
A Knowledge-Based Cohesion Metric for Object-Oriented Software

CARA STEIN1
LETHA ETZKORN2

SAMPSON GHOLSTON3
PHILLIP FARRINGTON3

JULIE FORTUNE3

1 Edinboro University of Pa
Department of Mathematics and Computer Science

215 Meadville St., Edinboro, PA 16412 USA
cstein@edinboro.edu

2,3 University of Alabama in Huntsville
Huntsville, AL 35899

2Computer Science Department
letzkorn@cs.uah.edu

3 Industrial and Systems Engineering Management Department
 (gholston, paf, fortunej)@ise.uah.edu

Abstract. This paper presents Percentage of Shared Ideas (PSI), a metric for measuring the semantic
cohesion of a class in object-oriented software. PSI uses information in a knowledge base to quantify
the cohesiveness of a class’s task in the problem domain, allowing a clearer view of cohesion than
code syntax provides. Furthermore, this metric is independent of code structure and could be
calculated before implementation, providing clues to design flaws earlier in the software development
cycle, when changes are less expensive.
 In this paper, we define the PSI metric, provide theoretical and empirical validation, and compare
PSI to well-known cohesion metrics.

Keywords: object-oriented software, software metric, cohesion, semantic metric, knowledge-based
systems

(Received January 27, 2006 / Accepted May 15, 2006)

1. Introduction
Metrics can help software developers and managers
assess the quality of software and pinpoint trouble areas
in their systems. For instance, a metric may indicate that
a class lacks cohesion. A cohesive class is one in which
all of the members are closely related, focused on a
single task. A class that lacks cohesion is poorly
designed, and therefore is more likely to be error-prone
[24]. If metrics are used to quickly and automatically
find out which classes in a software system lack
cohesion, the programming team can take steps to check
those classes and improve them before the software has

entered the integration and testing stages. Since changes
are less expensive the earlier in the development
lifecycle they are made [24], this can save the project
considerable time and money.
 Most software metrics are based on code syntax,
quantifying the complexity or cohesion of an
implementation by performing calculations based on
counting code structures. In contrast, semantic metrics,
introduced by [16], quantify the meaning within a
domain of the task being performed. To collect semantic
metrics, first a program understanding system
[2][22][14] performs understanding; in that way the

operation of the software, or what the software does, is
represented in a general knowledge-based format. In our
semMet tool, a mature program understanding engine
(the PATRicia system [12][13][14][15]) performs NL-
based understanding on comments and identifiers, and
thus provides a problem domain level understanding of
the software.
 The structure of the code itself is not considered for
semantic metrics, so it is not necessary for a system to
be implemented in order to calculate semantic metrics.
To illustrate this point, consider the following code
sample provided by [27]:
if (balance < withdrawal) {
 bounce = true;
}
else {
 bounce = false;
}
Compare that code sample with the following:
bounce = (balance < withdrawal) ? true : false;
 Traditional metrics such as lines of code produce
different values for these two code samples, even
though they do exactly the same thing. In contrast,
semantic metrics would flag the concepts of balance,
withdrawal, and bounce in the banking domain for both
samples, regardless of the implementation details.
 Semantic metrics are especially useful for measuring
cohesion, which is hard to capture based on program
syntax, according [3].
 However, before we can use any metric, we must

make sure it is a valid measure of the attribute of
interest. Many of the metrics that have been defined
have never been adequately validated theoretically or
empirically, making their use questionable. [17] found
that many metrics are invalid or poorly defined. They
suggested that any new metrics be valid and
unambiguous. This paper addresses these points.
 Others have also studied existing metrics and
concluded that metrics must be valid and well defined,
and too many existing metrics fail in at least one of
these areas. [3] analyzed 13 cohesion metrics and 30
coupling metrics [4] from ten different sources. [3]
found problems with all of these metrics except those
proposed by [5]. These studies point to a clear need for
valid, well-defined metrics.
 This paper defines and analyzes PSI (percentage of
shared ideas), a knowledge-based semantic cohesion
metric. We validate PSI theoretically and empirically,
and we compare its performance to six variations on a
well-known cohesion metric, Chidamber and Kemerer’s
LCOM [8][9].

2. Description of the PSI Metric
To avoid the distortions due to programmer style or
programming language that may affect syntactic
metrics, [16] proposed a suite of semantic metrics. We
have created a tool called semMet to compute semantic
metrics from the source code of software systems.

