduce the
number of candidates that are checked for support in the
database.
 The PSP [12] approach is much similar to the GSP
algorithm[2]. At each step k, the database is browsed for
counting the support of current candidates. Then, the
frequent sequence set, Lk is built. The only difference
between the PSP algorithm and the GSP is that it
introduces the prefix-tree to handle the procedure. Any
branch, from the root to a leaf stands for a candidate
sequence, and a terminal node provides the support of
the sequence from the root to the considered leaf
inclusive.
 The main idea of Graph Traversal mining which is
proposed by Nanopoulos and Manolopoulos[11], is
using a simple unweighted graph to reflect the
relationship between the pages of web sites. Then, a
graph traversal algorithm similar to Apriori algorithm, is
used to traverse the graph in order to compute the k-
candidate set from the (k - 1)-candidate sequences
without performing the apriori-gen join. From the
graph, if a candidate node is large, the adjacency list of
the node is retrieved. The database still has to be
scanned several times to compute the support of each
candidate sequence although the number of computed
candidate sequences is drastically reduced from that of
the GSP algorithm.

Root

p:3

Header
Table

p

(d) Conditional tree for qpr

Root

q:3

p:3

Header
Table

p

q

(c) Conditional tree for pr

Root

p:3

Header
Table

p

(b) Conditional tree for qr

Root

p:2

q:3

p:3

Header
Table

p

q

(a) Conditional tree for r

 The FP-tree structure [6] first reorders and stores the
frequent non sequential database transaction items on a
prefix tree, in descending order of their supports such
that database transactions share common frequent prefix
paths on the tree. Then, mining the tree is accomplished
by recursive construction of conditional pattern bases
for each frequent 1-item (in ordered list called f -list),
starting with the lowest in the tree. Conditional FP-tree
is constructed for each frequent conditional pattern
having more than one path, while maximal mined
frequent patterns consist of a concatenation of items on
each single path with their suffix f -list item. FreeSpan
like the FP-tree method, lists the f -list in descending
order of support, but it is developed for sequential
pattern mining. FreeSpan mines frequent sequential
patterns starting with each of its f –list items α, through
recursive construction of projected databases of this f -
list item α. A projected database of an ordered f -list
item α from the database D, consists of all sequences in
D containing this f -list item α but removing all items
after α in the ordered f -list. PrefixSpan [8] is a pattern-
growth method like FreeSpan, which reduces the search
space for extending already discovered prefix pattern p
by projecting a portion of the original database that
contains all necessary data for mining sequential
patterns grown from p. While FreeSpan supports
frequent pattern guided projection, PrefixSpan supports
prefix guided projection. Thus, projected database for
each f -list prefix pattern α consists of all sequences in
the original database D, containing the pattern α and
only the subsequences prefixed with the first occurrence
of α are included. Although PrefixSpan projects smaller
sized databases than FreeSpan, they both still incur non-
trivial costs for constructing and storing these projected
databases for every sequential pattern in the worst case.
Optimization techniques include (1) bi-level projecting
for reducing the number and sizes of projected
databases, and (2) Pseudo-projection for projecting
memory-only databases, where each projection consists
of the pointer to the sequence and offset of the postfix to
the sequence.

3 The Modified Web Access Pattern tree

Approach
The modified Web Access Pattern approach is based on
WAP-tree, but avoids recursively re-constructing
intermediate WAP-trees during mining of the original
WAP tree for frequent patterns. The modified WAP
algorithm is able to quickly determine the suffix of any

frequent pattern prefix under consideration by
comparing the assigned binary position codes of nodes
of the tree.

A tree is a data structure accessed starting at its root
node and each node of a tree is either a leaf or an
interior node. A leaf is an item with no child. An
interior node has one or more child nodes and is called
the parent of its child nodes. All children of the same
node are siblings. Like WAP-tree mining, every
frequent sequence in the database can be represented on
a branch of a tree. Thus, from the root to any node in the
tree defines a frequent sequence. For any node labeled e
in the WAP-tree, all nodes in the path from root of the
tree to this node (itself excluded) form a prefix sequence
of e. The count of this node e is called the count of the
prefix sequence. Any node in the prefix sequence of e is
an ancestor of e. On the other hand, the nodes from e
(itself excluded) to leaves form the suffix sequences of
e.

