
INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Finding error-prone classes at design time using class based Object-

Oriented metrics threshold through statistical method

DIPTI KUMARI
1
, DR. KUMAR RAJNISH

2

1
Department of Computer Science, B.I.T. Mesra, Ranchi , Jharkhand 835215

2
Department of Information Technology, B.I.T. Mesra, Ranchi , Jharkhand 835215

1
kumari_dipti0511@yahoo.co.in,

2
krajnish@bitmesra.ac.in

Abstract. A study that how error severity categories depend on the class level software metrics is

presented through statistical method. The main purpose of the study is to classify error categories based

on the different number of error occurrences in all the three version of Eclipse Project. The study used

the all error type to find the software metrics threshold for the three releases of Eclipse project using

Receiver Operating Characteristic curves. These thresholds are responsible for making difference

between error-free or error prone classes . But, not all the choosen metrics are able to do that, though

some of them are capable for that. In future it is not necessary that these software metric thresholds can

predict the class will definitely have errors. This approach only provide a scientific way for software

engineers to judge designed class is error prone or error free during design time.

Keywords: Object-Oriented metrics, object-oriented design, specificity, sensitivity, thresholds, ROC

curve, AUC, Confusion Matrix.

(Received June 11th, 2013 / Accepted August 1st, 2013)

1 Introduction

Different measurements are important tools for

achieving quality management in the software

development process. Two major measurement types

are product metrics which are used to control the quality

of the software product (e.g. Defect rates) or process

metrics which are used to measure the status and

progress of the system design process and to predict

future effects or problem areas(e.g. maintenance

costs).A common problem in large and complex

software systems in that they have errors [2].Preventing

errors from being introduced into software systems

proves to be a difficult , if not an impossible, task. If we

cannot completely prevent errors, we want to know

where in a design errors are likely to occur. To achieve

this goal(of which classes are likely to have errors in a

design),many researchers have studied software metrics

are suggested metrics models [3-7].Although some of

the metric models proved to be effective in empirical

studies, they are difficult to use in practice: it is

impractical for software engineers to build and run

some metrics models on a daily basis. Much recent

research work has empirically investigated the

relationship between object-oriented (OO) measures and

class fault proneness[8-18][23-27]. Once validated such

measure can serve as leading indicators of fault-prone

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 50

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

classes. Fault-prone classes can then be targeted for

specific quality management action, such as more

intensive inspections and testing, or they may even be

redesigned.

An appealing operational approach for quality

management using OO measures is to develop

thresholds. Thresholds are defined as ”heuristic values

used to set ranges of desirable and undesirable metrics

values for measured software. These thresholds are used

to identify anomalies, which may or may not be an

actual problem”. For example, we can say that a certain

coupling measure has a threshold of seven. If the

measured value for a particular class is larger than

seven, then we could flag that class as high risk. Kecia

A. M. Ferreira et.al. [1] presents results of a study on the

structure of a large collection of open-source programs

developed in Java, of varying sizes and from different

application domains. The aim of their work is the

definition of thresholds for a set of OO software metrics,

namely: LCOM, DIT, coupling factor, afferent

couplings, number of public methods, and number of

public fields. They carried out an experiment to evaluate

the practical use of the proposed thresholds. The results

of this evaluation indicate that the proposed thresholds

can support the identification of classes which violate

design principles, as well as the identification of well-

designed classes. The method used in this study to

derive software metrics thresholds can be applied to

other software metrics in order to find their reference

values. Raed Shatnawi et al[19] validated the OO

metrics as measure of design complexity. He also

conducted few studies to formulate the guidelines,

represented as threshold values, to interpret the

complexity of the software design using metrics.

In this paper, they use a statistical model, derived

from the logistic regression, to identify threshold values

for the Chidamber and Kemerer (CK) metrics. The

methodology is validated empirically on a large open-

source system—the Eclipse project. The empirical

results indicate that the CK metrics have threshold

effects at various risk levels. They have validated the

use of these thresholds on the next release of the Eclipse

project—Version 2.1—using decision trees. In addition,

the selected threshold values were more accurate than

those were selected based on either intuitive

perspectives or on data distribution parameters.. These

findings suggest that there is a relationship between risk

levels and OO metrics and that risk levels can be used to

identify threshold effects. Again, he used the three

releases of the Eclipse project and found threshold

values for some OO metrics that separated no-error

classes from classes that had high-impact errors.

Although these thresholds cannot predict whether a

class will definitely have errors in the future, they can

provide a more scientific method to assess class error

proneness and can be used by engineers easily [20].

Raed Shatnawi et al. [21] also showed that power law

behavior has an effect on the interpretation and usage of

software metrics and in CK metrics [34]. Many metrics

have shown a power law behavior. Threshold values are

derived from the properties of the power law

distribution when applied to open-source systems. The

properties of a power law distribution can be effective in

improving the fault-proneness models by setting

reasonable threshold values[21]. Sarabjit Kaur et al.[22]

used logistic regression to investigate the threshold

values against the bad smell for the Chidamber and

Kemerer [34]metrics at five different levels. Two

versions of jfreechart were used as a dataset to validate

the study. Only the significantly associated metrics were

considered for finding the threshold values. The results

indicate that the CK metrics [34] have threshold effects

at various risk levels and some metrics have useful

threshold value at different levels to identify the bad

smell.