Figure 1: A Conceptual Graph Example

 SemMet incorporates Etzkorn’s PATRicia (Program
Analysis Tool for Reuse) system, a mature program
understanding engine [12][13][14][15]. Program
understanding approaches can be divided into three
categories: algorithmic, transformational, and
knowledge-based. From there, knowledge-based
approaches can be divided into three categories: graph-
parsing, heuristic, and using informal tokens. Informal
token program understanding approaches include the
DESIRE system, developed by [2] and the PATRicia
system developed by [12][13]. The PATRicia system is
a knowledge-based approach that incorporates a hybrid
of heuristics and informal token use [14]. The PATRicia
system (and semMet by extension) performs natural
language processing on identifiers and comments from
code in order to match these words with keywords and
concepts in a knowledge base [12]. The PATRicia
system program understanding engine was originally
applied to identifying reusable components in object-
oriented software [13]; the main purpose of semMet is
to calculate semantic metrics to assess the quality of
software from source code or design specifications.
 SemMet currently consists of two parts: the source
code interface and the main processing module. A
design specification interface will also be added to
facilitate the calculation of semantic metrics from
design specifications. The source code interface
performs the following steps:
• Retrieve the inheritance hierarchy and each class’s

attribute variables and member functions.
• Extract all comments at both class and function

levels.
• Use natural language processing to try to determine

the part of speech for each identifier. For example,
the function name “getBalance” would become get
(verb) and balance (noun).

• Perform sentence-level natural language processing
on comments to determine the part of speech of
each word. This task can be accomplished with a
high degree of accuracy because comments have
their own sublanguage of the English language
[12].

The main processing module performs the following
steps:
• Process all words (from comments and identifiers

of source code or from prose descriptions in design
specifications) through a knowledge base of
concepts and keywords of the domain of the
system.

• Count concepts and keywords related to each class
and each method of each class.

• Use class- and function-level concept and keyword
information to calculate metrics.

 The knowledge base used by the semMet system
uses the same structure as the knowledge base in the
PATRicia system [12][14][15]. This structure consists
of two layers: a layer of keywords tagged with part of
speech information, and a layer of conceptual graphs
[14][15]. Conceptual graphs are a knowledge
representation format that can be used to show ideas and
the relationships among them [26]. In semMet,
conceptual graphs are used to represent the relationships
among the ideas in the knowledge base. Conceptual
graphs are made up of concepts, which represent
entities, attributes, states, and events; and conceptual
relations, which show how concepts are interconnected
[26]. For instance, to show “ the mouse moves the
scrollbar, which is part of the window,” we might make
a conceptual graph such as the one in Figure 1. This
conceptual graph is read as follows: the scrollbar is part
of a window, the state of the scrollbar is moving, and
the agent of the scrollbar’s moving is the mouse.
 Conceptual graphs make up one layer of the
knowledge base of the semMet system. The other layer
is an interface layer of weighted keywords, which have
been tagged with parts of speech. Inference occurs from
the interface layer to the conceptual graph layer, and
further inference can occur between concepts in the
conceptual graph layer.
 To calculate semantic metrics using the semMet
system, a knowledge base with this structure is created
for the domain in which a piece of software is written.
The words appearing in the identifiers and comments of
a piece of code are compared to concepts and keywords
in the knowledge base. Whenever a word from the code
matches a keyword in the knowledge base, that keyword
is associated with the class or member function.
Furthermore, inference is performed from the keyword
layer in the knowledge base to the conceptual graph
layer. If a class or member function contains keywords
which trigger a concept in the conceptual graph layer of
the knowledge base, that concept is also associated with
the class or member function. As in the PATRicia
system, semMet’s knowledge base and inference engine
are implemented in the CLIPS expert system shell [12].
Once the appropriate concepts and keywords from the
knowledge base have been associated with each class

and member function, semantic metrics are calculated
based on this information.
 To illustrate this, consider the abbreviated bank
account class definition given in Figure 2. In this
example, the identifiers Account, balance, type,
interestRate, and getBalance, as well as the comment
associated with the class definition, are processed. First
multiple-word identifiers such as “ interestRate” are split
into their component words. Each word is assigned a
part of speech. For example, in this case “account” is a
noun. Then, the words with their parts of speech are

compared against the part-of-speech-tagged keywords
in the interface layer of the knowledge base. In this
example, the following keywords are matched: account
(noun), savings (adjective), checking (adjective),
interest (adjective), rate (noun), and balance (noun). The
keywords bank (adjective) and interest (noun) are not
matched. All of the matched keywords are associated
with the class Account. In addition, the keyword
balance (noun) is associated with the function
getBalance(), because that function’s name contained a
match to the keyword.

