
A Configuration Management Model for Software Product Line

Liguo Yu
1
 and Srini Ramaswamy

2

1
Computer Science and Informatics

Indiana University South Bend

South Bend, IN 46634, USA

ligyu@iusb.edu

2
Computer Science Department

University of Arkansas at Little Rock

Little Rock, AR 72204, USA

srini@acm.org

ABSTRACT. Software Product Line has proved to be an effective approach to benefit from software reuse.

Configuration management, an integral part of any software development activity, takes on a special significance in

software product line context. This is due to the special property of software product line, in which the core assets

are shared by all products. In this paper, we compare the existing configuration management models and analyze the

artifacts that need to be configuration managed in software product line. We then present an evolution-based

configuration management model for software product line, in which, the configuration management is divided into

two domains, the production domain and the product domain. In this model, the evolution propagation of corrective

changes and enhancement changes on different configuration artifacts follow different paths. The advantages and the

constraints of this model are also discussed.

Keywords: Software configuration management, software product line, software evolution, change management.

(Received February 2, 2006 / Accepted March 7, 2006)

1. Introduction

Software product lines [1] [2] [5] are a well-known approach

in the field of software engineering. In a software product

line, a set of related products are produced through the

combination of reused core assets together with product-

specific custom assets. Software product lines have proved to

be an effective way to benefit from architecture level reuse.

Software product lines exhibit some characteristics, such as

product evolution and compatibility, which can be found in

assembly lines of manufacturing industry. Accordingly, they

have the similar management issues, such as change control

and evolution management.

Software development and maintenance are dynamic

processes where software engineers constantly modify their

systems. As a consequence, software systems constantly

evolve. Configuration management (CM) is the control of

the evolution of systems [4] [6] [7] [8] [9] [10]. It is the

discipline that enables us to keep control and track software

changes. Because changes and evolution are inevitable for

any software system, configuration management is an

integral part of any software development and maintenance

activity. The activities associated with CM include

configuration artifact identification, version management,

release management, branch management, variant

management, and change management [3]. Change

management is associated with the evolution of the

configuration artifact. Because software configuration

artifacts are interdependent, changes to one artifact may

affect the evolution of other artifacts. Usually change

management is strictly controlled by authorized personnel.

Like other fields of software engineering, software product

line also needs to support configuration management.

However, due to the special property of software product

line, it poses challenges for configuration management [16].

The special property of software product line is all the

products consist of same or adapted similar core assets. The

products, the core assets, the custom assets, and the

components within the assets all need to be configuration

managed. The challenges for configuration management in

software product line include: configuration artifacts

determination, evolution management, and product line

“decay” prevention.

Configuration artifact determination: Software product

line is also called software product family. There are more

member products in one family than in conventional software

systems. Hence, in product line, there are much more number

of products, assets, and components that needs to be

configuration managed. To reduce the working load and the

complication of configuration management, it is important to

select the right artifacts under configuration management.

Evolution management: Software product line must control

the changes to all artifacts under configuration management,

especially the core assets. Due to the interdependencies

between the assets and the products, changes to either of

them may affect the evolution of the other. On the other

hand, because two products may share the same core assets,

evolution of one product may also affect the other.

Product line “decay” prevention: The benefits of software

product line come from the reuse of core assets. If changes to

software artifacts are not well controlled, this may result the

core asset deviate from the general architecture or the

product loss its connection with the core assets. Both cases

will decay the software product line. This is also called

“erosion” [12] and “software aging” [13] in conventional

software.

To address these issues in software product line, several

configuration management models have been proposed [5]

[11] [16]. All of them lack the capability of effective change

management. This is discussed in the following sections. In

this paper, we present an evolution-based configuration

management model. In this model, the configuration

management is divided into two domains, the production

domain and the product domain. We suggest the evolution

propagation of corrective changes and enhancement changes

on different configuration artifacts follow different paths.

The remainder of the paper is organized as follows: Section

2 defines and clarifies the terminologies used in this paper.

Section 3 reviews the current configuration management

models in software product line and compares their

advantages and drawbacks. We describe our evolution-based

configuration management model in section 4. Section 5

contains the solutions to various configuration management

issues in this model with emphasis on change management.

The constraints and the conclusions are in Section 6.

2. Terminologies definition and clarification

To avoid the ambiguity and misunderstanding, we give the

following definitions and explanations of the terminologies

used in this paper:

Component: A component is the basic unit for configuration

management. For example, a single file could be a

component. A set of files that unite to perform a function or

form an inheritance tree is also called a component. A

component could be atomic or composite with respect to the

composition of the internal files. However, in this paper, we

treat both of them as the smallest configuration artifact.

