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Abstract. In the present work, we propose a new technique to enhance the learning capabilities and reduce the 
computation intensity of a competitive learning multi-layered neural network using the K-means clustering 
algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. 
The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the 
neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the 
proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the 
KDD99 dataset compared to a standard learning schema that use the full dataset.  
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1 Introduction  
 
Intrusion detection is a critical process in network security. 
Traditional methods of network intrusion detection are based 
on the saved patterns of known attacks. They detect 
intrusion by comparing the network connection features to 
the attack patterns that are provided by human experts. The 
main drawback of the traditional methods is that they cannot 
detect unknown intrusions. Even if a new pattern of the 
attacks were discovered, this new pattern would have to be 
manually updated into the system. On the other hand, as the 
speed and complexity of networks develop rapidly, 
especially when these networks are open to the public Web, 
the number and types of the intrusions increase dramatically. 
Hence, with the changing technology and the exponential 
growth of Internet traffic, it is becoming difficult for any 
existing intrusion detection system to offer a reliable service. 
From earlier research, we have found that there exists a 

behavioural pattern in the attacks that can be learned. That is why 
an artificial neural network is so successful in detecting network 
intrusions; it is also capable of identifying new attacks to some 
degree of resemblance to the learned ones. The neural networks 
are widely considered as an efficient approach to adaptively 
classify patterns, but their high computation intensity and the long 
training cycles greatly hinder their applications, especially for the 
intrusion detection problem, where the amount of treated data is 
very important.  
Neural networks have been identified since the beginning as a 
very promising technique of addressing the intrusion detection 
problem. Many researches have been performed to this end, and 
the results varied from inconclusive to extremely promising. The 
primary premise of neural networks that initially made it 
attractive was its generalization property, which makes it suitable 
to detect day-0 attacks. In addition neural networks also posses 
the ability to classify patterns, and this property can be used in 
other aspects of intrusion detection systems such as attack 



classification, and alert validation. In this work, an attempt is 
made to improve the learning capabilities of a multi-layered 
neural network and reduce the amount of time and resource 
required by the learning process by sampling the input 
dataset to be learnt using the K-means algorithm. This paper 
is organized as follow: section 1 gives some theoretic 
background about the use of neural networks for intrusion 
detection and the k-means clustering technique, then 
describe the proposed technique of samples reduction. The 
section 2 presents the architecture of the used neural 
networks with the different used parameters. Section 3 
summarizes the obtained results with comparison and 
discussions. The paper is finally concluded with the most 
essential points and possible future works.   
 
2 Theory  
 
2.1  Neural network models for IDS 
A neural network contains no domain knowledge in the 
beginning, but it can be trained to make decisions by 
mapping exemplar pairs of input data into exemplar output 
vectors, and adjusting its weights so that it maps each input 
exemplar vector into the corresponding output exemplar 
vector approximately [1]. A knowledge base pertaining to 
the internal representations (i.e. the weight values) is 
automatically constructed from the data presented to train 
the network. Well-trained neural networks represent a 
knowledge base in which knowledge is distributed in the 
form of weighted interconnections where a learning 
algorithm is used to modify the knowledge base from a set 
of given representative cases. Neural networks might be 
better suited for unstructured problems pertaining to 
complex relationships among variables rather than problem 
domains requiring value-based human reasoning through 
complex issues. Any functional form relating the 
independent variables (i.e. input variables) to the dependent 
variables (i.e. output variables) need not be imposed in the 
neural network model. Neural networks are thought to better 
capture the complex pattern of relationships among variables 
than statistical models because of their capability to capture 
non-linear relationships in data. 
The rules with logical conditions need not be built by 
developers as neural networks investigate the empirical 
distribution among the variables and determine the weight 
values of a trained network. A neural network is an 
appropriate method when it is difficult to define the rules 
clearly as is the case in the misuse detection or anomaly 
detection. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to measure the performance of an intrusion detection 
system, two types of rates are identified, false positive rate and 
true positive rate (detection rate) according to the threshold value 
of the neural network. The system reaches its best performance 
for height value of detection rate and low value of false positive 
rate. A good detection system must establish a compromise 
between the two situations. 
A generic form of a neural network intrusion detector is presented 
in the Figure.1. The system use the input labelled data (normal 
and attack samples) to train a neural network model. The resulting 
model is then applied to the new samples of the testing data to 
determine the corresponding class of each one, and so to detect 
the existing attacks. Using the label information of the testing 
data, the system can compute the detection performances 
measures given by the false alarms rate, and the detection rate. A 
classification rate can also be computed if the system is deigned 
to perform attacks multi-classification 
   
