
Online Management of Massive Data on Tertiary Storage: Dream

or Reality?

BAOLIANG LIU1

JIANZHONG LI1

KIMUTAI KIMELI
2

1Harbin Institute of Technology

School of Computer Science and Technology

90 Xidazhi Street, Harbin City, Heilongjiang Province, P.R.China
2Moi University, Eldoret, Kenya

1(liubl,lijzh)@hit.edu.cn
2vkkimeli@hotmail.com

Abstract. Despite the decrease in disk price and the increase in disk storage capacity, the storage re-

quirements of many organizations still can’t be met economically using disk system alone. Tertiary

storage offers a lower-cost alternative. Whether it is feasible to manage massive data on tertiary storage

or not is still a question with no answer. In this paper, we take the join operation, which is one of most

common and time consuming database operations, for example to demonstrate the feasibility of online

management of massive data on tertiary storage. The experimental results show that it is more important

to choose the right operation algorithm than to choose the storage devices in the analysis and mining of

massive data. Tertiary storages can be used to manage massive data as effective as disks and they provide

a new solution to the problem of online querying and accommodating massive data.

Keywords: Massive Data Management, Tertiary Storage, Join Operation, Online.

(Received August 9, 2005 / Accepted November 29, 2005)

1 Introduction

Enormous quantities of data have been accumulated by

enterprises or scientific communities, the analysis and

mining of which will greatly help the decision making

and scientific discovery. Many enterprises keep a record

of every customer transaction they have ever performed,

typically in some DBMS (Database Management Sys-

tem). Yet, the total volume of data generated by such an

enterprise is quickly exceeds the disks storage capacity

(affordably). The data have to be migrated onto less-

costly off-line tertiary storage, such as tape library. Ter-

tiary storage has the characteristics of unlimited stor-

age capacity, low cost and space saving. Unfortunately,

DBMS can only operate on disk resident data. It can’t

manage tertiary resident data unless migrates the data

back onto disk again.

Tertiary storage has long been chosen as primary

storage devices to store observation data and deducing

data in scientific area. These data is typically organized

as files and they can’t be managed by DBMS. Whereas

many scientific applications, such as the global change

studies that the Earth Observing System (EOS) [1] and

Project Sequoia [2] will enable, require advanced data

analysis capabilities, and would like to use a DBMS

for relating and tracking the data. Unfortunately, aside

from metadata management, today’s DBMS has little

to offer these applications. They can neither handle the

huge volume of data required by the applications, nor

can they access the media on which the data is stored.

Although tertiary storage has long been important

to the commercial and scientific communities, but from

DBMS prospective, tertiary storage, such as tapes and

optical disks, are second class citizens comparing to

magnetic disks and main memory. One reason is the

low data transfer rate and the high positioning cost that

prevent the online usage of these devices. The other rea-

son is discrepancies between devices produced by dif-

ferent vendors. For example, tape libraries are sequen-

(liubl, lijzh)@hit.edu.cn
vkkimeli@hotmail.com

tial access devices with larger capacity whereas optical

disk libraries are random access devices with smaller

capacity.

Since 1990’s researchers have put much effort in

technologies to manage massive data on tertiary storage

and many encouraging results have come up. These re-

sults can be divided into the following five areas: (1)

Improving data transfer rate of tertiary storage. Not

only physical data transfer rate are improved greatly,

but also Striping [3, 4, 5, 6] technology was introduced

to organize tertiary resident data. Striping technology

distributes data onto many cartridges, such as tape and

optical disk, to improve the data retrieval rate by paral-

lel accessing these cartridges. (2) Reducing the overall

positioning time of tertiary storage by scheduling the re-

quests. Requests execution are reordered that requests

for online cartridge are served first. Other technologies

such as caching and data pre-fetching are also used. (3)

Tertiary resident data organization methods. Specially

designed data organization methods for scientific multi-

array data [7, 8] and data distribution model [9] were

presented. Data accessing efficiency can be further im-

proved by changing the dimension order of multi-array

based on dimension access frequency. (4) Database op-

erations on tertiary resident data. Many tape join op-

erations [10] and sort [11] operations for tertiary stor-

age were presented. (5) Query and query optimization

methods on tertiary resident data. Query processing

technologies such as Pre-execution and Batching [12]

were presented. Queries are first executed on disk sur-

rogate information, and then the tertiary resident data

access order which can help to schedule queries is known.