Given a WAP-tree with some nodes, the binary code
of each node can simply be assigned following the rule
that the root has null position code, and the leftmost
child of the root has a code of 1, but the code of any
other node is derived by appending 1 to the position
code of its parent, if this node is the leftmost child, or
appending 10 to the position code of the parent if this
node is the second leftmost child, the third leftmost
child has 100 appended, etc. In general, for the nth
leftmost child, the position code is obtained by
appending the binary number for 2n-1 to the parent’s
code. A node α is an ancestor of another node β if and
only if the position code of α with “1” appended to its
end, equals the first x number of bits in the position
code of β, where x is the ((number of bits in the position
code of α) + 1).

The tree data structure, similar to WAP-tree, is used
to store access sequences in the database, and the
corresponding counts of frequent events compactly, so
that the tedious support counting is avoided during
mining. A Binary code is assigned to each node in
modified WAP-tree. These codes are used during
mining for identifying the position of the nodes in the
tree. The header table is constructed by linking the
nodes in sequential events fashion. Here the linking is
used to keep track of nodes with the same label for
traversing prefix sequences. This mining algorithm is
prefix sequence search rather than suffix search.

The algorithm scans the access sequence database
first time to obtain the support of all events in the event

3.1 The Algorithm
Input : Access sequence database D(i), min support MS (0< MS ≤ 1)
Output : frequent sequential patterns in D(i).
Variables : Cn stores total number of events in suffix trees, A stores whether a node is ancestor in
queue.
Begin
1. Scan D(i) to discover frequent individual events L;
2. Scan D(i) again .Create a root node of Tree T.
3. code(root)= NULL;
4. count = 0;
5. {
6. For (each access sequence, fs in D(i))
7. {
8. Extract frequent subsequence F=(fs1fs2 . . . fsn) by removing all events
9. that are not in L;
10. current node -> leftmost_Child(root);
11. for (k=1 to n)
12. {
13. if (current node = NULL)
14. {Create a new child node with position code equal to “1” appended

To position code of parent of current node ;}
15. elseif (current node = fsk) { NdFd = true ;}
16. else { make current node point to current node sibling}
17. }
18. if (NdFd = true)
19. {count (fsk) ++;
20. Make current node point to fsk ;}
21. Else {create new child node with position code of current node with
22. “0” appended at the end;
23. Make current node point to new created node ;}
24. }
25. }
26. From root node, do a sequential Traversal of Tree T to make appropriate linkage queue;
27. PATTERN_DIS (Suffix tree roots STR, Frequent sequence FS);
28. end;

1. PATTERN_DIS(R, F)
2. {
3. If (STR=empty) return;
4. for (each suffix tree of event in L)
5. {
6. Save first event in ei queue to A;
7. if (event ei is descendent of any event in STR, and is not descendent of A)
9. {Insert ei suffix tree header set STR’;
10 Add count of ei to Cn;
11. Replace the A with ei. ; }
12. If(Cn > MS)
13. {Append ei after FS to FS’;
14. print (FS’);
15. PATTERN_DIS (STR’,FS’);
16. }

