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Abstract. Software-Defined Networking (SDN) is a flexible architecture approach to networking, of-
fering versatility in the degree of control operators may choose to have of their networks, be it with
custom-made off the shelf components or customized made-to-order network elements [47]. As the de-
mand for cloud based applications are on the rise, SDNs also need to undergo modifications to suit the
hosted application needs on a dynamic time frame. A key component of managing these changes is
effective Traffic Engineering (TE) of the flows typically experienced in normal operational scope of the
data center network (DCN). Primary interest of an operator would be to ensure SLA adherence of all
applications hosted in the network. This would include effective classification of application flows and
their appropriate routing, so that there is no loss of data and connectivity. In this paper, a survey of vari-
ous mechanisms for traffic flow classification has been summarized with an aim to provide an overview
for the beginners in SDN TE research area. The approaches are also evaluated against multi-dimensional
parameters to aid operators in opting for the best possible TE approach according to their network needs.
Recent advances in switch software and hardware development have also been considered to provide a
holistic overview to researchers in this field.
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1 Introduction

SDN paradigm has been an evolutionary force in serv-
ing the demand for massive-scale datacenters. It is
meeting the need for more efficient and intelligent net-
work management systems. SDN decouples the packet
forwarding mechanism (data plane) from the controller
decisions (control plane) [18]. With this decoupling,
SDN provides an open programmable interface be-
tween the control plane and the data plane, allowing ap-
plication development for dynamically controlling and
managing connectivity amongst network elements.

Lan et.al. [24] provides the taxonomy and

nomenclature for analysing traffic patterns in dat-
acenters. Traffic flows are classified based on
their throughput size (Elephant or Mice), dura-
tion (Tortoise or Dragonfly), rate (Cheetah or
Snail) and burstiness (Porcupines or Stingrays) ro-
driguez2012quality,rodriguez2016video. For the pur-
pose of this survey, only throughput size classification
of flows is considered. Certain transactions to applica-
tions (e.g., web search, DB commits) are made from
multiple endpoints that require timely delivery to sat-
isfy the application SLA requirements. These gener-
ate several small traffic flows (Mice). Mice flows are
usually associated with delay-sensitive and bursty ap-
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plications, such as Voice over IP. On the other hand,
bulk transfers (e.g. MapReduce, FTP, 4K video stream-
ing) utilize high and sustained network bandwidth (Ele-
phants) while require minimal packet delivery delays
[20, 44, 45, 4, 43, 42, 2, 3, 36, 41, 30]. Past studies
on live datacenter traffic patterns [23, 8] indicate that
the number of elephant flows is less than 10% of all
flows flowing within the DCN but accounts to 80% of
the payload volume. These large flows tend to increase
load on the switch buffers, thereby inducing latency to
mice flows that share the same buffers [23].On the other
hand, due to their relatively short size payloads, Mice
flows are short-lived, but they represent 90% of the en-
tire flows [23, 8]. These flows usually trigger the con-
tinuous updating of switching tables, which may lead
to increased overheads. This ecosystem of mice and
elephant traffic flow patterns presents a DCN TE chal-
lenge. Every network switch has limited storage space
for storing forwarding rules (i.e., flow entries). It is very
probable that the switch may not have enough storage
[16, 37, 22, 52, 55, 31, 40, 39, 38] to accommodate ad-
ditional rules without evicting ’stale’ entries, especially
when a burst of mice packets arrive at a switch in midst
of an ongoing elephant flow [8]. This process will lead
to additional overhead packet delays to all flows cur-
rently handled by that switch.

Several approaches deal with the optimizing of mice
and elephant flowsŕouting in SDN-based DCNs. Wang
et.al. [56] have collated an useful survey on the var-
ious Elephant Flow detection methods. However, the
survey is limited in two areas (i) not covering for re-
searches on Mice flow detection and (ii) not evaluat-
ing flows against various network parameters. This pa-
per aims to expand the survey to cover these two areas.
Researchers primarily focus on Elephant flows, and in
many cases Mice flows are not just of secondary im-
portance, but left to the default options available in the
network elements. The paper attempts to provide de-
tails on this importance, as well as provide a view of
multiple researchers who have focused on prioritized
classification both the flow types, leading to better flow
control in the DCNs. In addition, recent methodologies
and approaches are summarized. The rest of this paper
is organized as follows: Section 2 describes the back-
ground of SDN, OpenFlow Switch, flows in DCNs and
need of classification and routing. Sections 3, 4 and
5 lists various classification approach categories based
on: (i) flow-characteristics (ii) flow statistics and (iii)
Hardware-software modification. Section 6 provides
the comparison of various approaches and the various
issues of existing approaches and concludes the paper.

2 Background

In this section, terminologies relevant to DCN setup
and operations are presented. Table 1 provides a list of
abbreviations used throughout the paper. Specific dis-
cussions on SDN Architecture, the OpenFlow protocol,
methodologies of flow statistics collection and a sum-
mary of traffic flow scheduling are provided in subsec-
tions 2.1, 2.2, 2.3 and 2.4 respectively. This background
is essential for understanding the various approaches
listed in this survey.