Finally the query is executed on tertiary resident data in

the batching phase. Re-ordering [13, 14] query opti-

mization method had also been presented. Re-ordering

technology first divides a query into many sub-queries.

Each sub-query only access data on one cartridge. Re-

ordering the execution of these sub-queries and serves

those sub-queries that access online cartridge data first.

It can improve the query processing efficiency by chang-

ing the order of cartridge swapping in and out.

Despite the above results the study of database tech-

nologies on managing tertiary resident data is still in its

beginning phase. One of key question is if tertiary stor-

age can be used to online manage massive data, which is

still no answer. In this paper, we take the join operation,

which is one of the most common and time consuming

database operations, for example to illustrate the fea-

sibility of online management of tertiary resident data.

Join operation is the base operator for data analysis and

mining. We believe the study of join operation can suffi-

ciently shows if online management of tertiary resident

data could be fulfilled. Previous join operation meth-

ods are all migrated from disk join operation, which are

not efficient enough. In this paper we presented a more

efficient join method that is designed for tape library.

During the join processing, join attributes are first sep-

arated and the join is performs on these join attributes,

the results is join attributes index. Then non-join at-

tributes are scanned using the join result index. The

experimental results show that it is more important to

choose the right operation algorithm than to choose the

storage devices in analysis and mining of massive data.

Tertiary storage can be used to manage massive data on-

line as effective as disks. They provide a new solution

to the problem of online querying and accommodating

massive data.

The rest of paper is organized as follows: In section

2 we briefly describe the architecture of tertiary storage.

In section 3 we present the Attribute Separating Join

method. The experimental results in section 4 demon-

strate the effectiveness of using tape library to manage

the massive data. Section 5 concludes the paper.

2 Tertiary Storage System Model

The tertiary storage system is illustrated in figure 1. Ter-

tiary storage system consists of main memory, disks and

tertiary storage such as tape library. They all connect to

system bus. The capacities of the devices increase from

top to bottom in the storage level and the access speeds

decrease in the same order. Conventionally the upper

level device is used as buffer for the lower level device.

The data exchange between disk and tape drives and the

data exchange among different tape drives are through

main memory.

Disk

Memory

Tape Tape

Primary

Storage

Secondary

Storage

Tertiary

Storage

Bus

Figure 1: Tertiary storage architecture

Tape libraries consist of three parts: tape drives, me-

chanic arms and tape shelf. Tape library has many tape

drives. There are many tapes on the shelf. The me-

chanic arm could be instructed to fetch a tape and load

it into a tape drive, and it could also unload a tape from

a drive and put it back onto some slot on the shelf. We

Table 1: Parameters of Tape Library

Parameter Experimental Devices High End Tertiary Devices

Tape Library Type Exabyte 220 IBM LTO 3584

Tape Drive Type Eliant 820 Ultrum 2

Tape Type 8mm SDLT Tape

Tape Drive Number 2 192

Tape Capacity 10G 400GB

Tape Mount Time 71s 49

Positioning speed 5MB/s unknown

Data transfer rate 3.5MB/s 70MB/s

Slot number 20 6881

Capacity 200GB 2.75PB

give some parameters of our experimental tape library

in table 1 and we list the current high end tape library

for comparison.