set, E. All events that have a support greater than or
equal to the minimum support are frequent. Each
node in a modified tree registers three pieces of
information: node label, node count and node code,
denoted as label: count: position. The root of the
tree is a special virtual node with an empty label
and count 0. Every other node is labeled by an
event in the event set E. Then it scans the database
a second time to obtain the frequent sequences in
each transaction. The non-frequent events in each
sequence are deleted from the sequence. This
algorithm also builds a prefix tree data structure by
inserting the frequent sequence of each transaction
in the tree the same way the WAP-tree algorithm
would insert them. Once the frequent sequence of
the last database transaction is inserted in the tree,
the tree is traversed to build the frequent header
node linkages. All the nodes in the tree with the
same label are linked by shared-label linkages into
a queue. Then, the algorithm recursively mines the
tree using prefix conditional sequence search to
find all web frequent access patterns. Starting with
an event, ei on the header list, it finds the next
prefix frequent event to be appended to an already
computed m-sequence frequent subsequence,
which confirms an en node in the root set of ei ,
frequent only if the count of all current suffix trees
of en is frequent. It continues the search for each
next prefix event along the path, using subsequent
suffix trees of some en (a frequent 1-event in the
header table), until there are no more suffix trees to
search. To mine the tree, the algorithm starts with
an empty list of already discovered frequent
patterns and the list of frequent events in the head
linkage table. Then, for each event, ei, in the head
table, it follows its linkage to first mine 1-
sequences, which are recursively extended until the
m-sequences are discovered. The algorithm finds
the next tree node, en; to be appended to the last
discovered sequence, by counting the support of en
in the current suffix tree of ei (header linkage
event). Note that ei and en could be the same
events. The mining process would start with an ei
event and given the tree, it first mines the first
event in the frequent pattern by obtaining the sum
of the counts of the first en nodes in the suffix
subtrees of the Root. This event is confirmed
frequent if this count is greater than or equal to
minimum support. To find frequent 2-sequences
that start with this event , the next suffix trees of ei

are mined in turn to possibly obtain frequent 2-
sequences respectively if support thresholds are
met. Frequent 3-sequences are computed using
frequent 2-sequences and the appropriate suffix
subtrees. All frequent events in the header list are
searched for, in each round of mining in each suffix
tree set. Once the mining of the suffix subtrees near
the leaves of the tree are completed, it recursively
backtracks to the suffix trees towards the root of
the tree until the mining of all suffix trees of all
patterns starting with all elements in the header link
table are completed.

3.2 Complexity
Suppose the number of frequent sequential patterns
that can be extracted from the WAP-tree is p and
the number of 1-sequences is f, the number of
constructed intermediate WAP-trees is p- f. The
time complexity for constructing tree is the same as
that of WAP tree and is O(nl), where n is the
number of sequences in the WASD and l is the
length of the longest frequent sequence in the
WASD. The time complexity for mining mWAP
tree is O (f p), where f is the number of frequent 1-
events and f is the total number of frequent patterns
to be discovered. This means that for WAP
algorithm, this time complexity is multiplied by (p-
f) times needed for constructing intermediate trees.
From the memory view, it can be seen that WAP-
tree needs more memory space for intermediate
trees and conditional databases. For every node in
the WAP-tree, we need 1 byte to store the label, 1
byte to store the count, 2 bytes to store the links
which indicate its child and its sibling. The deeper
the recursive round the WAP-tree algorithm calls,
the more space it needs. In the worst case, it may
need the space of the original WAP-tree multiplied
several times. When the original WAP-tree is large
and the sequence we try to find is long, WAP-tree
may face the problem of not being able to store all
information in the main memory.

4 Experimental Results
This experiment uses fixed size database and
different minimum support .The datasets and
algorithms are tested with minimum supports
between 0.8% and 10% against the 60 thousand (60
K) database.

From Table 2 and figure 7, it can be seen that

time in secs at different supports
Algorithms 2 3 4 5 10
WAP 750 510 330 280 150
Modified
WAP

230 160 110 95 48

Table 2. Execution times for dataset at different
minimum supports.

the execution time of every algorithm decreases as
the minimum support increases. This is because
when the minimum support increases, the number
of candidate sequence decreases. Thus, the
algorithms need less time to find the frequent
sequences. The modified WAP algorithm always
uses less runtime than the WAP algorithm. WAP
tree mining incurs higher storage cost (memory or
I/O). Even in memory only systems, the cost of
storing intermediated trees adds appreciably to the
overall execution time of the program. It is
however, more realistic to assume that such
techniques are run in regular systems available in
many environments, which are not memory only,
but could be multiple processor systems sharing
memories and CPU’s with virtual memory support.
As the minimum support threshold decreases, the
number of events that meet minimum support
increases. This means that WAP-tree becomes
larger and longer, and the algorithm needs much
more I/O work during mining of WAP tree. As
minimum support decreases, the execution time
difference between WAP-tree and modified WAP
increases.

Figure 3. Execution times trend with different
minimum supports.

 Now, databases with different sizes from 20 K
to 100 K with the fixed minimum support of 7%
are used.