Asset: An asset is a collection of components. The relation

between component and asset is the part-whole relation. An

asset may contain one or more components. There are two

types of assets in a software product line, core asset and

custom asset.

Core asset: A core asset contains a set of domain specific

but application independent components that can be adapted

and reused in various related applications. Core asset is one

of the most important concepts in a software product line. In

general, a core asset almost certainly includes an architecture

that the products in the product line will share, as well as

components that are developed for systematic reuse across

the product line.

Custom asset: A custom asset contains a set of application

specific components. A custom asset is not designed for

reuse, but produced for a specific application. The quality

requirement (for example, reusability) of custom assets is not

as high as core assets and effort spent on maintenance of

custom assets is less than on core assets.

Product: From a logical view, a product is a collection of

core assets and custom assets. Software product line takes

core assets and custom assets as input and produces a

product as the output. Products share the same or similar

core assets, because the input core assets need to be adapted

to the specific product. A product can be logically

considered to contain two parts, core part and custom part,

which come from core assets and custom assets respectively.

There are two types of products, product instance and

product in-use.

Product instance: After a new product is produced, it may

also need to be configuration managed. We call the product

under configuration management product instance.

Product in-use: Product in-use is the product released to be

used by the user. Therefore, in general, product in-use is a

clone of a product instance.

Core instance: A product instance contains two parts, core

part and custom part. The core part of a product instance is

given the name core instance. Both the terminologies core

instance and product instance are only used when we refer to

configuration management.

Artifact: An artifact is a general term in software

engineering. It refers to any manageable items produced in

software development. Therefore, component, asset (core

asset and custom asset), core instance, product instance, and

product in-use are all artifacts.

Artifact evolution: Changes to an artifact may result in a

new version of the artifact. We call this artifact evolution.

There are two types of changes that can result in artifact

evolution. They are corrective changes and enhancement

changes.

Corrective change: Corrective changes are changes made

to an artifact in order to remove a residual fault while leave

the specification unchanged. It is also termed as “fixing

change” or “repair.” A corrective change is important

because, without it, the product cannot function the right way

as specified in the functional requirement.

Enhancement change: Enhancement changes are changes

made to an artifact in order to achieve a high quality non-

functional requirement, such as security, performance,

usability, and so on or to adapt to a new platform and a new

functional requirement.

Evolution propagation: Software artifacts are interrelated.

Changes to one artifact may require the corresponding

changes to other artifacts. We call this evolution

propagation. Usually, there are four basic paths for evolution

propagation. They are release path, request path, update

path, and feedback path. In this paper, we define a new path,

report path.

Release path: If changes are made to a product instance, the

product under configuration management, these changes

need to be reflected in the product in-use. Thus, a new clone

of product instance is released for the user. The evolution of

the product in-use is affected by the evolution of product

instance. We call this propagating direction of artifact

evolution, the release path.

Request path: If change proposal to the product in-use

comes from the user, the request should be first directed to

the product under configuration management, the product

instance. If the request is accepted, both the product instance

and the product in-use will be modified. The evolution of the

product instance is initiated by the product in-use. We call

this propagating direction of artifact evolution, the request

path.

Update path: If two artifacts under configuration

management have part-whole relation, for example, artifact

A1 is a part of artifact A2, changes to A1 may need to be

reflected in A2. We call this propagating direction of artifact

evolution, the update path. In a software product line,

product is a composition of core assets and custom assets.

Changes made to a core asset or custom asset may need to be

reflected in the existing product instance that is previously

produced from the original assets. The evolution of the

product instance is affected by the changes to core assets or

custom assets via update path.

Feedback path: If two artifacts (A1 and A2) under

configuration management have part-whole relation, for

example, A1 is a part of A2, changes to A2 may need to be

reflected in A1. We call this propagating direction of artifact

evolution, a feedback path. In a software product line,

changes made to a product instance may also need to be

reflected to the core asset and custom asset from which the

product is built. The evolution of the core assets or custom

assets is affected by the changes to the product instance via a

feedback path.

Report path: If two artifacts (A1 and A2) are not tightly

related, changes to A1 need not necessarily be reflected in

A2. However, it may help A2’s evolution if changes to A1

are known by A2. It is the decision of A2 whether to make

changes accordingly and make the necessary changes. Hence

the evolution of A1 is not reflected in A2 but informed to

A2. We call this evolution propagation direction, the report

path. The difference between report path and the other four

paths is the propagation of changes (the other four paths) or

the information (report path) about the changes.

