
Neural networks learning improvement using the K-means clustering algorithm to
detect network intrusions

K. M. Faraoun1, A. Boukelif2

Département d’informatique, Djillali Liabès University.
1 Evolutionary Engineering and Distributed Information

Systems Laboratory, EEDIS
Sidi Bel Abbès - Algeria

Kamel_mh@yahoo.fr
Département d’électronique, Djillali Liabès University.

. 2Communication Networks ,Architectures and Multimedia laboratory
University of S.B.A. Algeria

aboukelif@yahoo.fr

Abstract. In the present work, we propose a new technique to enhance the learning capabilities and reduce the
computation intensity of a competitive learning multi-layered neural network using the K-means clustering
algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism.
The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the
neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the
proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the
KDD99 dataset compared to a standard learning schema that use the full dataset.

Keywords : Neural networks, Intrusion detection, learning enhancement, K-means clustering

(Received December 29, 2005 / Accepted April 17, 2006)

1 Introduction

Intrusion detection is a critical process in network security.
Traditional methods of network intrusion detection are based
on the saved patterns of known attacks. They detect
intrusion by comparing the network connection features to
the attack patterns that are provided by human experts. The
main drawback of the traditional methods is that they cannot
detect unknown intrusions. Even if a new pattern of the
attacks were discovered, this new pattern would have to be
manually updated into the system. On the other hand, as the
speed and complexity of networks develop rapidly,
especially when these networks are open to the public Web,
the number and types of the intrusions increase dramatically.
Hence, with the changing technology and the exponential
growth of Internet traffic, it is becoming difficult for any
existing intrusion detection system to offer a reliable service.
From earlier research, we have found that there exists a

behavioural pattern in the attacks that can be learned. That is why
an artificial neural network is so successful in detecting network
intrusions; it is also capable of identifying new attacks to some
degree of resemblance to the learned ones. The neural networks
are widely considered as an efficient approach to adaptively
classify patterns, but their high computation intensity and the long
training cycles greatly hinder their applications, especially for the
intrusion detection problem, where the amount of treated data is
very important.
Neural networks have been identified since the beginning as a
very promising technique of addressing the intrusion detection
problem. Many researches have been performed to this end, and
the results varied from inconclusive to extremely promising. The
primary premise of neural networks that initially made it
attractive was its generalization property, which makes it suitable
to detect day-0 attacks. In addition neural networks also posses
the ability to classify patterns, and this property can be used in
other aspects of intrusion detection systems such as attack

classification, and alert validation. In this work, an attempt is
made to improve the learning capabilities of a multi-layered
neural network and reduce the amount of time and resource
required by the learning process by sampling the input
dataset to be learnt using the K-means algorithm. This paper
is organized as follow: section 1 gives some theoretic
background about the use of neural networks for intrusion
detection and the k-means clustering technique, then
describe the proposed technique of samples reduction. The
section 2 presents the architecture of the used neural
networks with the different used parameters. Section 3
summarizes the obtained results with comparison and
discussions. The paper is finally concluded with the most
essential points and possible future works.

2 Theory

2.1 Neural network models for IDS
A neural network contains no domain knowledge in the
beginning, but it can be trained to make decisions by
mapping exemplar pairs of input data into exemplar output
vectors, and adjusting its weights so that it maps each input
exemplar vector into the corresponding output exemplar
vector approximately [1]. A knowledge base pertaining to
the internal representations (i.e. the weight values) is
automatically constructed from the data presented to train
the network. Well-trained neural networks represent a
knowledge base in which knowledge is distributed in the
form of weighted interconnections where a learning
algorithm is used to modify the knowledge base from a set
of given representative cases. Neural networks might be
better suited for unstructured problems pertaining to
complex relationships among variables rather than problem
domains requiring value-based human reasoning through
complex issues. Any functional form relating the
independent variables (i.e. input variables) to the dependent
variables (i.e. output variables) need not be imposed in the
neural network model. Neural networks are thought to better
capture the complex pattern of relationships among variables
than statistical models because of their capability to capture
non-linear relationships in data.
The rules with logical conditions need not be built by
developers as neural networks investigate the empirical
distribution among the variables and determine the weight
values of a trained network. A neural network is an
appropriate method when it is difficult to define the rules
clearly as is the case in the misuse detection or anomaly
detection.