Table 1: List of Abbreviations

Acronym Description

DCN Data Center Network
ECMP Equal Cost Multi Path
FCT Flow Control Table
ML Machine Learning
NE Network Element
SDN Software Defined Networking

2.1 SDN Architecture

SDN [18] is go-to network system paradigm for DCNs.
The network functionality is separated into the data
plane and control plane. The switches/routers that for-
ward traffic form the data plane while the software logic
that that decides how the traffic flow should be handled
through these devices forms the control plane. This seg-
regation enables a system administrator to control net-
work behaviour from a single high-level control pro-
gram. In a DCN, deployment of SDN helps manage the
variety of network problems, as well as enabling granu-
lar level control or analysis of packets that pass through
the switches. The controller in an SDN based network
manages network functions such as routing, encryp-
tion, firewall, gateways, Network Address Translation
(NAT), Deep Packet Inspection (DPI) etc.

As seen in Fig 1, the data plane traffic is lim-
ited to switches which conform to routing functionality
by referencing the routing tables. Control plane traf-
fic involves queries from switches (north bound), in-
structions and updates (south bound) between the con-
trollers and the switches take place regularly, as well as
communication between controllers (east-west bound).
OpenFlow based switches transmit the request to the
controller, and the controller receives the request and
applies the action on those packets. In Fig. 1, there
is a distinct dedicated connection between every SDN-
enabled switch and the controller. This is typical of
DCNs where the physical distance between controller
and devices is small.
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Figure 1: SDN Architecture

2.2 OpenFlow Protocol

SDN-enabled devices use OpenFlow protocol for com-
munication [49] between a switch and a controller.
OpenFlow is a communication protocol defined be-
tween an SDN controller and OpenFlow switches, al-
lowing the direct access (via user APIs) to the data
plane of network elements and the packets’ routing path
through those network elements. ONF [18] provides the
OpenFlow Switch Specification [19], based on which
a group table and one or more flow tables are defined
in an OpenFlow switch to perform packet forwarding.
With OpenFlow, flow entries can be added, modified or
deleted either reactively (i.e., as a response to incom-
ing packets) or proactively (i.e., in response to the flow
entry timeout) [19].

Fig 2 depicts the simplified OpenFlow workflow at
the switch. Packets are routed in the network as per the
rules in the respective switch flow tables. In case of an
unknown packet, it is sent to the controller for verifica-
tion. Multiple components such as match fields, prior-
ity, counters, instructions, timeouts, cookies, and flags
are employed in a flow entry during the packet match-
ing process. These fields and prioritized components
are tupled to uniquely identify each entry in a specific
flow table. This includes operations such as forward-
ing the packet to the controller, dropping the packet, or
passing it to another table [19]. Decision making rules
are applied at the controller end to determine the final
destination of the packet (Drop the packet or Forward
it)

As switches forward packets based on flow entries
in an SDN, OpenFlow uses PacketIn, FlowMod, Pack-
etOut and FlowRemoved control messages to create
modify and delete flow entries. The PacketIn message
mainly implements the function of sending the packet to
the controller. This is done usually under 2 conditions
(i) packet rules state that it must be sent to controller or

Figure 2: Simplified OpenFlow workflow

(ii) no flow entry in the tables. When the controller re-
ceives a PacketIn message, it will create a correspond-
ing flow entry for the flow which the packet belongs
to. This generated flow entry can be added to the tar-
get switch through the FlowMod message. Along with
the add functionality, FlowMod can be used to modify
or delete a flow entry. Buffered packets will usually
be processed via a Packet-out or Flow-mod message
from the controller. If the flow is not active after the
idle timeout, or the duration of flow entry exceeds hard
timeout, the switch will delete the corresponding flow
entry and send a FlowRemoved message to the con-
troller [19].

2.3 Flow statistics Collection

In order for the controller to accurately obtain the net-
work working status with minimum possible time lag,
OpenFlow provides flexible mechanisms for manage-
ment information collection. Flow statistics Collec-
tion is of two kinds (i) Active involving request and
response messages and (ii) Passive involving trigger-
ing and FlowRemoved messages [19] In active flow
statistics collection, when the controller needs to query
the flow statistics of the target flow, it sends a flow-
statistics Request message to the relevant switch. There
are two types of Requests messages (i) individual re-
quest, where the request is treated as a standalone re-
quest needing a standalone response or (ii) aggregate
request, where the request will be part of an ongoing
response aggregation and is sent after a given time inter-
val. The switch will send back a relevant flow-statistics
Response message back to the requesting Controller.

In passive flow statistics collection, there is a thresh-
old limit set by the controller on the number of flow en-
tries in a switch. When the flow-statistics reaches the
specified threshold of the corresponding flow entries,
the switch will trigger a flow-statistics triggering mes-
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sage to the controller. In addition, when the FlowRe-
moved messages are triggered by the switch, the collec-
tor gets the relevant flow-statistics information of that
entry. These help realize a low cost flow-statistics col-
lection at the controller.

2.4 Traffic Flow scheduling in SDN based DCNs

DCNs typically have deployment of a large number of
network policy rules in order to provide quality network
and infrastructure services to individual users and cloud
applications. These policies are enforced by a collec-
tion of Quality-of-Service (QoS) rule-sets such as net-
work security and traffic engineering. Depending on
the scale of the DCN, the number of rules may reach
hundreds or thousands on a busy schedule. A switch
accumulating too many routing rules will lead to scala-
bility issues as it increases the search time that it takes
to query the specific flow rule. Such accumulation in
time may lead to the dropping of time constrained mice
flows.