3. Related models of configuration management in a

software product line

Figure 1 shows the general configuration management model

of a software product line, as proposed by [5] [14] [15] [17].

In this model, the artifacts under configuration management

include core assets, custom assets, and product instances.

Component is defined as the basic unit for configuration

management. It should be included in any model. It is not

shown in the figure. In this configuration management

model, every product in-use has the corresponding product

instance under configuration management. We use solid

lines to represent the relationship between product instance

and its clone product in-use. This is a one-to-one relation.

Figure1: General configuration management and asset

evolution model for software product line [15]

The model in Figure 1 has several advantages: first, all

artifacts in a software product line are under configuration

management, which makes the changes, maintenance, and

evolution of a software product line tightly controlled;

second, this model allows for distributed software

production, such as the separation of core assets

development and product development. A new product can

be built at the same time the assets are updated, because the

product can be based on the existing version of assets; third,

since every product is under configuration management, this

model allows the rapid reconstruction of any version of any

product, which may have been built from various versions of

core assets and custom assets.

However, this model also has some drawbacks as illustrated

by Krueger [11]. First, consider the artifacts under

configuration management. Each product in-use has the

corresponding clone product instance being managed. For a

specific product line, the number of products may be huge,

which makes the task of configuration management too

complicated.

Second, consider artifact evolution. As shown in Figure 1, in

this model, there are four paths for artifacts evolution

propagation. Changes made to core assets and custom assets

cannot be directly applied to the product. They need to

follow two consecutive paths, update path and release path:

these changes need to be updated in product instances,

followed by the release of new version the product in-use.

On the other hand, changes made to product in-use cannot be

directly reflected back to core assets and custom assets

either. These changes need to be first requested to the

corresponding product instance. If the changes are accepted,

they will be made to both the product in-use and the product

instance (with updated version of course). At the same time,

these changes need to be fed back to the core assets and

custom assets. A disadvantage of these scenarios is they do

not differentiate the evolution of core assets and custom

assets. In a software product line, the quality requirement

and importance of core assets and custom assets are

different. Hence, they should be managed differently. The

fact that the evolution propagation of custom assets follows

the same path as core assets increases the amount of

configuration management work and complicates the

evolution process.

Krueger [11] presented another configuration management

model as shown in Figure 2, which he called production line.

This model shows, only the core assets and custom assets are

configuration artifacts (and components of course). Product

is not under configuration management. He gave the

following advantages of this model: (1) There is only one

copy of core assets and custom assets to be configuration

managed (the corresponding part in product is not under

configuration management). This avoids the duplicate

changes to product if changes are made to core assets or

custom assets; (2) Changes made to core assets and custom

assets during product development can be reflected in the

product at the same time. (3) Because the product is not

under configuration management, there is no necessity for

evolution propagation between assets (core assets, custom

assets) and the product.

Although the production line model has the above

advantages, it has some drawbacks that make it dangerous to

follow in practice. Consider the evolution of the

configuration artifacts in the production line model shown in

Figure 2, there is no direct dependency within artifacts under

configuration management. Changes to core assets and

custom assets cannot be updated to the product in-use,

because the product in-use is not under configuration

management. These changes are only available to future new

products. Similarly, changes to product in-use cannot be fed

back to the core assets and custom assets. The more changes

to the product in-use, the more it will deviate from the

product line. Therefore, the production line configuration

management model ignores the most important property of a

software product line, the interrelationships among different

products. Without configuration management, it is difficult

to track the origination of a product and reconstruct the

product during maintenance.

Figure2: Production line configuration management model

proposed by Krueger [11]

Both the general model (Figure 1) and the production line

model (Figure 2) treat different types of changes the same

way. They do not differentiate corrective changes from

enhancement changes on the artifacts. Consider the general

model in Figure 1, if corrective changes are made to a

product (product instance and product in-use), it is

important that these changes be reflected back to the core

assets or custom assets, because these changes may associate

with a residual fault in core assets and custom assets.

Therefore, it makes sense to change the corresponding assets

and update all the related products in turn. However, if

enhancement changes are made to a product (product

instance and product in-use), it is not necessary to change

the corresponding assets and update all other related

products in turn. Because enhancement changes to one

product may not be appropriate for other products. On the

other hand, if the corresponding assets are not changed

according with the enhancement changes to a product, this

product will deviate more from the product line, which may

result in product line “decay” as described in Section 1.