In order to measure the performance of an intrusion detection
system, two types of rates are identified, false positive rate and
true positive rate (detection rate) according to the threshold value
of the neural network. The system reaches its best performance
for height value of detection rate and low value of false positive
rate. A good detection system must establish a compromise
between the two situations.
A generic form of a neural network intrusion detector is presented
in the Figure.1. The system use the input labelled data (normal
and attack samples) to train a neural network model. The resulting
model is then applied to the new samples of the testing data to
determine the corresponding class of each one, and so to detect
the existing attacks. Using the label information of the testing
data, the system can compute the detection performances
measures given by the false alarms rate, and the detection rate. A
classification rate can also be computed if the system is deigned
to perform attacks multi-classification

2.2 Data Clustering and k-means algorithm
2.2.1 Data clustering
Clustering of data is a method by which large sets of data are
grouped into clusters of smaller sets of similar data. A clustering
algorithm attempts to find natural groups of components (or data)
based on some similarities. The clustering algorithm also finds the
centroid of a group of data sets. To determine cluster
membership, most algorithms evaluate the distance between a
point and the cluster centroids. The output from a clustering
algorithm is basically a statistical description of the cluster
centroids with the number of components in each cluster. The

Figure 1: A generic form of a NN-base intrusion detection system

Data Codification

Neural Networks
Learning

 NN
Model

Testing and validating
the performances

System performances
measurements

False positive
rate

Detection
rate

Training data

Labelled
Attack data

Normal
Data

centroid of a cluster is a point whose parameter values are
the mean of the parameter values of all the points in the
clusters. The k-means algorithm used in this work is one of
the most non-hierarchical methods used for data clustering.

2.2.2 Algorithm description
The K-means [2] is one of the simplest unsupervised
learning algorithms that solve the well known clustering
problem. The procedure follows a simple and easy way to
classify a given data set through a certain number of clusters
(assume k clusters) fixed a priori. The main idea is to define
k centroids, one for each cluster. These centroids should be
placed in a cunning way because of different location causes
different result. So, the better choice is to place them as
much as possible far away from each other. The next step is
to take each point belonging to a given data set and associate
it to the nearest centroid. When no point is pending, the first
step is completed and an early grouping is done. At this
point we need to re-calculate k new centroids as barycentre
of the clusters resulting from the previous step. After we
have these k new centroids, a new binding has to be done
between the same data set points and the nearest new
centroid. A loop has been generated, as a result of this loop
we may notice that the k centroids change their location step
by step until no more changes are done. In other words
centroids do not move any more.
Finally, this algorithm aims at minimizing an objective
function, in this case a squared error function. The objective
function:

Where is a chosen distance measure between a data
point and the cluster centre cj, is an indicator of the
distance of the n data points from their respective cluster
centres. The general algorithm is composed of the following
steps:

Although it can be proved that the procedure will always
terminate, the k-means algorithm does not necessarily find the
most optimal configuration, corresponding to the global objective
function minimum. The algorithm is also significantly sensitive to
the initial randomly selected cluster centres. The k-means
algorithm can be run multiple times to reduce this effect. K-means
is a simple algorithm that has been adapted to many problem
domains. The proposed procedure is a simple version of the k-
means clustering. Unfortunately there is no general theoretical
solution to find the optimal number of clusters for any given data
set. A simple approach is to compare the results of multiple runs
with different k classes and choose the best one according to a
given criterion, but we need to be careful because increasing k
results in smaller error function values by definition, but also an
increasing risk of over-fitting.