Thus, in distributed systems, flow scheduling ap-
proach is crucial to allocate bandwidth to appropriate
switches. Currently, most datacenters use Equal-cost
multi-path (ECMP) algorithm is a standard routing ap-
proach that takes flows along equivalent paths [64].
ECMP uses static rules by dynamically compiling and
installing paths to the elephants and routing of mice.
But if there are dynamic changes in the network state,
this approach has a few shortcomings i.e. (i) Intricacy
of repeated update of the routing rules, (ii) Redundant
path problem, (iii) Uneven flow sizes (more mice and
lesser elephants) and (iv) Large number of point-to-
point routing updates.

Although SDN-enabled DCNs can utilize network-
ing resources on-the-go, it is challenging to determine
which forwarding rules should remain in the switch
memory and which should be controller processed. The
objective here is to minimize information exchanged
between the switches and the controller [49]. The in-
crease of various machine learning techniques has moti-
vated networking researchers to apply these techniques
in networks. With the data available through analy-
sis, the controller is better enabled to automatically de-
termine which forwarding rules should ideally remain
long-term inside the switch memory. Thus, overall net-
work control overhead is reduced to a large extent irre-
spective of the DCN traffic pattern. With proactive sam-
pling, logging, and monitoring of the incoming packets
in an SDN, the controller routing logic is augmented
by various machine learning approaches which utilize
the flow-characteristics and assign a suitable route for
the flows requested by the switch, discussed in the next

section.

3 Approaches to flow-characteristics based
detection

The flows, through the flow classification, are detected
according to markings or features extracted from the
target flow. In the network, mice flows are charac-
terized by having significantly less data but are time-
sensitive (applications such as ARP, DNS etc), while
elephant flows have significantly higher data (applica-
tions involving scientific computing, MapReduce etc).
Based on such high-level differences, the flow can be
classified as elephant or mice based on the markings
extracted from the traffic flows.

3.1 Marking Identification

The key for marking identification based detection is to
determine accurate markings. If many errors exist in
the process of marking, the detection accuracy would
be adversely impacted resulting in a series of detection
errors. A very simple marker is to set the port ID (for
e.g. port 20 FTP Data transfer, port 53 DNS ICMP etc)
- i.e. classify all flows with Port 20 are elephant and all
flows with 53 are mice. However, the accuracy of this
marker is very low since most of the applications use
random and indefinite transport ports.

Based on historical behavior of applications in a
DCN, the network manager can obtain different ap-
plication sets using stochastic machine learning tech-
niques for clustering. The flows generated by the same
application set belong to the same category of flows,
which are different from other applications generat-
ing different flow kinds. Thus application sets can
be categorized as elephant flows, high-probability ele-
phant flows and low-probability elephant flows (or mice
flows). Given the scale of application variety and de-
ployments happening in a data center, it is not possible
to make relevant changes at the application side, and
hence the classification information is updated at the
controller. EffiEye [57] employs this approach, with the
controller determining the category of flows by extract-
ing statistical features from the received packets. The
drawback of this approach is that the accuracy and com-
plexity of detection is dependant entirely on the classi-
fication of applications.

3.2 Flow Classification

Compared to Marking Identification methods, Flow
classification methods have been widely studied.
Roughan et.al. [46] have presented a framework and
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some results for classifying traffic into Class of Ser-
vice based on measured traffic characteristics. Their
method is based on statistics of the traffic which result
from the way the application is used, leading to the un-
derstanding of how the application is actually used as
against the expected notions - for e.g. HTTP used for
a large amount of the streaming traffic (video confer-
ence), rather than the expected web browsing. Though
the detection accuracy is greatly improved, the classifi-
cation is not refined enough. The detecting speed is fast
but does not provide high accuracy.

To improve accuracy, many machine learning meth-
ods are employed, such as Naive Bayes, k-means, C4.5
decision tree, SVM, KNN [61] are used in traffic clas-
sification. These approaches classify by measuring the
flow features such as duration, treating it as a set of sta-
tistical values from the flow beginning to end. How-
ever, the arrival and departure of flows are very fast
in data center [8], and it is required of the controller
to spend some milliseconds to allocate resource for ev-
ery new flow. The above flow-based approaches using
ML methods get better accuracy but due of the latency
involved, they lag in detecting flows real-time. Xiao
et.al [61] proposes a real-time detection of the elephant
flows. The approach is in 2 stages - first to detected sus-
pected elephant flows based on multiple flow statistical
thresholds and second to filter genuine elephant flows
from the first stage based on C4.5 N-features decision
tree metrics with cost-sensitive parameter matrix. This
helps ensure timeliness of flow detection.

4 Approaches to Flow-statistics based detec-
tion

In the process of realization of flow-statistics based ap-
proaches, there are two factors to be considered (i.)
maintaining real-time and efficient flow data collection
and (ii.) setting appropriate threshold values in con-
formance to actual DCN environment. Cost is a key
factor in deployment of flow-statistics based approach
for flow detection in an SDN. Pre-determined thresh-
old to classify a flow as elephant or mice is employed
here. Depending upon the nature of flow data gather-
ing, the approaches are categorized into Pull and Push
approaches.

4.1 Data Pull methods

Here the controller requests for flow-statistics report
from all relevant network elements (switches or routers)
and they respond back with the corresponding informa-
tion. Two different implementations in data pull are by
Polling and Packet-based-sampling.