4. Evolution-based configuration management model

In order to avoid the drawbacks of configuration

management models presented in Section 2, we present an

evolution-based configuration management model for a

software product line, which is shown in Figure 3. In this

model, the configuration management is divided into two

domains, the production domain and the product domain

(The word “domain” has been overloaded. It generally refers

to an application area. Here, we use it to denote different

configuration management processes). In production

domain, the configuration artifacts are core assets, custom

assets, and core instances. In product domain, the

configuration artifacts are product instances. In this model, a

software product line takes core assets and custom assets as

input and produces products instance and core instances as

output. The core instances are extracted directly from the

corresponding products instance. We use dotted lines to

represent the relation between core instance and product

instance. Each product instance has one core instance under

configuration management in production domain. Each core

instance has one or more product instances that consist of it

and is under configuration management in product domain.

This relation is a one-to-many relation.

In the evolution-based configuration management model,

every product in-use has a corresponding core instance

under configuration management in production domain. As

shown in Figure 3, changes to the core assets propagate to

the product in-use via three consecutive paths, update,

update, and release. Because core assets constitute the most

important part of a product and the products differentiate

mainly through core assets, it is vital that the changes made

to core assets are available to the products and the changes to

core part of a product are monitored by the configuration

management in production domain. The evolution-based

model provides this capability. Since both core assets and

core instances are under configuration management in

production domain, changes to core assets can be easily

updated to core instances. If needed, the new version of core

instance can then be updated to the corresponding product

instance and released to the product in-use. On the other

hand, change proposals to core part of a product in-use need

to be first requested to the corresponding product instance

followed by the same request being forwarded to core

instances. If this proposal is accepted by the configuration

management authority in production domain, the core

instance, the product instance, and the product in-use will be

changed. At the same time, the changes should be fed back

to the core assets to make the corresponding changes.

Figure 3: Evolution-based configuration management model

for software product line with core assets and core parts

evolution propagation

Figure 4 shows the evolution propagation of custom assets

and custom parts in evolution-based configuration

management model. Changes to custom assets need not to be

updated in the corresponding product instance and product

in-use. These changes are only available to future new

products. Similarly, changes to the custom part of product

instance and product in-use need not to be feedback to the

custom assets, because the configuration management of

custom part of a product is not connected with the

configuration management of custom assets.

Figure 4: Evolution-based CM model for software product

line with custom assets and custom parts evolution

propagation

Comparing to the models presented in Figure 1 and Figure 2,

the evolution-based configuration model has the following

properties and advantages:

Clear separation of responsibilities: The configuration

management of software product line is divided into two

domains, the production domain and the product domain.

The production domain manages the evolution of

components, assets (core assets and custom assets), and core

instances. The product domain manages the evolution of the

product. However, the evolution of the core part of the

product is monitored by the production domain. The product

domain can only determine the evolution of custom parts of

a product.

Multiple evolution propagation paths: We treat the

evolution propagation of core assets and custom assets

differently. The evolution of core assets and core part of a

product is tightly connected, which is similar to the general

model in Figure 1, while the evolution of custom assets and

custom part of a product is not connected, which is similar to

the production line model in Figure 2.

Mitigating product deviation: The evolution-based model

can help prevent product line “decay.” The changes to the

core part of a product instance and product in-use are

controlled by the configuration management in production

domain. This can guarantee the changes will not result in

product deviation from the product line. Changes to custom

part of a product in-use are under separate configuration

management in product domain. Because custom parts are

not as important as core parts, changes to them usually

cannot result in product line “decay.”

5. Configuration management issues in the evolution-

based model

In this section, we discuss the solution to various

configuration management issues in the evolution-based

model.

5.1. The artifacts and the associated configuration

management operations

As we mentioned before, the basic configuration item is a

component. Component can be configuration managed like

conventional software. Operations for management of

components are:

Version management: A version identifies a unique state of

components as they evolve over time.

Branch management: A branch identifies a unique

evolutionary direction of components. New branches can be

created from the existing branch of the component. Different

branches can merge into a single branch.

Concurrency management: Concurrency management is

used to coordinate multiple modifications to the component

by different developers. Usually, this is implemented using

checkout, checkin policies.

Assets (core assets and custom assets) are collection of

components. They can be treated as configurations or

compositions of components. Operations for asset

management are:

Asset creation: An asset is created by selecting a set of

components.

Asset evolution: A change to the component in the asset will

result a new version of asset.

Asset branch management: An asset could also have

several evolutionary paths. Different paths can merge to a

single path.