3 The proposed method
In the present work, the role of the k-means algorithm is to reduce
the computation intensity of the neural network, by reducing the
input set of samples to be learned. This can be achieved by
clustering the input dataset using the k-means algorithm, and then
take only discriminant samples from the resulting clustering
schema to perform the learning process. By doing so, we are
trying to select a set of samples that cover at maximum the region
of each class in the N-dimensional space (N is the size of the
training vectors). The input classes are clustered separately in
such a way to produce a new dataset composed with the centroid
of each cluster, and a set of boundary samples selected according
to their distance from the centroid. Reducing the number of used
samples will enhance significantly the learning performances, and
reduce the training time and space requirement, without great loss
of the information handled by the resulting set, due to its specific
distribution. The Figure.2 illustrates an example of the
application of this selection schema to a 2-dimentional dataset.
The number of fixed clusters (the k parameter) can be varied to
specify the coverage repartition of the samples. The number of
selected samples for each class is also a parameter of the selection
algorithm. Then, for each class, we specify the number of samples
to be selected according to the class size. When the clustering is
achieved, samples are taken from the different obtained clusters
according to their relative intra-class variance and their density
(the percentage of samples belonging to the cluster). The two
measurements are combined to compute a coverage factor for
each cluster. The number of samples taken from a given cluster is
proportional to the computed coverage factor. Let

A be a given class, to witch we want to apply the proposed
approach to extract S sample. Let k be the number of cluster fixed
to be used during the k-means clustering phase. For each
generated cluster cli (i:1..k), the relative variance is computed
using the following expression:

j
ix

2
j

j
i c-x

• Place K points into the space represented by the
objects that are being clustered. These points
represent initial group centroids.

• Assign each object to the group that has the closest
centroid.

• When all objects have been assigned, recalculate the
positions of the K centroids.

• Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the objects into
groups from which the metric to be minimized can be
calculated.

∑∑
= =

−=
k

1j

n

1i

2
j

j
i cxJ (1)

When Card(X) give the cardinality of a given set X, and
dist(x,y) give the distance between the two points x and y.
Generally, the distance between two points is taken as a
common metric to assess the similarity among the
components of a samples set. The most commonly used
distance measure is the Euclidean metric which defines the
distance between two points x=(p1,….pN) and y=(q1,….,qN)
from RN as:

The density value corresponding to the same cluster cli is
computed like the following:

The coverage factor is then computed by:

We can clearly see that: 0 ≤ Vr(cli) ≤ 1 and 0 ≤ Den(cli) ≤1 for
any cluster cli. So the coverage factor Cov(cli) belong also to the
[0,1] interval. Furthermore, it is clear that:

We can so deduce easily that:

Hence, the number of samples selected from each cluster is
determined using the expression:

Using (8), the algorithm presented in the figure.3 will permit to
select S sample from a class A clustered with the k-means
algorithm into k cluster. The parameter ε serve to ensure that the
selected samples are placed in separated regions, and are not
duplicated. The choice of ε’s value depend on the size of the
cluster. We have proposed the following heuristic expression to
compute an approximate value of ε:

This expression is only an approximate heuristic. No theoretic
background was used to determine the value of ε. The
performances of the expression were evaluated experimentally.
Finally, the resulting set of samples is then used to train the neural
network.

When dealing with the intrusion detection problem, the proposed
technique is applied only to the large classes. With the KDD99
dataset used in our experiments, the technique is applied to the
class: normal, Dos, Probe and R2l. The U2R class is very small
according to the other classes mentioned, so the totality of its
samples is used during the learning process. The figure.4
illustrates the general operation schema of the proposed approach.

∑ ∑

∑

= ∈

∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

k

1j Ax
j)Card(cl

1

clx
i)Card(cl

1

i

)cdist(x,*

)cdist(x,*

)Vr(cl

j

i
i

(2)

()
2

)Den(cl)Vr(cl)Cov(cl ii
i

+
= (5)

∑ ∑
= =

==
k

1i

k

1i
ii 1)Den(cl and 1)Vr(cl

(6)

∑
=

=
k

1i
i 1)Cov(cl (7)

(8) Num_samples(cli)= Round(S*Cov(cli))

∑
=

=
N

1i

2
ii)q-p(y)dist(x, (3)

10

))cdist(x,(Max
ε

i
clx i∈

=

(9)
Figure 2: An illustrative example on the application of the

proposed method to a 2-dimentional training set.