Table 2: Parameters Used in this Paper

Parameter Description

|R| Size of R (similar for S, M , D)

‖R‖ Number of tuples in R (similar for S)

J R Join attribute relation of R (similar for S)

A R Non join attribute relation of R (similar for S)

c(R) Reducing ratio of R (similar for S)

JRI Join result index

RC Temporary semi join results

|D| Disk cache size

|M | Memory cache size

XD Data transfer rate of disk

XT Data transfer rate of tape

3 Attribute Separation Join

Attribute Separation Join (ASJ) can be divided into

three phases, namely attribute separation phase, join

phase and materialization phase. We will take relation

R(rj , r1, · · · , rn) and S(sj , s1, · · · , sn) for example to

illustrate the procedure of ASJ . First, relation R (S)

are separated into join attribute relation J R (J S) and

non-join attribute relation A R (A S) in the attribute

separation phase. Second, join are performed on the

two join attribute relations J R and J S, the result of

which is join result index (JRI). In the materializa-

tion phase, non-join attribute relation A R and A S are

scanned using JRI to get the final join results.

ASJ algorithm is described as follows:

Algorithm: AttrSepJoin

Input: R(rj , r1, · · · , rn), S(sj, s1, · · · , sn)
Output: Join Result

(1) J R, A R = JoinAttrSep(R);

(2) J S, A S = JoinAttrSep(S);

(3) JRI = JoinPhase(J R, J S);

(4) Materialization(JRI , A R, A S);

3.1 Attributes Separation Phase

Suppose R(rj , r1, · · · , rn) and S(sj , s1, · · · , sn) are two

relations, r1, · · · , rn and s1, · · · , sn are non-join at-

tributes of R and S respectively, rj and sj are the join

attributes. In the attribute separation phase relation R
is separated into join attribute relation J R(rid, rj) and

non-join attributes relation A R(rid, r1, · · · , rn). rid is

auto generated tuple identifier. One tuple in relation R
corresponds to one tuple in J R and one tuple in A R
respectively. Relation S is processed the same with re-

lation R.

Attribute separation algorithm is described below:

Algorithm: JoinAttrSep

Input: relation T (tj, t1, · · · , tk)
Output: relation J T (tid, tj) and A T (tid, t1, · · · , tk)
(1) tid = 0;

(2) FOR each tuple in T DO

(3) Do selection and projection;

(4) tid++;

(5) Write tuple (tid, tj) into J T ;

(6) Write tuple (tid, t1, · · · , tk) into A T ;

(7) END FOR

Tertiary storage systems have many drives and data

can be accessed in parallel. The join attributes separa-

tion phase requires at least three drives, one for read-

ing relation T and the other two for write join attribute

relation J T and non-join attribute relation A T . Ter-

tiary storage typically has many dives, and drive can be

plugged into the system if needed, so ASJ algorithm

has good adaptively.

3.2 Join Phase

There are two steps in the join phase: in step I rela-

tion J R are divided into many smaller divisions and

each division can be loaded into memory. In order to

reduce the positioning time of drive, each division must

continuously stored on tapes, which requires scanning

relation J R at least times and in each scan at most divi-

sions can be produced. In step II we read J S cyclically

into disk cache and at the same time divide J S with the

same hash function with J R. When disk get full, we

join the part of relation in disk with relation J R. This

process is ended until J S is finished processing. The

results of join phase is the tuple identifier pair (rid, sid).
It can be used as index to scan the two non-join attribute

relation, so we call it Join Result Index.

We describe the join algorithm below:

Algorithm: JoinPhase

Input: J R and J S
Output: JRI
(1) FOR i=1 TO DO

(2) Generate divisions of J R;

(3) Write these divisions into tapes.

(4) END FOR

(5) WHILE J S is not end DO (exeute (6), (7) (10) in

parallel)

(6) Read J Si+1 into disk and hash them with the

same hash functions

(7) Join J Si (read in the previous cycle) with J R
and write join result into memory cache

(8) IF memory cache full THEN

(9) Sort JRI based on sid and write into disk

(10) END IF

(11) END WHILE

3.3 Materialization Phase

In materialization phase the two non-join attribute rela-

tions A R and A S are merged with the help of JRI .