Polling: In this type, the collector periodically col-
lects information of each flow, such as the number of
received bytes within a given time interval, from all
the data plane elements. Hedera [5] obtains the traf-
fic change in the network through periodic of the tar-
get switch. Though higher polling frequency provides
precise statistics, this will lead to high monitoring over-
head which may impact normal flows. Also, in terms
of flow entry volume, the table size can grow large
very quickly (up to 60K per minute) which is not sup-
ported by a practical OpenFlow switch implementa-
tion. A tradeoff, with reduced monitoring while still
retaining accuracy, is proposed with PayLess [12] hav-
ing an adaptive flow-statistics polling approach. Polling
frequency will be in line with the traffic volume -
higher the volume higher the frequency. Alternatively,
OpenTM [53] uses the routing information gleaned
from the OpenFlow controller to mathematically model
select the key switches from which to obtain flow statis-
tics data, leading to load reduction on switching ele-
ments.

Though there has been a useful amount of opti-
mization from the above approaches of PayLess and
OpenTM, there is an acute need for further reducing
the monitoring overhead in a very busy DCN. A very
useful concept here is to create aggregations and detect
hierarchy in the flows. For e.g. IP addresses in a DCN
are allocated in a specific pattern and usually a set of IP
addresses are marked for a certain type of application.
Thus an elephant flow could correspond to an individual
flow or an aggregation of multiple flows/connections
that share some common property, but with themselves
not being large flows. Lin et.al [26] utilizes Hierarchical
Statistics Pulling with hierarchical aggregation of IP ad-
dresses as per the prefix. Aggregations are specified on
one or more dimensions, e.g., source and destination IP
address, source and destination port and protocol fields
for IP flows. The ISP ideally needs to collect 100% of
the flow statistics just for the 10% of the flows which are
probable elephant flows. With a Hierarchical Statistics
Pulling mechanism at the controller, the operation for
each polling period in an edge switch will be to a.) An-
alyze aggregated statistics response for the whole flow
space block (WFSB) if it exceeds pre-set threshold and
make a request accordingly. b.) Repeat rounds (depth)
of dividing the block into 4 equal-sized blocks to deter-
mine which among them exceeds threshold. Make calls
accordingly c.)After ’depth’ rounds, send only the in-
dividual stats requests for the blocks whose aggregate
statistic replies are still over the threshold. This ap-
proach will effectively lead to lesser storage, but will in-
crease the computational requirement of the controller.

INFOCOMP, v. 20, no. 1, p. 07-22, June, 2021.



Deshpande et al. Survey of SDN traffic flow classification approaches 6

Different from the above approaches is combining
SDN measurements and inference techniques based on
network tomography by Hu et.al. [21]. SDN is used to
build the network tomography (TM estimation) and de-
termine the "talky" (high network chatter) top-of-rack
(ToR) pairs to locate server-to-server (potential) ele-
phant flows in them. Once identified, data from flows
originating to and from these ToRs are pulled and an-
alyzed for presence of elephant flows. This approach
suits well for a DCN with fixed resources and static
applications, but may not be very effective in effective
routing of mice flows.

Chao et al. [11] have devised FlowSeer, a rapid
elephant flow detection method at the switch level that
employs data stream mining. Statistics (such as IP ad-
dresses, max and minimum packet size etc.) from the
first few packets of each flow are collected to train the
stream classification models. Once identified, elephant
flows are routed through least congested paths in or-
der to improve the throughput. However, FlowSeer fo-
cuses only on maximizing the throughput, leading to
lack of specific handling for mice flows. Poupart et al.
[33] address the problem of reducing the flow comple-
tion time to a minimum. They propose a near-real-time
flow size prediction for improving routing using mul-
tiple machine learning techniques such as Neural Net-
works, Gaussian Process Regression (GPR) and Online
Bayesian Moment Matching (oBMM). The prediction
is based on flow-statistics data collected from the start-
ing packets including source and destination IPs, source
and destination ports, protocol used and the size of the
initial three packets. After predicting the flow size esti-
mates, elephant flows are routed through the least con-
gested paths. However, the forwarding rules are com-
puted only when the flow arrives and the Flow Con-
trol Table (FCT) update is delayed by the computational
time needed and rules installation.

Block Island (BI)-based elephant flow routing, pro-
posed by Zhang et.al. [65], builds blocking islands to
narrow searching space amongst the flows in a network
based on the work load of switches. Then, the least
cost rerouting path is discovered with the biggest band-
width to route elephant flows, leaving other paths free
for routing mice flows. This is termed DIFFERENtiated
sChEduling (DIFFERENCE) approach where paths for
elephant and mice flows are dynamically set up sep-
arately and mice flows are scheduled proactively in-
stalled weighted multipath routing algorithm based on
terms of current link utilization ratio.

Packet − based − sampling: Sampling is a com-
mon technique employed to detect various flow types in
Internet traffic. Statistical methods applied on the pe-

riodic capture of transmitted/received packets are used
to infer the overall flow behavior. The key win here is
the overall reduction of monitoring overhead, as only
limited data is captured. sFlow [47] and Cisco Net-
Flow [13] are standard DCN specific applications used
for monitoring large scale networks, especially SDNs.
They employ simple uniform sampling and provide
the user capability to upgrade / vary the sampling fre-
quency. The basic approach of sampling is that it is very
rare to miss an elephant flow, as long as many packets
are generated. In many cases mice flows detections are
left to the default ECMP algorithm.