Card(A)
)Card(cl

)Den(cl i
i = (4)

4 Datasets and experiments

Because the goal of this work is to study and enhance the
learning capabilities of the neural network techniques for
intrusions detection, the proposed method is compared to a
classic neural networks implementation that use the full set
of samples sampled from the KDD99 dataset [4], and witch
contain 24788 sample. The use of the full ‘10% KDD’
dataset containing 972780 samples is impracticable using
the neural networks on any machine configuration. Even
with the used subset, the experiments show that the learning
process is very hard and take hours and hours to converge.
The Table.1 lists the class’s distributions of our used sets.

At the first time, we tried to implement an intrusion
classification system, to classify each intrusion to one of the
learned attack classes (Dos, Prob, U2R, R2L), but the result
demonstrate that a poor classification rate is obtained in this
case. This can be interpreted by the fact that the power of the
neural networks approach reside in their ability to
discriminate the normal comportment from the intrusive one,

and the discrimination between attack classes remain a hard task
and give limited performances, especially for the classes U2R and
R2L. The presented result demonstrates that considering the
attacks classes as a single one improve significantly the detection
rate with respect to the multi-classification approach. The new
proposed technique was also implemented using the same
principle, and the attack classes were merged in a single intrusion
class, regrouping attacks categories with a relatively equivalent
distribution.

In the following, we describe the architecture of the neural
networks used in the experiments with the relevant parameters.
The next section details the obtained results for each
implementation, and compares the performances achieved by
each detection system.

 Training Set Testing Set
Normal 11673 47.09 % 60593 19.48 %

DOS 7829 31.58 % 229853 73.90 %
PBR 4107 16.56 % 4166 1.34 %
R2L 1119 4.51 % 16347 5.25 %
U2R 52 0.24 % 70 0.02 %

Table 1: Distribution of the normal and attack records
in the used training and testing sets.

Figure 4: The general operating mechanism of the
proposed method.

System performances
measurements

False positive
rate

Data Codification

Testing and validating
the performances

Detection
rate

Training data

Normal
Data

Labelled
Attack data

Samples selection

Selection Phase

K-means Clustering

 NN
Model

Learning Phase

Neural Networks
Learning

Let A be the input class
k: the number of cluster
S: the number of samples to be selected (S ≥ k)
Sam(i): the resulting selected set of samples for the cluster i
Out_sam: the output set of samples selected from the class A
Candidates: a temporary array that contain the cluster points
and their respective distance from the centroid
i,j,min,x: intermediates variables
ε: Neiberhood parameter

1-Cluster the class A using the k-means algorithm into k
 cluster.
2-For each cluster cli (i:1..k) do

 { Sam(i) :={centroid(cli)};
 j:=1;
 For each x from cli do

 { Candidates [j].point :=x;
 Candidates [j].location :=dist(x, centroid(cli)) ;

 j:=j+1 ;
 };

 Sort the array Candidates in descending order with
respect to the values of location field;

 j:=1;
 While((card(Sam(i)))<Num_samples(cli))

 and (j<card(cli)) do
 {min:=100000;

 For each x from Sam(i) do
 {if dist(Candidates[j].point,x)<min
 then min:= dist(Candidates[j].point,x) ;

 }
 if (min > ε) then

 Sam(i):=Sam(i) ∪{Candidates[j].point};
 j:=j+1;

 }
 if card(Sam(i)) < Num_samples(cli) then
 repeat {Sam(i):=Sam(i) ∪ Candidates[random].point
 }until (card(Sam(i)) = Num_samples(cli));
3-For i=1 to k do Out_sam:=Out_sam ∪ Sam(i);

Figure 3: The proposed samples selection algorithm

Attributes in the KDD datasets had all forms
:continuous, discrete, and symbolic, with significantly
varying resolution and ranges. Most pattern classification
methods are not able to process data in such a format.
Hence, pre-processing was required before pattern
classification models could be built. Pre-processing
consisted of two steps: first step involved mapping
symbolic-valued attributes to numeric-valued attributes
and second step implemented scaling. In the present work,
we have used the data codification and scaling used in [10].
All the resulting scaled fields belong to the interval [0, 1]