2.2  Data Clustering and k-means algorithm  
2.2.1  Data clustering  
Clustering of data is a method by which large sets of data are 
grouped into clusters of smaller sets of similar data. A clustering 
algorithm attempts to find natural groups of components (or data) 
based on some similarities. The clustering algorithm also finds the 
centroid of a group of data sets. To determine cluster 
membership, most algorithms evaluate the distance between a 
point and the cluster centroids. The output from a clustering 
algorithm is basically a statistical description of the cluster 
centroids with the number of components in each cluster. The 

Figure 1: A generic form of a NN-base intrusion detection system 
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centroid of a cluster is a point whose parameter values are 
the mean of the parameter values of all the points in the 
clusters.  The k-means algorithm used in this work is one of 
the most non-hierarchical methods used for data clustering. 
 
2.2.2  Algorithm description 
The K-means [2] is one of the simplest unsupervised 
learning algorithms that solve the well known clustering 
problem. The procedure follows a simple and easy way to 
classify a given data set through a certain number of clusters 
(assume k clusters) fixed a priori. The main idea is to define 
k centroids, one for each cluster. These centroids should be 
placed in a cunning way because of different location causes 
different result. So, the better choice is to place them as 
much as possible far away from each other. The next step is 
to take each point belonging to a given data set and associate 
it to the nearest centroid. When no point is pending, the first 
step is completed and an early grouping is done. At this 
point we need to re-calculate k new centroids as barycentre 
of the clusters resulting from the previous step. After we 
have these k new centroids, a new binding has to be done 
between the same data set points and the nearest new 
centroid. A loop has been generated, as a result of this loop 
we may notice that the k centroids change their location step 
by step until no more changes are done. In other words 
centroids do not move any more. 
Finally, this algorithm aims at minimizing an objective 
function, in this case a squared error function. The objective 
function: 
 
 
 
 
Where                is a chosen distance measure between a data 
point      and the cluster centre cj, is an indicator of the 
distance of the n data points from their respective cluster 
centres. The general algorithm is composed of the following 
steps: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Although it can be proved that the procedure will always 
terminate, the k-means algorithm does not necessarily find the 
most optimal configuration, corresponding to the global objective 
function minimum. The algorithm is also significantly sensitive to 
the initial randomly selected cluster centres. The k-means 
algorithm can be run multiple times to reduce this effect. K-means 
is a simple algorithm that has been adapted to many problem 
domains. The proposed procedure is a simple version of the k-
means clustering. Unfortunately there is no general theoretical 
solution to find the optimal number of clusters for any given data 
set. A simple approach is to compare the results of multiple runs 
with different k classes and choose the best one according to a 
given criterion, but we need to be careful because increasing k 
results in smaller error function values by definition, but also an 
increasing risk of over-fitting. 
 
3 The proposed method 
In the present work, the role of the k-means algorithm is to reduce 
the computation intensity of the neural network, by reducing the 
input set of samples to be learned.  This can be achieved by 
clustering the input dataset using the k-means algorithm, and then 
take only discriminant samples from the resulting clustering 
schema to perform the learning process. By doing so, we are 
trying to select a set of samples that cover at maximum the region 
of each class in the N-dimensional space (N is the size of the 
training vectors). The input classes are clustered separately in 
such a way to produce a new dataset composed with the centroid 
of each cluster, and a set of boundary samples selected according 
to their distance from the centroid. Reducing the number of used 
samples will enhance significantly the learning performances, and 
reduce the training time and space requirement, without great loss 
of the information handled by the resulting set, due to its specific 
distribution.  The Figure.2 illustrates an example of the 
application of this selection schema to a 2-dimentional dataset.  
The number of fixed clusters (the k parameter) can be varied to 
specify the coverage repartition of the samples. The number of 
selected samples for each class is also a parameter of the selection 
algorithm. Then, for each class, we specify the number of samples 
to be selected according to the class size. When the clustering is 
achieved, samples are taken from the different obtained clusters 
according to their relative intra-class variance and their density 
(the percentage of samples belonging to the cluster). The two 
measurements are combined to compute a coverage factor for 
each cluster. The number of samples taken from a given cluster is 
proportional to the computed coverage factor. Let 
 
A be a given class, to witch we want to apply the proposed 
approach to extract S sample. Let k be the number of cluster fixed 
to be used during the k-means clustering phase.  For each 
generated cluster cli (i:1..k), the relative variance is computed 
using the following expression: 
 

j
ix  

2
j

j
i c-x  

• Place K points into the space represented by the 
objects that are being clustered.  These points 
represent initial group centroids. 