The basic idea is to sort JRI based on sid and then

merge sid with A S which is naturally sorted on sid.

Then we substitute sid of A S with rid of JRI . The

merge result is temp relation RC(rid, s1, · · · , sm). RC
is then sorted on rid. Finally we merge RC with A R
and get the final join results.

We describe the materialization phase below:

Algorithm: Materialization

Input: JRI , A R, A S
Output: Final join results

(1) Multi-way sort JRI on sid;

(2) WHILE (not end JRI) DO

(3) IF disk cache is full THEN

(4) sort RC based on rid

(5) Merge RC and A R, then output the results.

(6) END IF

(7) Substitute rid with sid in A S;

(8) Write merging result into memory cache;

(9) IF memory cache is full THEN

(10) Sort tuples in memory cache based on rid and

write into RC
(11) END IF

(12) END WHILE

4 Experimental Results

We implemented ASJ algorithm on a 550MHz Pen-

tium system running Linux 7.2. The computer has 128MB

of main memory, 20GB of disk space and an INITIO

SCSI-2 bus, to which a Exabyte 220L tape library con-

nected. The tape library has two Eliant 820 drives. The

cartridge (tape) capacity is 10GB without compression.

There are 20 tapes on the shelf. The parameters of Ex-

abyte 220L are listed in table 2.

We first compared ASJ algorithm with other tape

join algorithm. It is indicated in [11] that CTT − GH
is the candidates for massive data management in effi-

ciency and scalability, so we only compare ASJ with

CTT-GH. We briefly describe the working procedure of

CTT-GH below:

(1) In Step I, relation R is scanned ⌈|R|/|D|⌉ times.

In each scan, a fraction of R partitions are generated, in

full, on the disk. The number of partitions completed in

each scan is |D|/|M |, the product of the total number

of partitions |R|/|M | and the fraction of R that fits on

disk |D|/|R|. Once all scans have been performed, all

partitions of R are stored contiguously on tapes. In the

case of |R| < |D|, which reduced to CDT-GH, we only

scan relation R once and hash it on the disk.

(2) Step II is iterated until S is exhausted. In each

iteration i, |Si| = |D| (|Si| = |D| − |R| if |R| < |D|)
blocks of S data are read from tape, hashed, and written

into partitions which are on the disk. A join process

then reads each partition of R into memory and joins it

with the corresponding partition of S. Note that a hash

process can simultaneously read more data from S and

produce the hash partitions needed in the next iteration.

There are three factors that affect the performance

of ASJ , namely dataset size, reducing ratio of each re-

lation and the cardinality of JRI . Reducing ratio influ-

ences the reduction of redundant I/O and relation scan

times. The cardinality of JRI affects the size of RC,

and hence affects the cost of materialization phase. We

compared ASJ with CTT-GH on these three factors.

To further demonstrate the effectiveness of manag-

ing massive data with tertiary storage, we implemented

three disk join algorithms, namely nested-loop join, hash

based join and sort merge join, and compared ASJ
with these three algorithms. The results show that it is

more import to choose the right join algorithm than to

choose the storage device in massive data management,

which in turn indicates the effectiveness and feasibility

of managing massive data with tertiary storage.

In all the experiments we set |S| = 2|R|, ‖S‖ =
2‖R‖ and reducing ratio c(R) = c(S). In order to test

the influence of the cardinality of JRI , we make the

join attribute of R distinct in the data we generated, the

join attribute of S references join attribute of R, but the

join attributes of S is generated randomly. So the cardi-

nality of JRI equals ‖S‖ without other filters. In order

to vary the cardinality of JRI , we use a random switch-

variable to multiply the tuple just generated. When the

switch-variable equals 1, we output the join results and

when the switch-variable equals 0, we discard the join

results. Thus we can vary the cardinality of JRI by

changing the possibility that switch-variable equals 1.