4.1 Network architecture used with the standard
method
As indicated above, the first experiments were performed
using a multi-layered neural network to classify the input
data samples of the training set presented in the Table.1, to
one of 5 classes :Normal, Dos, Prob ,U2r, R2l corresponding
to the normal and intrusive possible situations. The used
network is composed of 3 hidden layers containing 30, 15
and 30 neuron respectively, and has 41 input and 5 outputs.
The neural network was designed to produce a value of 1.0
in the output node corresponding to the class of the current
sample and the value of 0.0 for the other output nodes.
When testing new samples with the network, the outputs can
be any value from [0, 1] due to the approximate nature of the
learning, so we consider the nearest output value to 1.0 as
the activated output node.
In the case of two-category learning (normal and attack), the
network has only one output neuron corresponding to the
involved classes. The outputs activation is handled in the
following way: during the learning phase, the output value is
set to 0 for normal samples, and 1.0 for the attack samples.
During the test phase, the output value is rounded to the
nearest value 0 or 1.0.
We have used the feed-forward backpropagation [3] as
learning algorithm, the Table.2 show the set of parameters
used during the learning process used for all the
implementations presented in this work.

4.2 Network architecture used with the proposed
method
Since the proposed schema use a reduced set of samples, the
network architecture can be more trivial. We use only two
hidden layers with 18 and 5 neurones respectively, an input
layer of 41 neurones, and the output layer contain 1 neurone
for normal and intrusive classes. The same parameters of
learning are used as illustrated in the Table.2.
The described experiments were implemented using the
MATLAB 7 environment, on a Pentium4 2.88 GHz, with
256 Mb of memory.

4.3 Clustering and selection parameters
As described above, the sampling algorithm has two parameters
to be defined as inputs: the cluster number k of each class, and the
number of samples to be extracted S. Different possible values
were tested during the experiments to find a good compromise
between the size of the resulting dataset and its coverage of the
input classes’ space. The Table.3 list the final chosen parameters
for each class. The class U2R was totally selected, because it
present a very small portion of the initial dataset (0.02% only).

The selected parameters were determined heuristically. For the
intrusion classes, we have chosen the number of cluster according
the number of attack types included in each class. We have tried
also to choose an equivalent distribution of the total number of
selected samples over the different classes to avoid that one class
dominate the learning process.

Table 2: Set of parameters used to train the proposed
neural networks

Parameter Name
Network type Feed-forward backpropagation
Number of inputs 41
Number of outputs 1 or 5
Hidden layers 3
Hidden layers size 15 or 30
Input and output
ranges

[0,1]

Training function TRAINGDX (training
function that updates weight
and bias values according to
gradient descent momentum
and adaptive learning rate)

Adaptation learning
function

LEARNGDM (the gradient
descent with momentum
weight/bias learning function)

Performances function MSEREG
Transfer function TANGSIG
Training epochs 1000

Class Initial
class
size

Numbe
r of

clusters
k

Total
selected
samples

S

Classe
percentage

Normal 11673 8 258 34.95 %
Dos 7829 7 195 26.42 %
Prob 41077 5 121 16.39 %
R2L 1119 6 112 15.17 %
Table 3. The selected clustering parameters used with

the select samples from the initial dataset

5 Results and comparison
In the following, we present the different obtained results for
the implemented approaches. The performances of each
method are measured according to the detection rate and
false positive rate calculated using the following
expressions:

The classification rate computed for the first approach was
calculated for each class using the following formula:

5.1 Result of the standard NN-classification
method: multi-classification approach
 As mentioned in the section 2.1, the proposed presented
neural network architecture is trained using the dataset
presented in the Table.1. When learning is achieved, the
resulting neural network is benchmarked using the
’Corrected (Test)’ containing 14 additional (unseen) attacks,
and used by almost all the classification systems developed
for the KDD99 dataset.
The Table.4 illustrate the obtained classification matrix.
Figure.5 show the training error evolution during the
learning epochs. Obtained performances are summarized in
the Table.5. We can see clearly from the comparative table
(Table.6) that the classification results are relatively poor
with respect to the other mentioned approaches that gives
better performances with less computation and time
requirements.