• Assign each object to the group that has the closest 
centroid. 

• When all objects have been assigned, recalculate the 
positions of the K centroids. 

• Repeat Steps 2 and 3 until the centroids no longer 
move. This produces a separation of the objects into 
groups from which the metric to be minimized can be 
calculated. 
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When Card(X) give the cardinality of a given set X, and 
dist(x,y) give the distance between the two points x and y. 
Generally, the distance between two points is taken as a 
common metric to assess the similarity among the 
components of a samples set. The most commonly used 
distance measure is the Euclidean metric which defines the 
distance between two points x=(p1,….pN) and y=(q1,….,qN) 
from RN as: 
 
 
 
 
The density value corresponding to the same cluster cli is 
computed like the following: 

 
 
 
 
 

The coverage factor is then computed by:   
 
   
 
       
 

We can clearly see that: 0 ≤ Vr(cli) ≤ 1 and 0 ≤ Den(cli) ≤1 for 
any cluster cli. So the coverage factor Cov(cli) belong also to the 
[0,1] interval. Furthermore, it is clear that:  
 
 
 
 
We can so deduce easily that:         
 
 
 
Hence, the number of samples selected from each cluster is 
determined using the expression: 
 
        
 
 
Using (8), the algorithm presented in the figure.3 will permit to 
select S sample from a class A clustered with the k-means 
algorithm into k cluster. The parameter ε serve to ensure that the 
selected samples are placed in separated regions, and are not 
duplicated. The choice of  ε’s value depend on the size of the 
cluster. We have proposed the following heuristic expression to 
compute an approximate value of  ε:   
 
  
 
 
 
This expression is only an approximate heuristic. No theoretic 
background was used to determine the value of ε. The 
performances of the expression were evaluated experimentally. 
Finally, the resulting set of samples is then used to train the neural 
network.  
 
When dealing with the intrusion detection problem, the proposed 
technique is applied only to the large classes. With the KDD99 
dataset used in our experiments, the technique is applied to the 
class: normal, Dos, Probe and R2l. The U2R class is very small 
according to the other classes mentioned, so the totality of its 
samples is used during the learning process. The figure.4 
illustrates the general operation schema of the proposed approach.  
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Figure 2: An illustrative example on the application of the 

proposed method to a 2-dimentional training set. 
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4 Datasets and experiments  
 
Because the goal of this work is to study and enhance the 
learning capabilities of the neural network techniques for 
intrusions detection, the proposed method is compared to a 
classic neural networks implementation that use the full set 
of samples sampled from the KDD99 dataset [4], and witch 
contain 24788 sample. The use of the full ‘10% KDD’ 
dataset containing 972780 samples is impracticable using 
the neural networks on any machine configuration. Even 
with the used subset, the experiments show that the learning 
process is very hard and take hours and hours to converge. 
The Table.1 lists the class’s distributions of our used sets. 
 
 
 
 
 
 
 
 
At the first time, we tried to implement an intrusion 
classification system, to classify each intrusion to one of the 
learned attack classes (Dos, Prob, U2R, R2L), but the result 
demonstrate that a poor classification rate is obtained in this 
case. This can be interpreted by the fact that the power of the 
neural networks approach reside in their ability to 
discriminate the normal comportment from the intrusive one, 

and the discrimination between attack classes remain a hard task 
and give limited performances, especially for the classes U2R and 
R2L. The presented result demonstrates that considering the 
attacks classes as a single one improve significantly the detection 
rate with respect to the multi-classification approach. The new 
proposed technique was also implemented using the same 
principle, and the attack classes were merged in a single intrusion 
class, regrouping attacks categories with a relatively equivalent 
distribution.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the following, we describe the architecture of the neural 
networks used in the experiments with the relevant parameters. 
The next section details the obtained results for each 
implementation, and compares the performances achieved by 
each detection system.  

 Training Set Testing Set 
Normal 11673 47.09 % 60593 19.48 % 

DOS 7829 31.58 % 229853 73.90 % 
PBR 4107 16.56 % 4166 1.34  % 
R2L 1119 4.51 % 16347 5.25 % 
U2R 52 0.24 % 70 0.02 % 

Table 1: Distribution of the normal and attack records 
in the used training and testing sets. 