In massive data environment, the capacity of memory

and disk cache is much smaller than the data amount.

It requires high end devices to accommodate massive

data. In this paper we take a method of reducing the size

of memory, disk and dataset proportionally to compare

the performance of ASJ and CTT-GH in the same en-

vironments. We set the size of main memory to 40MB

and disk size to 650MB respectively in all the experi-

ments.

4.1 Performance Related to Dataset Size

In the first experiment, we compared the performance

of ASJ and CTT-GH with varying dataset size. The

dataset size varied from 3GB to 30GB (relation R size

varied from 1GB to 10GB). We set c(R) = c(S) = 10
and ‖JRI‖ = 0.1‖S‖. When R size was smaller than

3G bytes, both J R and J S could fit in disk at the same

time. Neither J R nor J S could fit in disk when R
size was larger than 6GB. We listed the execution time

of both algorithms in figure 2. Obviously the perfor-

mance of ASJ is much better than that of CTT-GH even

both J R and J S can’t fit on disk. One reason is that

there is no redundant I/O in ASJ . Relations are often

tuple wise organized in external memories (disks, ter-

tiary storage) and the data on these external memories

are read in block. Not all the attribute of a relation are

join attribute, but they are loaded into memory together

with join attributes. They are redundant I/O of the join

operation, which should be avoid. The other reason is

that the relation scan times of partitioning relation R is

greatly reduced. Tape libraries are sequential access de-

vices, in order to avoid the high positioning cost when

read the corresponding partitions of both relations, the

data of each partition need to be stored continuously on

tape. In order to generate these physically continuous

partition, we need to scan the relation for many times.

We can notice that ASJ algorithm scales well with the

increase of dataset size.

CTT-GH

ASJ

2 4 6 8 10

0

20

40

60

80

Size of R (GBytes)

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 2: The influence of dataset size to performance of algorithms

ASJ

2 4 6 8 10

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Size of R (GBytes)

R
a
ti
o

o
f
J
o
in

P
h
a
se

Figure 3: Ratio of join phase to the total execution time

From figure 3, we can see that the execution time of

join phase only take a minor part of the total execution

time, notice that there is no redundant I/O in the join

phase. We can draw a conclusion from figure 2 and 3

that ASJ can effectively avoid redundant I/O problem

and greatly reduce the relation scan times and hence

improve the effectiveness and scalability of tape join

operation.

4.2 Performance Related to Reducing Ratio

In the second experiment we use 30GB (R size is 10GB)

dataset to test the influence of reducing ratio to join per-

formance. We set ‖JRI‖ = 0.1‖S‖. The reducing ra-

tio was varied from 10 to 100 by increasing the tuple

size of R and S while decreasing the number of tuples

accordingly in order to keep the size of the dataset. We

fixed the size of the join attribute because generally the

size of join attribute is not large. Since the CPU cost

was negligible compared to I/O cost, the reduction of

response time couldn’t be caused by the reduction of the

number of tuples. The experimental result was listed in

figure 4. As we had imagined, the total execution time

of ASJ decreased as we increased the reducing ratio.

The execution time of join phase with larger reducing

ratio took less proportion in the total execution time

than that with smaller one. There were more chances

that the join attribute relations could fit on disk with

larger reducing ratio. We can see clearly from figure 4

that when we increased the reducing ratio, the execu-

tion time would converge to a constant value which is

the least I/O cost of join operation.

ASJ

20 40 60 80 100

5.6

5.8

6

6.2

6.4

6.6

Reducing Ratio

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 4: The influence of reducing ratio to the performance of ASJ

4.3 Performance Related to the Cardinality of JRI

In the third experiment we used 30G dataset and set

c(R) = c(S) = 10. The experimental result was shown

in figure 5. It is obvious that the cardinality of JRI
had much influence to the response time. The larger

the JRI cardinality, the larger the RC is. And there is

less chance to put RC in disks, we have to multi-pass

scan A R when merging with A R. In the experiments,

the size of relation S is 20G and the size of JRI can’t

fit into disk even when ‖JRI‖ equals 0.1‖S‖, so A R
needs to be multi-pass scanned. But we can see that

the performance of ASJ is still better than that of CTT-

GH even we multi-pass scan A R. We can see from the

figure that the execution time of ASJ is only half of

that of CTT-GH even when ‖JRI‖ equals ‖S‖.