5.2 Result of the standard NN-classification method: 2-
category classification approach
When we consider all the attacks as one category, the intrusion
detection problem can be handled with the network proposed
above (in the section 2.1) with one output handling the normal
and intrusive classes. The learning is sill very slow and

Figure 5: Training error evolution during the learning process

Parameter Value

Detection rate 91.90 %
False alarm rate 3.36 %
Execution run time 29 hour 51 minute
Classification rate 91 %
 Table 5: Performances results for the multi-classification

approach

sconnection normal ofNumber Total
Positives FalseFP

 Rate Positive False
Attaks ofNumber Total

number negatives False-1DR

 rateDetection

=

= (9)

(10) CR =
Number of samples classified correctly

 Number of samples used for training
* 100

Table 4: Classification matrix obtained using the standard
learning schema

 Normal Prob Dos U2R R2L %
Normal
Probe
Dos
U2R
R2L

58557 1348 467 14 207
235 3651 127 56 97
9387 938 220662 55 8008
36 9 7 6 12
10613 3956 8 159 1611

96.64 %
87.65 %
95.00 %
08.52 %
0.9.85 %

%
Correct

74.28 36.87 99.72 2.06 6.21
 % % % % %

Dos Prob Classification method
DR FP DR FP

KDD cup Winner [5] 0.971 0.003 0.833 0.006
SOM map [6] 0.951 - 0.643 -
Linear GP [7] 0.967 - 0.857 -
Multi-classifier NNet 0.950 0.001 0.876 0.020
Gaussian classifier [8] 0.824 0.009 0.902 0.113
K-means clustering [8] 0.973 0.004 0.876 0.026
Nearest cluster algo. [8] 0.971 0.003 0.888 0.005
Radial basis [8] 0.730 0.002 0.932 0.188
C4.5 0.970 0.003 0.808 0.007

R2L U2R Classification method
DR FP DR FP

KDD cup Winner [5] 0.084 5E-5 0.123 3E-5
SOM map [6] 0.113 - 0.229 -
Linear GP [7] 0.093 - 0.013 -
Multi-classifier NNet 0.085 0.026 0.098 9E-4
Gaussian classifier [8] 0.096 0.001 0.228 0.005
K-means clustering [8] 0.064 0.001 0.298 0.004
Nearest cluster algo. [8] 0.034 1E-4 0.022 6E-6
Radial basis [8] 0.059 0.003 0.061 4E-4
C4.5 decision tree [8] 0.046 5E-5 0.018 2E-5

Table 6: A comparative summary of the detection
rates for each attack class

convergence is difficult, but the detection rate is
significantly enhanced compared to the multi-category
learning approach. The Table.7 summarizes the obtained
performances results.

5.3 Result of the proposed classification method
Using the output set of samples obtained form the clustering
phase, we construct a new training set composed by the
normal samples, and the grouped attacks samples labelled as
intrusive. The resulting set is presented to the neural network
described above (section 2.2). The Table.8 summarizes the
obtained performances results. Table.9 give the detailed
description of the detection rate for each attack class from
the used dataset. Figure.6 show the ROC curve [9] of the
detection rate according to different vale of detection
threshold δ. This parameter is used to control the output of
the network, and determine from witch value we consider it
as intrusion.

The obtained results demonstrate that we can achieve
relatively the same detection performances with very less
computation resources and time. The Table.10 compare the
obtained performance with the full learning method and the
clustering-based proposed one. It is clear that our goal to
reduce the computation requirement is achieved.