Figure 4: The general operating mechanism of the 
proposed method. 
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Let A be the input class 
k: the number of cluster 
S: the number of samples to be selected (S ≥ k) 
Sam(i): the resulting selected set of samples for the cluster i 
Out_sam: the output set of samples selected from the class A 
Candidates: a temporary array that contain the cluster points 
and their respective distance from the centroid 
i,j,min,x: intermediates variables 
ε: Neiberhood parameter    
 
1-Cluster the class A using the k-means algorithm into k  
     cluster. 
2-For each cluster cli (i:1..k) do 

   { Sam(i) :={centroid(cli)}; 
      j:=1;  
      For each x from cli do  

                     { Candidates [j].point :=x; 
 Candidates [j].location :=dist(x, centroid(cli)) ; 

                      j:=j+1 ; 
                      }; 

      Sort the array Candidates in descending order with  
respect to the values of location field;     

      j:=1; 
      While((card(Sam(i)))<Num_samples(cli)) 

                     and (j<card(cli)) do 
          {min:=100000; 

                              For each x from Sam(i) do 
                           {if  dist(Candidates[j].point,x)<min  
                               then min:= dist(Candidates[j].point,x) ;            

   }  
                                if (min > ε) then  

    Sam(i):=Sam(i) ∪{Candidates[j].point}; 
      j:=j+1; 

 }  
            if card(Sam(i)) < Num_samples(cli) then  
      repeat  {Sam(i):=Sam(i) ∪ Candidates[random].point 
                   }until (card(Sam(i)) = Num_samples(cli)); 
3-For i=1 to k do Out_sam:=Out_sam ∪ Sam(i); 

Figure 3:  The proposed samples selection algorithm  



Attributes  in  the  KDD  datasets  had  all  forms 
:continuous,  discrete,  and  symbolic,  with  significantly 
varying resolution and ranges.  Most pattern classification 
methods  are  not  able  to  process  data  in  such  a  format.  
Hence, pre-processing was required before pattern 
classification models could be built.  Pre-processing  
consisted  of  two  steps:  first  step  involved  mapping  
symbolic-valued  attributes  to  numeric-valued  attributes 
and second step implemented scaling. In the present work, 
we have used the data codification and scaling used in [10]. 
All the resulting scaled fields belong to the interval [0, 1]  
 

4.1  Network architecture used with the standard 
method  
As indicated above, the first experiments were performed 
using a multi-layered neural network to classify the input 
data samples of the training set presented in the Table.1, to 
one of 5 classes :Normal, Dos, Prob ,U2r, R2l corresponding 
to the normal and intrusive possible situations. The used 
network is composed of 3 hidden layers containing 30, 15 
and 30 neuron respectively, and has 41 input and 5 outputs. 
The neural network was designed to produce a value of 1.0 
in the output node corresponding to the class of the current 
sample and the value of 0.0 for the other output nodes. 
When testing new samples with the network, the outputs can 
be any value from [0, 1] due to the approximate nature of the 
learning, so we consider the nearest output value to 1.0 as 
the activated output node.   
In the case of two-category learning (normal and attack), the 
network has only one output neuron corresponding to the 
involved classes. The outputs activation is handled in the 
following way: during the learning phase, the output value is 
set to 0 for normal samples, and 1.0 for the attack samples. 
During the test phase, the output value is rounded to the 
nearest value 0 or 1.0.  
We have used the feed-forward backpropagation [3] as 
learning algorithm, the Table.2 show the set of parameters 
used during the learning process used for all the 
implementations presented in this work. 
 
4.2  Network architecture used with the proposed 
method 
Since the proposed schema use a reduced set of samples, the 
network architecture can be more trivial. We use only two 
hidden layers with 18 and 5 neurones respectively, an input 
layer of 41 neurones, and the output layer contain 1 neurone 
for normal and intrusive classes. The same parameters of 
learning are used as illustrated in the Table.2.  
The described experiments were implemented using the 
MATLAB 7 environment, on a Pentium4 2.88 GHz, with 
256 Mb of memory. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3  Clustering and selection parameters  
As described above, the sampling algorithm has two parameters 
to be defined as inputs: the cluster number k of each class, and the 
number of samples to be extracted S. Different possible values 
were tested during the experiments to find a good compromise 
between the size of the resulting dataset and its coverage of the 
input classes’ space.  The Table.3 list the final chosen parameters 
for each class.  The class U2R was totally selected, because it 
present a very small portion of the initial dataset (0.02% only).  
 