class Account {
 private:
 int type; // 0=savings, 1=checking
 float interestRate;
 float balance;

 public:
 float getBalance();
 } ;

Figure 2: Illustration of semMet processing a bank account code example

(){ }
(){ }aka

ajaia

IykIy|y

IxIxj,iIx|x

∈∃∧∈

∈∧∈∃∧∈

 Then, inference occurs from the interface layer of
keywords to the conceptual graph layer. In this case, the
weighted links from the account (noun), savings
(adjective), and checking (adjective) keywords meet the
threshold of 1.0 for the Account concept to be matched.
Also, the interest (adjective) and rate (noun) keywords
meet the threshold for the Interest concept and the
balance (noun) keyword meets the threshold for the
Balance concept to be matched. Therefore, the Account,
Interest, and Balance concepts are associated with the
class Account. Similarly, the Balance concept is
associated with the getBalance function, since its name
matched the balance (noun) keyword, which met the
threshold for the Balance concept. From there, further
inferencing can occur within the conceptual graph layer.
In this case, the link from the Account concept is fired,
but it does not have enough weight to meet the threshold
for the Bank_Account concept, so the Bank_Account
concept is not matched.
 The end result of this example is that the Account
class is associated with the Account, Interest, and
Balance concepts, and the account (noun), savings
(adjective), checking (adjective), interest (adjective),
rate (noun), and balance (noun) keywords. The
getBalance() function is associated with the Balance
concept and the balance (noun) keyword. This
information is then used to calculate semantic metrics.

2.1 Mathematical Notation
In order to define metrics, we need to define some
formal notation. Let C1, C2, …, Cm be the set of m
classes in a system. Let Fa = Fa1, Fa2, …, Fan be the set
of n member functions of class Ca. Let Aa = Aa1, Aa2, …,
Aap be the set of p attribute variables declared in class Ca
(not including any that may be inherited by class Ca).
Let Ka be defined as the set of keywords in the
knowledge base associated with class Ca, and let Oa be
the set of concepts in the knowledge base associated
with class Ca.
 Let aaa OK

�
∪= be the set of ideas associated

with class Ca. Let Ra be the set of conceptual relations
connecting to or from any concept in class Ca.
 Similarly, let Kai be the set of keywords associated
with function Fai, let Oai be the set of concepts
associated with function Fai.
 Let aiaiai OKI ∪= be the set of ideas associated
with function Fai, and let Rai be the set of conceptual
relations associated with function Fai.

Let # be a mapping from set Fa to set Aa such that Fai #
Aaj if function Fai uses attribute Aaj somewhere in its
implementation. Let ? be a mapping from Fa to Fa such
that Fak ? Fal if function Fak calls function Fal. Let O be
the set of all concepts in the knowledge base. Then let
% be a mapping from set Ra to set O such that r % i if i
is a concept in Oa and conceptual relation r forms a
connection from concept i to any concept j in set O or
from any concept k in set O to concept i.

2.2 Definition of PSI (Percentage of Shared Ideas)
Although the semantic metrics proposed by [16] are not
subject to distortions due to programming language or
programmer style as traditional metrics are, they still
have one obstacle: they require a knowledge base with a
conceptual graph structure in order to be calculated. Not
all knowledge bases have such a structure. Therefore,
[27] proposed semantic metrics, including PSI, that can
be calculated using any knowledge base that associates
concepts or keywords with classes and their member
functions, regardless of how the knowledge base is
implemented.
 PSI is the number of concepts or keywords shared
by at least two member functions of a class, divided by
the number of concepts or keywords belonging to any
member function in the class. PSI for class Ca is defined
as follows.

for 1� i, j, k � |Fa|, or 0 if no ideas are associated with
any function of the class [27].
 For example, define class Ca to contain four member
functions and a total of ten ideas (concepts or keywords
from the knowledge base) associated with member
functions to make up the following sets: Ia1 = { i3, i4, i5} ,
Ia2 = { i4, i5, i6} , Ia3 = { i1, i2} , and Ia4 = { i6, i7, i8, i9, i10} .
In this example, ideas i4, i5, and i6 are common to at
least two member functions; the others are not.
Therefore, PSI for class Ca = 3/10 = 0.30.