Usage of wildcards in switch flow table entries are
employed for mice flow detection in Mice Data Cen-
ter Efficient Routing (MiceDCER) [6]. It relies on the
Address Resolution Protocol (ARP) messages to indi-
cate to the controller on rules that should be installed
on the switch tables. MiceDCER relies on the relative
positioning of switches for traffic routing and generat-
ing wildcard rules to save space in the switching tables.
Instead of reading flow packets, the controller intercepts
ARP messages to interpret the addresses and install the
necessary rules in the switch tables, thus limiting the
number of rules on the switch. MiceDCER also relies
on the positioning of switches for traffic routing and
combined with the wildcard rules applications, saves
considerable overhead traffic within the network.

Although the overhead caused by sample collec-
tion is reduced, there is a tradeoff with detection ac-
curacy. The mathematical statistical models employed
may introduce large errors if data for a particular flow is
limited. OpenSample [50] overcomes this by optimiz-
ing the analysis of sampled packets using the TCP/IP
header sequence number to determine the flow size.
This helps reduce the sampling latency from 1-5 sec-
onds to around 100ms. Afek et.al. [1] employ packet
sampling using hash matching and has comparison to
detect elephant flows. Instead of storing the entire
packet header, a hash of relevant fields is taken and
compared with existing hashes to determine the na-
ture of the flow. Repeated hash match indicate ele-
phant flows and appropriate routing action is deter-
mined. Also, once a suspected elephant flow is de-
tected, active-polling is introduced to get further de-
tailed statistics of the flow to eliminate false positives.

4.2 Data Push methods

In the Push approach, the switch actively sends the
flow-statistics information to the controller, either peri-
odically or based on a trigger, without any specific flow-
request. Compared with the Pull approach, pushing re-
duces the monitoring overhead in the DCN. However,
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this requires modification at switch level, usually soft-
ware and sometimes hardware, leading to non-usability
of custom off-the-shelf elements in the network and
high cost of implementation.

To obtain timely flow-statistics of the entire net-
work, FlowRadar [25] employs optimized NetFlow. As
most flows traverse multiple switches, the algorithm
leverages the redundancies across switches and ensures
that flowsets are more compactly encoded based on
IBLT (Invertible Bloom Filter Lookup Table). The key
factor here is identification of the best work division
between COTS switches (limited per-packet processing
time) and the remote controller (higher computing re-
sources). Each packet header is subjected to multiple
hash functions and compared in IBLT to check if it is a
new flow or existing flow. All flow records are stored
at the switch within a limited storage space and exports
the flow record codes to the collector periodically.

Wang et.al [59] propose an ant colony optimization
(ACO) algorithm based on behavior pattern of an ant
colony network - higher the pheromone content in a
path, better the path for large flows. The system uses
sFlow for flow detection, computes paths for elephant
flows by an adaptive multi-path calculator algorithm
and transmits mice flows through specified paths in the
database. This approach targets reduction in route splits
for elephant flows, while ensuring better than ECMP
routing for mice-flows. Tang et.al [51] proposes ESCA
(Efficient Sampling and Classification Approach) with
two-phase Elephant Flow detection. In the first phase,
a filtering flow-table with wildcards is employed to im-
prove sampling efficiency and estimation of the arrival
intervals. Time intervals are classified as Target Blocks
(TB) and Gap Blocks (GB) which are non-overlapping.
In the second, threshold is determined against 4 pa-
rameters - TB duration, GB duration, sampling inter-
val of TB and GB. Samples are classified based on the
minimum TB covering all elephant flows in the con-
troller and modified rules are forwarded to the switch.
Yang et.al [63] checks for similarities between related
flows, with the traffic throughput data being subjected
to smoothing, thresholding and windowing to deter-
mine a time slot for sampling. The data-slot having
high flow is subjected to Euclidean distance measure-
ment of APCA (Adaptive Piecewise Constant Approxi-
mation) representation algorithm to determine presence
of heavy flows.

LUNA [62] is an SDN application which proac-
tively installs the Switch forwarding rules on the
initial / specific state of the network and user
SLAs/requirements. An association rule is then cre-
ated which is an if-else statement describing the relation

between a user and the type of his typically requested
flows. Using K-Means classification, LUNA analyzes
user behavior by computing their corresponding asso-
ciation rules and routes each flow based on its class.
Effiview [58] functionality allows user the control of
flows to be pre-selected in the Open flow tables, and
updates are triggered on the FlowRemoved messages. It
is cost effective to implement, but it is dependent upon
the setting of the threshold levels at the switch, which is
not dynamic. Bi et.al [10] discusses a two-stage, adap-
tive elephant detecting system. The switch-based de-
cision threshold is dynamically adapted based on the
initial packet analysis for traffic behavior. The relation-
ship between elephant threshold and traffic characteris-
tic in data center network is analyzed. By adding Gauss
White Noise channel data to the flow, the threshold is
dynamically set by computing the intersection point of
the two flow probability distribution curves - balancing
the positive false rate and negative false rate of detec-
tion.

5 Network Element Hardware-software modi-
fication approaches

Solutions involving hardware software modifications at
the switches or end hosts are available but they are all
impacted the cost and nature of implementation. Two
broad categories are: (i) Switch modifications and (ii)
End host modifications. The former involves hardware
and software modifications over and above OpenFlow
on the switch element. The latter is about introducing
monitoring software in end hosts of a DCN to track in-
dividual flows.