 
 
 
 
 
 
 
 
 
 
 
The selected parameters were determined heuristically. For the 
intrusion classes, we have chosen the number of cluster according 
the number of attack types included in each class. We have tried 
also to choose an equivalent distribution of the total number of 
selected samples over the different classes to avoid that one class 
dominate the learning process.  
 
 
 
 

Table 2: Set of parameters used to train the proposed 
neural networks 

Parameter Name 
Network type Feed-forward backpropagation 
Number of inputs 41 
Number of outputs 1 or 5 
Hidden layers 3 
Hidden layers size 15 or 30 
Input and output 
ranges  

[0,1] 

Training function  TRAINGDX (training 
function that updates weight 
and bias values according to 
gradient descent momentum 
and adaptive learning rate) 

Adaptation learning 
function  

LEARNGDM (the gradient 
descent with momentum 
weight/bias  learning function) 

Performances function  MSEREG 
Transfer function  TANGSIG 
Training epochs   1000 

Class Initial 
class 
size 

Numbe
r of 

clusters 
k 

Total 
selected 
samples 

S 

Classe 
percentage 

Normal 11673 8 258 34.95 % 
Dos 7829 7 195 26.42 % 
Prob 41077 5 121 16.39 % 
R2L 1119 6 112 15.17 % 
Table 3. The selected clustering parameters used with 

the select samples from the initial dataset 



 

5  Results and comparison  
In the following, we present the different obtained results for 
the implemented approaches. The performances of each 
method are measured according to the detection rate and 
false positive rate calculated using the following 
expressions:   
 
 
 
 
 
 
 
 
The classification rate computed for the first approach was 
calculated for each class using the following formula:  
 
 
 
5.1  Result of the standard NN-classification 
method: multi-classification approach 
 As mentioned in the section 2.1, the proposed presented 
neural network architecture is trained using the dataset 
presented in the Table.1. When learning is achieved, the 
resulting neural network is benchmarked using the 
’Corrected (Test)’ containing 14 additional  (unseen) attacks, 
and used by almost all the classification systems developed 
for the KDD99 dataset. 
The Table.4 illustrate the obtained classification matrix. 
Figure.5 show the training error evolution during the 
learning epochs. Obtained performances are summarized in 
the Table.5. We can see clearly from the comparative table 
(Table.6) that the classification results are relatively poor 
with respect to the other mentioned approaches that gives 
better performances with less computation and time 
requirements.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Result of the standard NN-classification method: 2-
category classification approach  
When we consider all the attacks as one category, the intrusion 
detection problem can be handled with the network proposed 
above (in the section 2.1) with one output handling the normal 
and intrusive classes. The learning is sill very slow and 

    
Figure 5: Training error evolution during the learning process  

Parameter Value 

Detection rate 91.90 % 
False alarm rate 3.36 % 
Execution run time 29 hour 51 minute   
Classification rate  91 % 
 Table 5: Performances results for the multi-classification 

approach 

sconnection normal ofNumber  Total
Positives FalseFP  

    Rate Positive False
Attaks ofNumber  Total

number negatives False-1DR  

       rateDetection 

=

= (9) 

(10) CR = 
Number of samples classified correctly 

 Number of samples used for training  
* 100 

Table 4: Classification matrix obtained using the standard 
learning schema 

 Normal   Prob   Dos      U2R     R2L % 
Normal 
Probe 
Dos 
U2R 
R2L 

58557      1348    467        14        207 
235          3651    127        56        97  
9387        938      220662  55        8008  
36            9          7            6          12    
10613     3956     8            159      1611 

96.64 % 
87.65 % 
95.00 % 
08.52 % 
0.9.85 % 

% 
Correct 

74.28       36.87     99.72    2.06   6.21 
   %           %          %        %       %   

 

Dos Prob Classification method 
DR FP DR FP 

KDD cup Winner [5] 0.971 0.003 0.833 0.006 
SOM map [6] 0.951 - 0.643 - 
Linear GP [7] 0.967 - 0.857 - 
Multi-classifier NNet 0.950 0.001 0.876 0.020 
Gaussian classifier [8] 0.824 0.009 0.902 0.113 
K-means  clustering  [8] 0.973 0.004 0.876 0.026 
Nearest cluster algo. [8] 0.971 0.003 0.888 0.005 
Radial basis [8] 0.730 0.002 0.932 0.188 
C4.5 0.970 0.003 0.808 0.007 