Asset baseline management: A baseline for an asset stands

for a milestone of an asset. Determination of core asset

baseline needs to be weighted carefully for their impact on

the entire product line.

Core instance is a collection of core assets. They can be

treated as configurations of assets. A product is a collection

of core assets and custom assets. They are all under variant

management:

Variant management: Coexisting core instances or

products for different platforms are under variant

management.

Different artifacts under configuration management will be

managed using different operations. However, some basic

operations are common to more than one type of artifacts.

For example, version management is applied to all artifacts.

Table 1 indicates the configuration management operation

for various artifacts.

Table 1: Configuration management operations for

various artifacts

Artifacts Configuration

management

operations
Component Asset

Core

instance

Product

instance

Version

management
● ● ● ●

Concurrency

management
● ● ● ●

Evolution

management
● ● ● ●

Branch

management
● ●

Baseline

management
 ●

Variant

management
 ● ●

5.2. Evolution management

The special property of the evolution-based model is the way

it performs change management and coordinates the

propagating of artifact evolution. In this section, we discuss

evolution management in more detail.

An authorized group must carefully analyze any changes

proposed to core assets and core instance, which includes

the request from the user to make changes on core instance

and the proposal from the developer to make changes on

core assets. If the proposals are accepted, these changes

could be reflected in and propagated to other artifacts under

configuration management (either in production domain or

in product domain).

We consider these changes differently on core assets, custom

assets, and product instances. It should be noted here that

there is no direct request of changes on core instance. Core

instance is only part clone of the product instance. The

request of changes to core instance comes from either

change request to core assets or to the product instance. On

the other hand, any request of changes to product in-use

should be directed to the product instance. Therefore, we

only consider the request of changes on product instance.

We also consider two types of changes (corrective change

and enhancement change) separately. Now we discuss the

propagating of changes on assets:

Corrective changes to core assets: If corrective changes are

made to core assets, these changes should be reflected in the

corresponding core instance, the product instance, and the

product in-use, because, it is important to fix a fault in a

product. Therefore, the core assets, the core instance, and

the product are updated to a new version. The corrective

changes to core assets should propagate following the path

update, update, and release.

Enhancement changes to core assets. If enhancement

changes are made to core assets, these changes need not to

be reflected in the corresponding core instance and the

product. Because, there is no fault associated with the

corresponding product in-use. Therefore, the changed core

asset acquires a new version, while the core instance, and the

product do not change according. They keep their current

versions and are logically composed of the old version of the

core asset. The enhancement changes to core assets do not

need to propagate to existing product. They are only

available to new products.

Corrective changes to core part of a product. If corrective

changes are made to core part of a product instance, these

changes should be reflected in the corresponding core asset

and core instance. Again, this is because it is important to fix

a fault in a product. The core assets, the core instance, and

the product are updated to a new version. Therefore the

corrective changes to core part of a product in-use should

propagate following the path request, request, and feedback.

Enhancement changes to core part of a product. If

enhancement changes are made to core part of a product,

these changes should also be reflected in the corresponding

core asset and core instance. Core assets are used to identify

the origination of the product. To avoid product deviation

from the product line, these changes must be monitored by

the configuration management in production domain.

Therefore the enhancement changes to core part of a product

in-use should propagate following the path request, request,

and feedback.

Corrective changes to custom assets. If corrective changes

are made to custom assets, these changes are only available

to new product. They need not be reflected in the existing

products. So, corrective changes to custom assets do not

need to propagate.

Enhancement changes to custom assets. If enhancement

changes are made to custom assets, these changes need not to

be reflected in the product in-use either. Hence,

enhancement changes to custom assets do not need to

propagate either.

Corrective changes to custom part of a product. If

corrective changes are made to custom part of a product,

these changes need not necessarily be reflected in the

corresponding custom assets, since. custom assets are not

intended to be reused in the future the same way as in the

current product. However, corrective changes are associated

with faults in an artifact. It will be helpful if these changes

are noticeable by the configuration personnel in production

domain. Therefore, these changes should be reported to

custom assets. It is up to the configuration management

personnel in production domain to decide if, and if so, what

changes are to be made to the corresponding custom assets.

Therefore, corrective changes to custom part of a product in-

use needs to propagate following the path request (to the

product instance), and report (to the custom asset).

Enhancement changes to custom part of a product. If

enhancement changes are made to custom part of a product,

these changes need not be reflected or reported to custom

assets. Since the main difference is on custom parts,

enhancement changes to custom part of a product do not

need to propagate.