2.3 Previous Syntactic Cohesion Metrics
One of the most commonly cited suites of metrics is that
proposed by Chidamber and Kemerer [8] [9]. Since
Chidamber and Kemerer proposed these metrics, many
people have analyzed, criticized, and proposed their
own versions of these metrics. We will compare the
performance of PSI to six versions of LCOM (lack of

PSI= (1)

cohesion in methods), originally proposed by [8] [9].
Brief descriptions of these metrics are shown in Table 1.

Full mathematical definitions can be found elsewhere
[28].

 Definition Reference
LCOM LCOM = the set of pairs of member functions with no instance variable used by both

members in the pair
[9]

LCOM1 [13] added the constraint that a pair of member functions containing a member function
and itself should not be counted. Inherited instance variables are not counted.

[13]

LCOM2 [8] specified a pair of member functions could not include the member function and
itself. Inherited instance variables do not count.

[8]

LCOM3 An undirected graph has edges that are pairs of member functions with at least one
attribute variable in common. LCOM3 = number of connected components of the graph.

[23][19]

LCOM4 A variation of LCOM in which there is an edge in the graph for each function that calls
another function in addition to the edges for functions that share attribute variables

[19]

LCOM5 LCOM 5 is specified from the perspective of the number of functions accessing each
attribute

[13]

Table 1: Definitions of Various LCOM Metrics

3. Criteria for Evaluating Cohesion Metrics
 Kitchenham, Pfleeger, and Fenton proposed a
framework for evaluating software metrics [21]. In this
framework, they described the structure of any measure
as containing the entities being analyzed, such as classes
or modules; the attribute being measured, such as size;
the unit used, such as lines of code; and the data scale:
nominal, ordinal, interval, or ratio. Units are valid only
for interval or ratio data, but they can be adapted for use
with ordinal data. In order for a value to have any
meaning, the entity, the attribute being measured, and
the units must be specified. The measure must be
defined over a specified set of permissible values
(discrete or continuous) [21].
 In order to be valid, a measure must have:
• Attribute validity: the entity being analyzed has the

attribute
• Unit validity: the unit is appropriate for the attribute
• Instrumental validity: the underlying model is valid

and the instrument was calibrated
• Protocol validity: the protocol used for the

measurement was valid and prevented errors such
as double-counting [21].

 Furthermore, in order to be theoretically valid, a
direct measure must have the following properties:
• The attribute has different values for different

entities.

• The measure works in a way that makes sense with
respect to the attribute and its values for different
entities

• Any of the attribute’s units can be used if the
attribute is part of a valid measure.

• The attribute can have the same value for different
entities [21].

 For an indirect measure, the following properties
apply:
• A model of relationships among entities’ attributes

is the basis for the measure.
• No improper use of dimensionality occurs in the

measure.
• No unexpected discontinuities occur in the

measure.
• The units used are appropriate for the scale of data

available [21].
 Another set of criteria for assessing metrics was
proposed by [36]. These criteria were proposed to apply
specifically to complexity metrics, but some of them are
more generally applicable. Of these, [21] rejected most
but incorporated properties 1, 3, and 4 into their
framework. These properties are:
 1. There exist different entities with different values.
 3. There exist different entities with the same value.
 4. There exist entities that perform the same function
in different ways and have different values [29].
 [6] also proposed a set of criteria for metrics.
Included in their criteria are some specific properties
that cohesion metrics should have. These properties are:

• Non-negativity and normalization: the value falls in
a defined range [0, max]

• Null value: the value is zero if there are no relations
within a module

• Monotonicity: adding relations within a module
never decreases the value

• Cohesive modules: the module created by merging
two unrelated modules has a value less than or
equal to the cohesion value of the more cohesive
original module [6].