4.4 Comparison of ASJ with three disk join algo-

rithms

We implemented three disk join algorithms, namely nested-

loop join, hash based join and sort merge join, and we

compared these three join algorithms with ASJ to suffi-

ciently demonstrate the effectiveness of managing mas-

CTT-GH

ASJ

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

JRI Cardinality (×‖S‖)

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 5: The influence of cadinality of JRI to the performance of

ASJ

sive data using tertiary storage. In the three disk algo-

rithms, we set disk cache large enough and we set disk

cache is set to 1GB for ASJ . We varied the dataset

size from 3GB to 30GB (R size is varied from 1GB

to 10GB), we set c(R) = c(S) = 10 and ‖JRI‖ =
0.1‖S‖. The experimental result was depicted in fig-

ure 6. In all the four join algorithms, the performance

of nested loop join is worst, the performance of hash

based join and sort merge join is similar and hash based

join is slightly better than sort merge join. When dataset

size exceeds 18GB (|R| > 6GB), ASJ outperforms

the other three join algorithms. In order to show the rea-

son, we compared the relation scan times of all the algo-

rithms and drew the results in figure 7. It is obvious that

the relation scan times of nested loop join are far more

than that of the other three algorithms. Hash based join

and sort merge join both requires scanning relations for

many times although their relation scan times are simi-

lar. Relation scan times of ASJ are the least. ASJ can

greatly reduce the relation scan times through join at-

tribute separation, and hence reduce the I/O cost. This

experiment also indicates that in join operation of mas-

sive data, it is more important to choose the right algo-

rithm than to choose the storage devices. Tape libraries

have larger storage capacity and lower storage price. It

is an effective way to solve the problem of massive data

management by choosing tertiary storage with the help

of right and efficient algorithms.

4.5 Performance Related to Tape Transfer Rate

The data transfer rates of various tape libraries produced

by different vendors differ much. In all the experiments

above we use devices with very low data transfer rate,

which make the experimental results be propitious to

disk join algorithms. In the simulation experiment be-

low, we test the influence of date transfer rate to the

ASJ

Nested Loop

Sort Merge Hash

2 4 6 8 10

0

20

40

60

Size of R (GBytes)

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 6: Performance comparison of ASJ and three disk join algo-

rithms

ASJ

Nested Loop

Sort Merge

Hash

2 4 6 8 10

0

20

40

60

80

Size of R (GBytes)

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 7: The comparison between dataset size and dataset scan

times

performance of ASJ . The dataset size is 30GB (|R| =
10GB), c(R) = c(S) = 10, ‖JRI‖ = 0.1‖S‖. We

use disk to simulate tape library and we change simu-

lated tape data transfer rate by inserting redundant data.

The experimental results are depicted in figure 8. We

can see from the figure that the data transfer rate of

tape drive have much influence to the performance of

ASJ . When tape data transfer rate is one tenth of that

of disk, the performance of ASJ is worse than that of

disk algorithms. As we increase the tape transfer rate

to three tenth of that of disk, the performance of ASJ
exceeds that of disk algorithms. The data transfer rate

of current high end tape library is about 70MB/s while

the disk data transfer rate of personal computer is about

10MB/s. The performance of ASJ would be much bet-

ter than that of disk algorithms if ASJ is running on

high end tertiary storage, which further demonstrates

the effectiveness and feasibility of using tertiary stor-

age to manage massive data.