5.1 Switch modifications

Switch level modifications involve improving of switch
software/hardware to primarily enable push mechanism
of flow-statistic collection. Open flow supports setting
up of stat-triggers on the switch, i.e. the switch will
trigger some actions once a particular flow threshold is
exceeded. and Helios [17] employs use of special opti-
cal switches, such as Glimmerglass 64-port optical cir-
cuit switch, to increase the throughput per switch. De-
voflow [15] allows operators to target only the flows
that matter. Since the flows are pre-identified, De-
voFlow thus reduces the monitoring overhead between
the control and data planes by only transmitting statis-
tics for needed flows. Most mice-flows are handled
in the data plane. However, this approach requires
switch upgrade (ASIC changes) from the normal COTS
switches available in the market. To reduce the imple-
mentation cost at the switch, Planck [35] from Rasley
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et.al. utilizes port mirroring mechanism to gather flow
data. When port mirroring is enabled, traffic destined
for a given port is mirrored to another monitoring port
connected to a monitoring system. As the network traf-
fic increases, the load on the mirroring port also in-
creases leading to data drop of flows. This is akin to
sampling with limited delay; thus a high rate of packet
sampling can be achieved of the order of milliseconds.
Rashid [34] proposes utilizing a new feature of Open-
Flow 1.3, the ’drop’ tracking mechanism in the Switch
table. Packet dropping is considered as a congestion
indicator. If the flow size is higher than the threshold
and packets are getting dropped, it is treated as a sign
of elephant flow and data is pushed to the controller.
In the Controller, Sorted-Global First algorithm works
on the existing flows collected, calculates the ECMP
values for these paths and selects the lightest loaded
path for routing. Wang et.al. [60] propose a hierar-
chical elephant flow detection based on the way Switch
Ternary Content-Addressable Memory (TCAM) is em-
ployed in allocating memory for incoming flows. More
the number of flows in a switch, higher the TCAM ac-
tivity, and once it crosses a set threshold, data is pushed
to the Controller. Controller has a global overview of
the number of switches and a hierarchical map of DCN
switches encountering the load. Flows are then routed
accordingly. Liu et.al [27] propose deployment of deep
residual learning models with AM-Softmax software on
the switches to classify flows based on their characteris-
tics. The time feature (inter-arrival time between flows),
real-time features (flow duration, flow size) and packet-
header features (Transport and N/W layer encapsula-
tion headers) are extracted using AM-Softmax and sub-
jected to deep learning methods such as Deep Resid-
ual Network, Random Forests, Convolution Neural Net-
works and Gated Recurrent Unit (GRU) employing re-
current neural networks to classify the flows. They fo-
cus here is the speed so that flows are classified with
lesser than 10 packets of a particular flow. The disad-
vantage here is the incurred cost of the software, as well
as the additional computation needed for the deep learn-
ing algorithms to be executed on the switch.

Madanapalli et.al. [28] propose modifications on
commodity SDN hardware and software for elephant
flow detection. The Openflow pipeline on the SDN
switch consists of two tables - Table-0 consists of the
reactive rules corresponding to the detected elephant
flows and Table-1 contains proactive rules that forward
and mirror bidirectional traffic. The proactive rules
ensure that no PACKET_IN messages are pushed to
the controller, reducing operational load on all net-
work elements. Sivaraman et.al. [48] propose Hash-

Pipe, an elephant flow detection algorithm using emerg-
ing programmable data planes like P4 [32].P4 allows
for new data plane concepts compared to OpenFlow
in that instead of fixed data-switches, programmable
chips( "PISA" - Protocol Independent Switch Archi-
tecture) are used to provide better granularity on the
flow control. HashPipe is an implementation of a se-
quence of hash tables in the SDN data plane, which re-
tain flow identifiers as counters for heavy flows in the
tables while evicting lighter flows over time. The hash
of flow identifiers are ’Keys’, which are stored along
with the count of occurrence. This is modeled with
Space Saving Algorithm in a series of piped has-tables,
which allows for lighter keys to move along a series
of tables and finally get evicted. Keys having higher
counts are termed elephant flows and controller is in-
formed for routing decisions. As all classification pro-
cessing happens in the switch, there is a tremendous
reduction in the overhead methods compared to other
approaches. However, relative to space saving, Hash-
Pipe may evict a genuine elephant flow key (missing
heavy items from the table) or it may allow numerous
duplicate flow keys in the table, leading to lesser accu-
racy.

5.2 End host modifications

Two key advantages with end-host modifications for
flow detection - first that the end host has computing re-
source capacity which can be utilized and the second is
that early detection of elephant flows compared to the
network. Since traffic captured by end-host is a small
percentage of the overall network traffic, the flow detec-
tion in end-host is primarily flow-statistics based. With
scalability and timeliness of elephant-flow detection as
the key goals, Mahout [14] deploys a kernel patch on
the end-host and uses a pre-set threshold to determine
whether there is an elephant flow in the set of flows.
All elephant flows are reported to the controller, which
modifies the central traffic schedule and plan. To re-
duce the monitoring overhead, Mahout uses the differ-
entiated service field (IP ToS) of the IP Packet header to
mark elephant flows. These marked packets would be
forwarded to the controller by the receiving switch for
further analysis. Similar to Mahout, MicroTE [9], a Mi-
cro Traffic Engineering system, utilizes the top-of-the-
rack (ToR) controller to aggregate and create a global
view of network conditions and traffic demands at real
time. OpenFlow is utilized to coordinate scheduling
of traffic based on weighed ECMP within the network,
and the flow degrades to ECMP when traffic is unpre-
dictable. One of the challenges of these two approaches
is that they are not capable of differentiating the invisi-
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ble traffic generated by the VMs present in end-host of
a DCN.