4. Theoretical Analysis of the Metrics
PSI is an indirect measurement based on the direct
measurement of counting the concepts and keywords
from the knowledge base that are associated with each
class and member function. In the main processing
module of the semMet tool, a report is generated that
lists which ideas (concepts and keywords from the
knowledge base) are associated with each class and
function. From this report, the sets I1,I2, …, Im and Ia1,
Ia2, …, Ian are formed. The cardinality of each set is the
quantification of the semantic mass of the
corresponding class or member function [27].

 To analyze PSI within the framework proposed by
[21], we first define the entity being analyzed as a class;
the attribute being measured as semantic mass; and the
unit as the idea, defined as one concept or keyword in
the knowledge base. The data scale is interval, because
we can count ideas, but it does not make sense to talk
about fractions of an idea. PSI meets Kitchenham,
Pfleeger, and Fenton’s four properties for validity as
follows:
• Attribute validity: since semantic mass describes

how many ideas are associated with a class or
function, clearly the entity class has the attribute
semantic mass.

• Unit validity: idea is an appropriate unit for
semantic mass.

• Instrumental validity: the instrument is valid as
long as the knowledge base associates concepts and
keywords with classes and members in a way that is
representative of their purpose within the domain.

• Protocol validity: the measurement as defined in the
formal notation given is unambiguous, consistent,
and prevents double-counting [27].

 PSI also meets the non-negativity, normalization,
null value, monotonicity, and cohesive

Metric Kitchenham Framework Non-Negativity/

Normalization
Null Value Monotonicity Cohesive Modules

PSI � � � � �
LCOM � � �
LCOM1 � � �
LCOM2 ? � �
LCOM3 � � � �
LCOM4 � � � �
LCOM5 ? � � �

Table 2: Summary of theoretical criteria fulfilled by each metric

modules properties outlined by [6]. The value is always
at least zero and always falls within the range [0, 1].
The value is zero if there are no shared ideas within a
class. Adding relations (that is, instances of members
sharing ideas) never decreases the value. If two
unrelated modules are merged, the value is at most the
higher original PSI value [27].
 Theoretical analysis has been performed on the
LCOM metrics by [3]. This analysis is summarized in
Table 2. PSI is included in this table for comparison
purposes. It is unclear whether LCOM2 and LCOM5
meet the Kitchenham framework. LCOM2’s units are
based on the same model as LCOM and LCOM1, which
satisfy unit validity but fail on other counts; however,

LCOM2 involves subtracting pairs of modules with
attributes in common. It is unclear whether this is an
appropriate operation under the model. Similarly,
LCOM5 has a unit of 1/attributes. This unit is not
counted directly but by using a combination of other
units. Therefore, the unit is only valid if this
combination of units is based on a valid model.

5. Empirical Analysis
To perform our empirical analysis of PSI and the
various versions of LCOM, we computed the metrics
using the source code of a set of classes from two GUI
systems written in C++, Gina [1] and wxWindows [25].

Then we compared the metric values to experts’
assessments of the software.
 The experts rated the cohesion of each class on the
following scale: 0 = Bad, 0.25 = Poor, 0.50 = Fair, 0.75
= Good, 1.00 = Excellent
 To check the degree to which the experts gave
consistent ratings of software cohesion, we computed
inter-rater reliability for each team of experts. We used
Gen++ [11] to calculate LCOM, HYSS [7] to calculate
LCOM1, LCOM2, LCOM3, LCOM4, and LCOM5, and
semMet to calculate PSI.
 We performed statistical analysis to see how the
metric values compared to the experts’ assessment of
each class. We used the following hypotheses for the
first two experiments.
H0: � = 0 (There is no correlation between the metric
value and the team’s value.)
H1: � ≠ 0 (There is a correlation between the metric
value and the team’s value.)
 When two variables are independent, their
correlation coefficient value is 0. A direct relationship
between two variables is indicated by a positive value;
an inverse relationship is indicated by a negative value.
To understand the meanings of these values, Cohen [10]
and Hopkins [20] proposed the following scale.
< .01 – trivial, .10 - .30 – minor, .30 - .50 – moderate,
.50 - .70 – large, .70 - .90 - very large,
.90 - 1.0 - almost perfect

5.1 Experiment 1
For this experiment, we computed metrics on a set of 13
classes from the wxWindows system, a system written
in C++ for cross-platform GUI development. It has been
under development or in use for over twelve years [25].
These classes were selected to make a minimal
windowing system.