It should be noted that, changes (corrective change and

enhancement change) to custom part of a product are

performed and controlled in product domain only. All other

changes need to be monitored by the configuration personnel

in production domain. Table 2 summarizes the above

discussions. The symbol “–” means no change propagating is

necessary.

5.3. Versioning scheme

Versions of component, asset, and core instance can follow

the conventional identification scheme. Versions of product

instance should partially adhere to the product line. A

version of a product instance should contain two parts. One

part should enable it to be back track to the core instance.

One possible approach is to use the same versioning scheme

as the core instance. Another part is used to differentiate the

continuous changes made to custom part of the product. This

kind of versioning schemes can enable the developer to

identify the origination of the product easily and reconstruct

the product rapidly.

6. Constraints and conclusions

In this paper, we presented an evolution-based configuration

management model. The special property of this model is the

way it manages evolution propagation between related

artifacts. We hope this model can contribute not only to

software industry but also to manufacturing industry due to

the similarities between them.

Despite several advantages mentioned in the earlier sections,

the proposed model has the following constraints:

This model is for products in a product line that can easily

extract core parts and custom parts. So, it is easy to

differentiate core part and custom part and manage them

differently. If core parts and custom parts mix in the product,

it is difficult to manage them differently.

This model is best for products with the major part being the

core part. Therefore, different products can share the same

core instance. Management on core instance can reduce the

working load of direct management on product instance. If

core asset is a small part, it does not benefit too much from

this model.

References
[1] Atkinson, C. Component-Based Product Line Engineering

with UML, Addison-Wesley, 2001.

[2] Bosch, J. Design and Use of Software Architectures: Adopting

and Evolving a Product-Line Approach, Addison-Wesley, 2000.

[3] Bruegge, B. and Dutoit, A. H. Object-Oriented Software

Engineering Using UML, Patterns, and Java, Pearson Prentice

Hall, Upper Saddle River, NJ, 2004.

[4] Burrows, C., George, G., and Dart, S. Configuration

Management, Ovum Ltd, 1996.

[5] Clements, P. and Northrop, L. Software Product Lines:

Practices and Patterns, Addison-Wesley, 2001.

[6] Dart S. Spectrum of functionality in configuration

management systems, Technical Report, CMU/SEI-90-TR-11,

Software Engineering Institute, Pittsburgh, PA, 1990.

[7] Dart, S. Concepts in configuration management systems,

Proceedings of the Third International Workshop on Software

Configuration Management, Trondheim, Norway, pp. 1–18, 1991.

[8] Estublier, J., Dami, S., and Amiour, M. High level process

modeling for SCM systems, Proceedings of the Seventh

International Workshop on Software Configuration Management,

Boston, MA, pp. 81–97, 1997.

[9] Estublier, J. Software Configuration management: a roadmap,

Proceedings of the Conference on The Future of Software

Engineering, Limerick, Ireland, pp. 279–289, 2000.

[10] Feller P. Configuration management models in commercial

environments, Technical Report, CMU/SEI-91-TR-7, Software

Engineering Institute, Pittsburgh, PA, 1991.

[11] Krueger, W. Variation management for software production

lines, Proceedings of the Second International Conference on

Software Product Lines, San Diego, CA, pp. 37–48, 2002.

[12] Parnas, D. L. Software aging, Proceedings of the 16th

International Conference on Software Engineering, Sorrento, Italy,

pp. 279–287, 1994.

[13] Perry, D. E., and Wolf, A. L. Foundations for the study of

software architecture, ACM Sigsoft Software Engineering Notes,

17(4), 40–52, 1992.

[14] Software Engineering Institute, Software Product Lines,

Carnegie Mellon University,

http://www.sei.cmu.edu/productlines/index.html (accessed June

2005)

[15] Softwareproductlines.com, Software Product Lines,

http://www.softwareproductlines.com/ (accessed June 2005)

[16] Staples, M. Change control for product line software

engineering, Proceedings of the 11th Asia-pacific Software

Engineering Conference (APSEC’04), Busan, Korea, pp. 572–573,

2004.

[17] Weiss, D. and Lai, R. Software Product-Line Engineering: A

Family-Based Software Development Process, Addison-Wesley,

Reading, MA, 1999.

Table 2: Evolution propagating paths for various changes to artifacts in software product line

Artifact

Input asset Product Type of changes

Core asset Custom asset Core part Custom part

Corrective
update, update,

release
–

request, request,

feedback
request, report

Enhancement – –
request, request,

feedback
–