Due to virtualization techniques, when there are vir-
tual machines deployed on an end-host, the traffic mon-
itoring implies not just network traffic, but also gen-
erated virtual traffic. Depending upon the monitoring
tools such as sFlow and NetFlow supported on Open
v(Virtual) Switch (OVS), EMC2 (Edge Monitoring and
Collector for Cloud) [29], employs monitoring of each
hypervisor on the virtualized host, which adds another
network layer in the form of a "vswitch" (virtual switch)
forming the new "edge" of the network. Two constraints
in this approach is that the data collected at each hy-
pervisor may be very large to be sent to Flowcollec-
tor and precise recalibration of monitoring tool param-
eters (sFlow highlighted) to ensure no drop in perfor-
mance. In an alternate approach, VirtMonE [7] em-
ploys OVS based elephant flow detection in a virtu-
alized environment using depending time and volume
threshold parameters at the network edge. Signal com-
munication to other network elements happens in two
stages: Notifying the underlay switching fabric by tun-
nel L3 header marker modification and Open vSwitch
Database (OVSDB) update of the details of the detected
elephant flows to be analyzed by the SDN controller.

MiceTrap [54] employs the end - host modifications
primarily for mice-flows detection and handling. Mice
Flows are aggregated based on destination entries of
multi-path group type in a group table, then rerouted in
a weighted multipath approach as against ECMP. Ele-
phant flows are also detected based on the TCP socket
and marked using a kernel-level shim layer. The mice-
flow aggregations reduce the rules for traffic manage-
ment, thus improving resource utilization and network
scalability.

6 Conclusion

In a DCN, flow classification accuracy is critical for op-
timizing and scheduling network traffic. There is an
ongoing body of research on classification methods for
effective traffic engineering (TE) in a DCN. They have
also thrown light upon various network dimensions dur-
ing the flows in terms of performance, latency detection
and control overhead. Typically data flows are classi-
fied as Elephant Flows (or Heavy Hitters) or Mice flows
(small flows) based on their size. Incorrect flow classi-
fication at flow-level management can adversely impact
system scalability; mice flows may often be blocked by
elephant flows because of the incorrect flow scheduling.
With the software-defined networking (SDN) paradigm
applied in data centers; there is a clear distinction be-
tween the data planes and control planes, giving the

advantage of centrally controlled network with better
flow-level management.

Researchers have introduced various approaches
combining the ability of various deep learning mecha-
nisms to classify the flows based on multi-dimensional
features. Current approaches on TE flow detection fall
primarily into Flow characteristics based, Flow statis-
tics based and Network Element Hardware-software
modification. This paper elaborates and summarizes
the three kinds of flow detection (for both elephant
and mice flows) respectively. Tables 2 & 3 summa-
rize the variety of SDN flow detection approaches along
with an evaluation based on three criteria - Targeted
priority of objectives (Minimize Congestion, Maxi-
mize throughput, Minimize Flow Completion Time and
Minimize Network Element workloads), Classification
(Approach, Type and Importance given to flow types)
and Performance (Accuracy, Timeliness of detection
and Cost of implementation). As observed, many ap-
proaches focus on thresholding and managing elephant
flow classification primarily, leaving the mice flows
to be handled by ECMP or other default inbuilt hard-
ware mechanisms of the NE. Also, Packet Sampling
approaches among the Flow statistics based methods
and Switch Modifications among the NE modification
methods offer a very high TE accuracy with medium
cost.

A key observation with these approaches is that
many of them are near-real-time, but cannot achieve
the real-time requirements of DCNs, especially with
those handling time sensitive flows such as VOIP calls.
This is primarily due to setup of OpenFlow switches on
COTS hardware which cannot be efficiently customized
owing to implementation costs. In a move towards that
direction, OpenFlow is now being replaced by Stra-
tum [18], which is an open source silicon-independent
switch operating system for SDNs. Open, minimal
production-ready distribution white box switches which
expose a set of next-generation SDN interfaces includ-
ing P4Runtime and OpenConfig help in enabling inter-
changeability of forwarding devices and programmabil-
ity of forwarding behaviors.

Taking into account of recent advances in SDN re-
lated hardware and software, DCN TE will show the be-
low trends: (1) With expanding data-plane programma-
bility capabilities, the onus of flow classification will
move southbound instead of at the controller. The ap-
proach [48] already demonstrates this and it will be-
come more robust going forward. (2) Improved ma-
chine learning algorithms with deep learning and rein-
forced learning models can help contribute in bringing
in less monitoring overhead in the DCN, while better-
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ing detection accuracy in existing networks. Overall a
combination of approaches suiting the specific network
will help in effective classification, routing, and hence
robust TE practices in a DCN.
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Table 2: Comparison of approach priorities of different approaches

[HTML]F2DDDCTargeted priority of Objectives
[HTML]F2DDDC [HTML]F2DDDC [HTML]F2DDDC [HTML]F2DDDC

Solution -3*Category -3*Research [HTML]F2DDDCMinimize Congestion [HTML]F2DDDCMaximize throughput [HTML]F2DDDCMinimize
Flow
Com-
pletion
Time

[HTML]F2DDDCMinimize NE workloads

Flow Marking Identification EffiEye [57] Medium Medium Medium Medium
characteristics Roughan et.al.[46] Medium High Medium Medium