Different changed transaction size
Algorithms
time in sec

20k 40k 60k 80k 100k

WAP 148 265 320 445 540
Modified
WAP

50 75 97 145 179

Table 3. Execution times trend with different data
sizes.

Figure 4. Execution times trend with different data
sizes.

5 Conclusion
In this paper, we analyze the problem of sequential
pattern mining. Here after discussing the two
approached it is clear that the modified version is
more efficient than the web access pattern tree
approach. This presents a discussion of the
advantages and disadvantages of both approaches
conduced by comparing the performance with help
of graph.

The modified algorithm eliminates the need to store
numerous intermediate WAP trees during mining.
Since only the original tree is stored, it drastically
cuts off huge memory access costs, which may
include disk I/O cost in a virtual memory
environment, especially when mining very long
sequences with millions of records. This algorithm
also eliminates the need to store and scan
intermediate conditional pattern bases for re-
constructing intermediate WAP trees. This
algorithm uses the pre-order linking of header
nodes to store all events ei in the same suffix tree

closely together in the linkage, making the search
process more efficient. A simple technique for
assigning position codes to nodes of any tree has
also emerged, which can be used to decide the
relationship between tree nodes without repetitive
traversals.

References
[1] Agrawal, R. and Srikant, R. Mining

sequential patterns. In Proc. 1995 Int. Conf.
Data(ICDE’95), p.3–14, March 1995.

[2] Agrawal, R. and Srikant, R.,. Fast
algorithms for mining association rules in
large databases. In Proceedings of the 20th
International Conference on very Large
Databases Santiago, Chile, p.487–499,
1994.

[3] A. Nanopoulos and Y. Manolopoulos.
Mining patterns from graph traversals. Data
and Knowledge Engineering, 37(3):243–
266, 2001.

[4] Etzioni, O. The world wide web: Quagmire
or gold mine. Communications of the ACM,
p.65 – 68, 1996.

[5] Han, J., Pei, J. et al. FreeSpan: Frequent
pattern projected sequential pattern mining.
In SIGKDD, p.355–359, Aug. 2000.

[6] Han, J., Pei, J., Yin, Y. and Mao, R. Mining
frequent patterns without candidate
generation: A frequent-pattern tree
approach. International Journal of Data
Mining and Knowledge Discovery, p.53–
87, Jan 2004.

[7] Srivastava, J., Cooley, R., Deshpande, M.
and Tan, P. Web usage mining: Discovery
and applications of usage patterns from web
data. SIGKDD Explorations, 2000.

[8] Han, J., Pei, J., Mortazavi-Asl, B. and
Pinto, H. Prefixspan: Mining sequential
patterns efficiently by prefix-projected
pattern growth. In Proceedings of the 001
International Conference on Data
Engineering (ICDE 01), p.214–224, 2001.

[9] Han, J., Pei, J., Mortazavi-Asl, B. and Zhu,
H. Mining access patterns efficiently from
web logs. In Proceedings of the Pacific-
Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’00) Kyoto
Japan, 2000.
Jian Pei, Jiawei Han, Behzad Mortazavi-asl,
and Hua Zhu

[10] Han, J., Pei, J., Mortazavi-Asl, B., and
Pinto, H. 2001. PrefixSpan: Mining
sequential patterns efficiently by
prefixprojected pattern growth. In
Proceedings of the 2001 International
Conference on Data Engineering
(ICDE’01). Germany, Heidelberg, p. 215–
224.

[11] Pujari, A. : Data Mining Techniques ,
Universities Press, India, February 2001.

[12] Masseglia, F., Poncelet, P. and Cicchetti, R.
An efficient algorithm for web usage
mining. Networking and Information
Systems Journal (NIS), p.571–603, 1999.

[13] Zaki, M. SPADE: An efficient algorithm for
mining frequent sequences. Machine
Learning, p.31–60, 2001.

[14] Ezeife, C. and Lu, Y. Mining web log
sequential patterns with position coded pre-
order linked wap-tree. International Journal
of Data Mining and Knowledge Discovery
(DMKD) Kluwer Publishers, p.5–38, 2005.