 Also, a team of experts from a graduate level
software engineering course analyzed cohesion of the
same 13 classes. Each expert had prior object-oriented
programming experience, especially in C++. Most had
at least a year of experience in software development.
The experts’ ratings were averaged to get a team rating
for each class. Group inter-rater reliability was 0.89,
indicating a high degree of agreement among the
experts.
 From the scale proposed by [10] and [20], Table 2
shows PSI has a statistically significant very large
correlation with the experts’ ratings. Except for LCOM,
the other metrics had only a moderate or large
correlation with the experts’ ratings, if any. At this level
of significance, LCOM3, LCOM4, and LCOM5 did not
have a significant correlation with expert ratings. The
exact values are given in Table 3. We can see from
these results that PSI is closer to these experts’ cohesion
ratings than any of the LCOM metrics.

Metric Correlation p-value Statistically

Significant
(� = 0.05)

PSI -0.7745 0.0019 �
LCOM -0.7257 0.0115 �
LCOM1 -0.5782 0.0385 �
LCOM2 -0.5557 0.0486 �
LCOM3 -0.4873 0.0912
LCOM4 -0.5371 0.0584
LCOM5 -0.4462 0.1962

Table 3: Metrics correlated with Expert Team 1
cohesion rating (Experiment 1)

5.2 Experiment 2
In this experiment, we computed the metrics from a set
of 277 classes from the Gina [1] and wxWindows [25]
systems and looked for correlation

 LCOM LCOM1 LCOM2 LCOM3 LCOM4 LCOM5
LCOM1 NS
LCOM2 NS 0.9964
LCOM3 NS 0.8997 0.9253
LCOM4 NS 0.8561 0.8849 0.9838
LCOM5 NS 0.4706 0.4868 0.5217 0.5436
PSI 0.6333 0.6507 0.5895 NS NS NS

Table 4: Pairwise correlation values for metrics (Experiment 2)

between the metrics, using the following hypotheses:
H0: � = 0 (There is no correlation between the metric
values.)
H1: � � 0 (There is a correlation between the metric
values.)
 We found a large correlation between PSI and each
of LCOM, LCOM1, and LCOM2, but no significant
correlation between PSI and any others. There was a
very large correlation in each pairing of LCOM1,
LCOM2, LCOM3, and LCOM4; LCOM5 had a
moderate to large correlation with each of these. LCOM
did not have a significant correlation with any metric
except PSI. Complete results are in Table 4. We
indicated pairs with no statistically significant
correlation with the label “NS.”

6. Conclusion
We performed theoretical and empirical analysis on PSI
and six variations of LCOM. We found PSI is
empirically and theoretically valid, and that it matches
well with experts’ views of cohesion, performing better
than any version of LCOM. Furthermore, since PSI does
not rely on the structure of code, it could be calculated
in the design phase, yielding results before
implementation. Thus software engineers should
consider using PSI to assess the cohesion of object-
oriented software.

7. Future Research
Future research includes extended empirical studies.
Additionally, the next obvious expansion for this work
is to create a tool to calculate semantic metrics from
design specifications as well as from source code. We
began to explore this issue, but it is a rich area for
exploration. Although some syntactic metrics claim to
be design metrics, most of them can be computed in an
automated way only from source code. This is not the
case with semantic metrics.

8. Acknowledgements
This research was partially supported by NASA grants
NAG5-12725 and NCC8-200.

9. References
[1] Backer, A. Genau, M. Sohlenkamp, The generic

interactive application for C++ and OSF/MOTIF,
version 2.0, (1991), Anonymous ftp at ftp.gmd.de,
directory gmd/ginaplus.

[2] Biggerstaff, T. Mitbander, B, Webster, D.
Program understanding and the concept
assignment problem, Communications of the ACM,
v. 37, no. 5, pp. 72-83, May 1994.

[3] Briand, L., Daly, J. Wust, J. A unified framework
for cohesion measurement, Empirical Software
Engineering, v. 3, no.1, pp. 65-115, 1998.

[4] Briand, L., Daly, J. Wust, J. A unified framework
for coupling measurement in object-oriented
systems, IEEE Transactions on Software
Engineering, v. 25, n. 1, pp. 91-121, Jan./Feb.
1999

[5] Briand, L. Morasca, S., Basili, V. Defining and
validating high-level design metrics, University of
Maryland, Technical Report CS-TR 3301, 1994.