Flow classification Xiao et.al [61] High Medium High Medium
Hedera [5] Medium Medium Medium Medium
Payless [12] High Medium Medium Medium
OpenTM [53] High High Medium High
Lin et.al [26] Medium Medium Medium Low

Pull
method

Polling Hu et.al. [21] High High Medium High

FlowSeer [11] Medium High Medium Low
Poupart et al. [33] High Medium High Medium
Zhang et.al. [65] High Medium High Medium
MiceDCER [6] Medium Medium High High

Sampling OpenSample [50] Medium Medium High Medium
Flow statistics Afek et.al. [1] Medium Medium High Medium

FlowRadar [25] Medium Medium Medium Medium
Wang et.al [59] Medium High High Medium
Tang et.al [51] Medium High Medium High

Push method Yang et.al [63] High High Medium Medium
LUNA [62] High High Medium Medium
Effiview [58] Medium High Medium Medium
Bi et.al [10] Medium Medium Medium Medium
Helios [17] Medium High High Medium
Devoflow [15] High High Medium Medium
Planck [35] High Medium Medium High
Rashid [34] High Medium Medium High
Wang et.al.[60] High High Medium High
Liu et.al [27] High High Medium High
Madanapalli et.al. [28] High High Medium Medium

Modifications at Switch HashPipe [48] Medium High High Medium
Network Ele-
ment

Mahout [14] Medium High High Medium

Hardware-
Software

Modifications at End-Host MicroTE [9] High High High Medium

modification EMC2 [29] Medium High Medium Medium
VirtMonE [7] Medium High Medium Medium
MiceTrap [54] High Medium High High
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Table 3: Comparison among different flow classification approaches

[HTML]FFFC9EClassification [HTML]DBE5F1Performance
[HTML]FFFC9E [HTML]FFFC9E [HTML]FFFC9EImportance [HTML]DBE5F1 [HTML]DBE5F1 [HTML]DBE5F1

-3*Research -2*[HTML]FFFC9EApproach -2*[HTML]FFFC9EType Elephant Mice -2*[HTML]DBE5F1Accuracy -2*[HTML]DBE5F1Timeliness -2*[HTML]DBE5F1Cost
EffiEye [57] Proactive Threshold - Markers Primary Secondary low - medium not-real-time high
Roughan et.al.[46] Reactive Threshold - QoS Primary Secondary medium not-real-time medium
Xiao et.al [61] Reactive ML - C4.5 Primary Secondary high not-real-time medium
Hedera [5] Reactive ML - GFF Primary Secondary high not-real-time high
Payless [12] Reactive ML - Adaptive Primary Secondary high not-real-time high
OpenTM [53] Reactive ML - OF Routing Primary Primary medium - high not-real-time medium
Lin et.al [26] Reactive ML - hierarchical aggregation Primary Secondary medium - high delayed medium
Hu et.al. [21] Proactive Network Tomography Primary Primary medium - high delayed medium
FlowSeer [11] Reactive ML - Stream Mining Primary Secondary medium not-real-time medium
Poupart et al. [33] Reactive ML - Neural Networks Primary Secondary high delayed high
Zhang et.al. [65] Reactive ML - Block Island Primary Secondary medium - high not-real-time medium
MiceDCER [6] Reactive Wildcards, ARP read Secondary Primary high not-real-time medium
OpenSample [50] Reactive TCP/IP Headers Primary Secondary high not-real-time medium
Afek et.al. [1] Reactive Hash matching Primary Primary high not-real-time medium
FlowRadar [25] Reactive IBLT Primary Secondary medium real-time medium
Wang et.al [59] Reactive ML - ACO Primary Secondary medium - high real-time high
Tang et.al [51] Reactive Threshold - Arrival block Primary Primary medium real-time medium
Yang et.al [63] Reactive Threshold - Euclidean distance Primary Secondary medium not-real-time medium
LUNA [62] Proactive ML - Kmeans Primary Secondary medium not-real-time medium
Effiview [58] Proactive Threshold - Flow stats Primary Secondary medium - high delayed low
Bi et.al [10] Reactive ML - Adaptive Primary Secondary low - medium real-time medium
Helios [17] Reactive Optical switches Primary Secondary high near-real-time high
Devoflow [15] Proactive ASIC upgrades Primary Secondary medium - high near-real-time high
Planck [35] Reactive Port Mirroring Primary Primary medium near-real-time medium
Rashid [34] Reactive Drop tracking Primary Primary medium near-real-time medium
Wang et.al.[60] Reactive Threshold - TCAM upgrades Primary Primary high near-real-time high
Liu et.al [27] Reactive Deep Residual Learning with AM-Softmax Primary Primary high near-real-time high
Madanapalli et.al. [28] Proactive COTS OVSwitch modifications Primary Secondary medium - high near-real-time medium
HashPipe [48] Reactive P4 with PISA Primary Secondary medium near-real-time medium
Mahout [14] Proactive Threshold - IP ToS Primary Secondary medium - high near-real-time medium
MicroTE [9] Reactive Threshold - ToR Primary Secondary medium - high real-time medium
EMC2 [29] Proactive OVS updates Primary Secondary medium - high delayed high
VirtMonE [7] Reactive OVSDB updates Primary Secondary medium - high delayed high
MiceTrap [54] Reactive Marked HH flows; Weighed Multipath routing Secondary Primary medium - high near-real-time medium
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