R2L U2R Classification method 
DR FP DR FP 

KDD cup Winner [5] 0.084 5E-5 0.123 3E-5 
SOM map [6] 0.113 - 0.229 - 
Linear GP [7] 0.093 - 0.013 - 
Multi-classifier NNet 0.085 0.026 0.098 9E-4 
Gaussian classifier [8] 0.096 0.001 0.228 0.005 
K-means  clustering  [8] 0.064 0.001 0.298 0.004 
Nearest cluster algo. [8] 0.034 1E-4 0.022 6E-6 
Radial  basis  [8] 0.059 0.003 0.061 4E-4 
C4.5 decision tree  [8] 0.046 5E-5 0.018 2E-5 

Table 6: A comparative summary of the detection 
rates for each attack class 



convergence is difficult, but the detection rate is 
significantly enhanced compared to the multi-category 
learning approach. The Table.7 summarizes the obtained 
performances results.  
 
 
 
 
 
 
 
 
 
5.3  Result of the proposed classification method  
Using the output set of samples obtained form the clustering 
phase, we construct a new training set composed by the 
normal samples, and the grouped attacks samples labelled as 
intrusive. The resulting set is presented to the neural network 
described above (section 2.2). The Table.8 summarizes the 
obtained performances results. Table.9 give the detailed 
description of the detection rate for each attack class from 
the used dataset. Figure.6 show the ROC curve [9] of   the 
detection rate according to different vale of detection 
threshold δ. This parameter is used to control the output of 
the network, and determine from witch value we consider it 
as intrusion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The obtained results demonstrate that we can achieve 
relatively the same detection performances with very less 
computation resources and time. The Table.10 compare the 
obtained performance with the full learning method and the 
clustering-based proposed one. It is clear that our goal to 
reduce the computation requirement is achieved.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6  Conclusion and Future Work 
In this work, we study the possible use of the neural networks 
learning capabilities to classify and detect network intrusions 
from a collected dataset of network traffic trace. A multi-layered 
neural network was used with a backpropagation feed-forward 
learning algorithm. The intrusion detection problem is considered 
as a pattern recognition one, the neural network must learn to 
discriminate between the attack and the normal patterns. The 
experiments show that the neural networks are more suitable for 
2-category classification problem, the discrimination between 
attacks classes remain a hard task. Since the high computation 
intensity and the long training cycles are the main obstacle to any 
neural networks IDS, we propose a new learning schema to 
reduce the amount of used samples using a k-means clustering 
algorithm. The input data are automatically clustered to a fixed 
number of clusters and the new samples set is constructed with 
the centroids of the obtained clusters and their relative 
boundaries, this will permit to give a maximum coverage of the 
initial space region occupied by the class data. The technique is 
independent of the dataset and structures employed, and can be 
used with any real values training dataset. 
The proposed system is shown to be capable of learning attack 
and normal behaviour from the training data and make accurate 
predictions on the test data, in very less runtime, and with 
reasonable computation requirements. According to the obtained 

Figure 6:  ROC curve for different value of the δ 
threshold parameter 

Parameter Value 
Detection rate 92 % 
False alarm rate 6.21 % 
Execution run time 28m 21s 
 Table 8: Performances results for the k-means based NNet 

approach 

 Samples Attacks detected 
Normal 60593 6.21 % (False Alarm)

Dos 229853 97.23 % 
Pbr 4166 96.63 % 
R2L 16347 30.97 % 
U2R 70 87.71 % 

Table 9: Detailed detection rate for the learned classes

 Standard NNet 
detection  

K-means learning 
based detection 

Detection rate 93.02 % 92 % 
False alarm rate 1.5 % 6.21 % 
Execution run time 22 h 8 m 28m 21 s 
Training samples 24788 sample 738 sample 

 Table 10: Comparison of the obtained performances between 
the proposed methods 

Parameter Value 
Detection rate 93.02 % 

False alarm rate 1.5 % 

Execution run time 22 hour 38 minute  

 Table 7: Performances results for the NNet 2-category 
approach 



results, it can be asserted that substantial improvements of 
the NN-IDS performance are feasible, even if other 
classification methods can perform better.   
In terms of future work, more work must be performed to 
find an optimal way to determine the number of used 
clusters and selected samples of each class. This work use 
only heuristics and trays to determine these parameters. A 
statistical sturdy of the information distribution of the 
information in each class seem to be a good appropriate 
approach.  
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