[6] Briand, L., Morasca, S., Basili, V., Property-
based software engineering management, IEEE
Transactions on Software Engineering, v. 22 no. 1,
pp. 68-86, Jan. 1996.

[7] Chae, H., Kwon, Y., Bae, D. A cohesion measure
for object-oriented classes, Software: Practice and
Experience, v. 30 , pp. 1405-1431, 2000.

[8] Chidamber, S., Kemerer, C. A metrics suite for
object oriented design, IEEE Transactions on
Software Engineering, v. 20, n. 6, pp. 476-493,
June 1994.

[9] Chidamber, S., Kemerer, C., Towards a metrics
suite for object oriented design, Proceedings of the
Conference on Object-Oriented Programming
Systems, Languages, Applications, pp. 197-211,
1991.

[10] Cohen, J. Statistical Power Analysis for the
Behavioral Sciences, 2nd ed. Lawrence Erlbaum
Publishing Co, Mahwah, N.J., 1988.

[11] Devanbu, P. GENOA - A customizable, language-
and front-end independent code analyzer,
Proceedings of the International Conference on
Software Engineering, pp. 307-317, 1992.

[12] Etzkorn, L., Bowen, L., Davis, C., An approach to
program understanding by natural language
understanding. Natural Language Engineering,
v. 5, no. 1, pp. 1-18, 1999.

[13] Etzkorn, L., Davis, C., Automated Object-Oriented
Reusable Component Identification. Knowledge-
Based Systems, v. 9, no. 8, pp. 517-524, Dec.
1996.

[14] Etzkorn, L., Davis, C. Automatically identifying
reusable OO legacy code. IEEE Computer, v. 30,
no. 10, pp. 66-71, Oct. 1997.

[15] Etzkorn, L., Davis, C. A Documentation-related
approach to object-oriented program
understanding. Proceedings of IEEE 3rd
Workshop on Program Comprehension, pp. 39-45,
1994.

[16] Etzkorn, L., Delugach, H., Towards a semantic
metrics suite for object-oriented design,
Proceedings of the 34th International Conference
on Technology of Object-Oriented Languages and
Systems, pp. 71-80, 2000.

[17] Harrison, R., Counsell, S., Nithi, R. An overview of
object-oriented design metrics, Proceedings of the
8th IEEE International Workshop on Software
Technology and Engineering Practice, pp. 230-
235, 1997.

[18] Henderson-Sellers, B. Software Metrics. Prentice-
Hall, Hemel Hempstaed, UK, 1996.

[19] Hitz, M., Montazeri, B. Measuring coupling and
cohesion in object-oriented systems, Proceedings
of the International Symposium on Applied
Corporate Computing, 1995.

[20] Hopkins, W. A new view of statistics,
http://www.sportsci.org/resource/stats (last
accessed 4/5/06).

[21] Kitchenham, S. Pfleeger, S. Fenton, N. Towards a
framework for software measurement validation,
IEEE Transactions on Software Engineering,
v. 21, no. 12, pp. 929-944, Dec. 1995.

[22] Kozaczynski, W., Ning, J., Engberts, A., Program
concept recognition and transformation, IEEEE
Transactions on Software Engineering, v. 18,
no. 12, pp. 1065 – 1075, Dec. 1992.

[23] Li, W., Henry, S. Object-oriented metrics which
predict maintainability, Journal of Systems and
Software, v. 23, no. 2, pp. 111-122, 1993.

[24] Pressman, R. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, Boston,
2001.

[25] Smart, J. wxWindows, http://www.wxwindows.org/
(last accessed 4/5/06).

[26] Sowa, J. Conceptual Structures: Information
Processing in Mind and Machine, Addison-
Wesley, Reading, Mass, 1984.

[27] Stein, C. Etzkorn, L., Cox, G., Farrington, P.,
Gholston, S., Utley, D., Fortune, J. A new suite of
metrics for object-oriented software, Proceedings
of the 1st International Workshop on Software
Audit and Metrics, Porto, Portugal, April 2004.

[28] Stein, C., Semantic Metrics for Source Code and
Design, Doctoral Dissertation, University of
Alabama in Huntsville, 2004.

[29] Weyuker, E. Evaluating software complexity
measures, IEEE Transactions on Software
Engineering, v. 14, no. 9, pp.1357-1365, Sept.
1998.