ASJ

Nested Loop

Sort Merge

Hash

0.2 0.4 0.6 0.8 1

0

20

40

60

Ratio of XT to XD

R
es

p
o
n
se

T
im

e
(h

o
u
rs

)

Figure 8: The influence of tape data transfer rate to the performance

of ASJ

5 Conclusions

The question of whether tertiary storage can be used to

online manage massive data is still no answer. In this

paper, we take join operation, which is the most com-

mon and time consuming database operation, for ex-

ample to demonstrate the feasibility of online manage-

ment of tertiary resident data. Join is the base operator

for data analysis and mining. We believe the study of

join operation can sufficiently shows if online manage-

ment of tertiary resident data could be fulfilled. The

experimental results show that in analysis and mining

of massive data, it is more important to choose the right

operation algorithm than to choose the storage devices.

Tertiary storage can be used to manage massive data on-

line as effective as disks, which provide a new way to

solve the key problem of online querying and accom-

modating massive data.

References

[1] Frew J, Dozier J. Data Management for Earth Sys-

tem Science. ACM SIGMOD Record, 26(1), p.

27-31, 1997.

[2] Stonebraker M, Frew J, Gardels K, Meredith J.

The Sequoia 2000 Storage Benchmark. Procced-

ings of ACM SIGMOD, p. 2-11, 1993.

[3] Gibson A. Redundant Disk Arrays: Reli-

able,Paraleel Secondary Storage. Ph.d thesis, U.C.

Berkeley, 1991.

[4] Drapeau, Katz H. Striped Tape Arrays. Proceed-

ings of 12th IEEE Mass Storage systems Sympo-

sium, p.257-265, 1993.

[5] Drapeau L, Katz R. Striping in Large Tape Li-

braries. Proceedings of Supercomputing, pp 378-

387, 1993.

[6] Golubchik L, Muntz R. Analysis of striping tech-

niques in robotic storage libraries. Proceedings of

the 14th IEEE Symposium on Mass Storage Sys-

tems, p.225-38, 1995.

[7] Chen L, Drach R, Keating M, Louise S, Rotem D,

Shoshani A. Efficient organization and access of

multi-dimensional datasets on tertiary storage sys-

tems. Information Systems, v.20, p.155-83, 1995.

[8] Sarawagi S. Stonebraker M: Efficient Organiza-

tion of Large Multidimensional Arrays. Proceed-

ings of International Conference on Data Engi-

neering, pp 328-336, 1994.

[9] Christodoulakis S, Triantafillou P, Zioga F. Prin-

ciples of optimally placing data in tertiary storage

libraries. Proceedings of International Conference

on Very Large Data Bases, p. 236-245, 1997.

[10] Myllymaki J, Livny M. Disk-Tape Joins: Syn-

chronizing Disk and Tape Access. Proceedings of

SIGMETRICS, p.279-290, 1995.

[11] Myllymaki J, Livny M. Relational Joins for

Data on Tertiary Storage. Proceedings of Inter-

national Conference on Data Engineering, p.159-

168, 1997.

[12] Yu J, DeWitt D. Query Pre-Execution and Batch-

ing in Paradise: A Two-Pronged Approach to the

Efficient Processing of Queries on Tape-Resident

Raster Images. SSDBM, p.64-78, 1997.

[13] Sarawagi S, Stonebraker M. Reordering Query

Execution in Tertiary Memory Databases. Pro-

ceedings of 22 VLDB, p.156-167, 1996.

[14] Sarawagi S. Execution Reordering for Tertiary

Memory Access. Data Engineering Bulletin, v.20,

p.46-54, 1997.

	Introduction
	Tertiary Storage System Model
	Attribute Separation Join
	Attributes Separation Phase
	Join Phase
	Materialization Phase

	Experimental Results
	Performance Related to Dataset Size
	Performance Related to Reducing Ratio
	Performance Related to the Cardinality of JRI
	Comparison of ASJ with three disk join algorithms
	Performance Related to Tape Transfer Rate

	Conclusions