6 Conclusion and Future Work
In this work, we study the possible use of the neural networks
learning capabilities to classify and detect network intrusions
from a collected dataset of network traffic trace. A multi-layered
neural network was used with a backpropagation feed-forward
learning algorithm. The intrusion detection problem is considered
as a pattern recognition one, the neural network must learn to
discriminate between the attack and the normal patterns. The
experiments show that the neural networks are more suitable for
2-category classification problem, the discrimination between
attacks classes remain a hard task. Since the high computation
intensity and the long training cycles are the main obstacle to any
neural networks IDS, we propose a new learning schema to
reduce the amount of used samples using a k-means clustering
algorithm. The input data are automatically clustered to a fixed
number of clusters and the new samples set is constructed with
the centroids of the obtained clusters and their relative
boundaries, this will permit to give a maximum coverage of the
initial space region occupied by the class data. The technique is
independent of the dataset and structures employed, and can be
used with any real values training dataset.
The proposed system is shown to be capable of learning attack
and normal behaviour from the training data and make accurate
predictions on the test data, in very less runtime, and with
reasonable computation requirements. According to the obtained

Figure 6: ROC curve for different value of the δ
threshold parameter

Parameter Value
Detection rate 92 %
False alarm rate 6.21 %
Execution run time 28m 21s
 Table 8: Performances results for the k-means based NNet

approach

 Samples Attacks detected
Normal 60593 6.21 % (False Alarm)

Dos 229853 97.23 %
Pbr 4166 96.63 %
R2L 16347 30.97 %
U2R 70 87.71 %

Table 9: Detailed detection rate for the learned classes

 Standard NNet
detection

K-means learning
based detection

Detection rate 93.02 % 92 %
False alarm rate 1.5 % 6.21 %
Execution run time 22 h 8 m 28m 21 s
Training samples 24788 sample 738 sample

 Table 10: Comparison of the obtained performances between
the proposed methods

Parameter Value
Detection rate 93.02 %

False alarm rate 1.5 %

Execution run time 22 hour 38 minute

 Table 7: Performances results for the NNet 2-category
approach

results, it can be asserted that substantial improvements of
the NN-IDS performance are feasible, even if other
classification methods can perform better.
In terms of future work, more work must be performed to
find an optimal way to determine the number of used
clusters and selected samples of each class. This work use
only heuristics and trays to determine these parameters. A
statistical sturdy of the information distribution of the
information in each class seem to be a good appropriate
approach.

References
[1] Hecht-Nielsen, R. (1988). Applications of counter
propagation networks. Neural Networks, 1, 131–139.
[2] J. B. MacQueen (1967): "Some Methods for
classification and Analysis of Multivariate Observations,
Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability", Berkeley, University of
California Press, 1:281-297
[3] E. M. Johansson, F. U. Dowla and D. M. Goodman,
“Backpropagation Learning for Multilayer Feed-forward
Neural Networks using the Conjugate Gradient Method'', Int.
J. Neur. Syst. 2, 291 (1992).
[4] KDD data set, 1999;
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
cited April 2003
[5] Levin I.: KDD-99 Classifier Learning Contest LLSoft’s
Results Overview. SIGKDD Explorations. ACM SIGKDD.
1(2) (2000) 67- 75
[6] Kayacik G., Zincir-Heywood N., and Heywood M. On
the Capability of an SOM based Intrusion Detection System.
In Proceedings of International Joint Conference on Neural
Networks, 2003.
[7] Dong Song, Malcolm I. Heywood, and A. Nur Zincir-
Heywood. "Training Genetic Programming on Half a
Million Patterns: An Example from Anomaly Detection",
IEEE Transactions on Evolutionary Computation, 9(3), pp
225-240, 2005
[8] Application of Machine Learning Algorithms to KDD
Intrusion Detection Dataset within Misuse Detection
Context, Maheshkumar Sabhnani, Gursel Serpen,
Proceedings of the International Conference on Machine
Learning, Models, Technologies and Applications (MLMTA
2003), Las Vegas, NV, June 2003, pages 209-215.
[9] F. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms. In
Proceedings Of 15th International Conference On Machine
Learning, pages 445-453, San Francisco, Ca, 1998. Morgan
Kaufmann.
[10] C. Elkan, “Results of the KDD’99 Classifier
Learning”, SIGKDD Explorations, ACM SIGKDD, Jan
2000.