We believe that meaningful and useful threshold

values for software metrics must clearly and explicitly

associated with design factors of interest. For example,

if we are interested in reducing the probability of errors

in a module, the threshold for module metrics must be

associated with module error probability. In this study

we empirically identify the dependency of software

metric threshold value on class error probability using

Receiver Operating Characteristics (ROC). However,

this method has been used to make decisions about

diagnostics in radiology to distinguish between healthy

and ill subjects [23], and in clinical medicine [24].Here,

classes are assumed as patient and different software

metrics threshold values are the test which will indicate

the illness of classes(means a class having software

metrics value greater than threshold value is more error-

prone compared to those classes having software

metrics value less than threshold value).

The rest of the paper is organized as follows: Section

2 deals with the Experimental design which contains the

details of the selection of software metrics and the error

data collection. Section 3 deals with Hypothesis used for

study which contains the description of ROC Analysis,

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Raed%20Shatnawi
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Raed%20Shatnawi

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 51

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

the Binary Categorization results and the Ordinal

Categorization results. Section 4 deals with the analysis

and discussion on the applying threshold values in

practice. Section 5 deals with the conclusion and future

scope respectively.

2 The Experimental Design

The objective of the study is to find threshold values of

software metrics that can be used to classify modules to

different error categories in OO system. The following

steps are followed to achieve the objective:

i. To select the software metrics.

ii. To collect the data- the metrics as well as errors

data.

In this study we identify metric threshold values by

analyzing the association between metrics and errors in

Eclipse- a widely used industrial-strength system. We

chose Eclipse because it is Open-Source System and the

error data are also obtainable .Furthermore, there are

several versions of Eclipse available for analysis. We

collected the software metrics from three releases of

Eclipse (Versions 2.0, 2.1, and, 3.0) and error data from

[28, 30]. The error in Eclipse are divided into

four severity categories (Nominal, Low, Medium and

High) depending on the impact of errors. We conducted

statistical analysis to see whether we could identify

specific metrics values that could classify the Eclipse

module into different error categories in two contexts:

 Binary Categorization and

 Ordinal Categorization

In binary Categorization, we investigated whether

we can classify the classes into the error and no-error

categories by using specific metric values. In Ordinal

categorization, we again investigated whether we could

classify the modules into one of the five categories (no

error, nominal-impact error, low-impact error, medium-

impact error and high-impact error) by using specific

metric values. We belief that if we are able to classify

the modules using specific metrics values, we can use

these values in practice to classify modules in OO

design to different error–risk categories, thus the values

become thresholds for the metrics. In the following

section, we present how we selected and collected the

software metrics in the study.

2.1 The selection of Software Metrics

The selection of software metrics was a difficult task

because there are many available metrics. We used two

criteria in our selection process:

 The set of metrics cover all aspects of OO design.

 We have to be able to collect the metrics by using

automated tool.

Finally, we selected 24 class level Object-Oriented

metrics which are discussed in Appendix at the end of

the References. These metrics cover all aspects of class

level OO design due to this reason they are belonging to

coupling, cohesion, inheritance, class complexity and

class-size metrics. We used JHAWK [32] automated

tool metric to collect these metrics from the Eclipse

source code [29]. JHAWK compiled the source code

and give output as each module name and their set of

OO metrics. In the next section, we describe how we

collected the error data.

2.2 Collection of Error Data

From [31] where Eclipse bug data set are freely

available, we collected the error data from three official

releases of the Eclipse project (Versions 2.0, 2.1, and

3.0) This data can be collected from version archives

like CVS and bug tracking systems like BUGZILLA in

two steps:

1. Identify corrections (or fixes) in version archives.

2. Use the bug tracking system to map bug reports to

releases.

Pre release bug data are used for study and two types

of categorization has been done on the pre release error

data:

i. Binary Categorization: In this we only used

two values 0 (means no error) and 1(means

with error).If a class contains error in it then we

put 1 in error column otherwise 0.

ii. Ordinal Categorization: In this we divide the

error severity into 4 classes.

For classification our followed steps are:

A) We find the descriptive statistics of pre error

data. From that we are able to know the min, different

number of occurrences of error (nonzero) and max value

of error data in all classes of every versions of Eclipse.

B) After that, we again find the descriptive statistics

of (Min , 25% , 50% , 75% and Max) the different

occurrences of number of errors (from min (nonzero) to

max).

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 52

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

C) Based on that we classified class error data into

one of five categories that are defined as follows:

 No Error: class containing zero error.

 Nominal: class containing error in the range

Min<=error<25%

 Low :class containing error in the range

25%<=error<50%

 Medium: class containing error in the range

50%<=error<75%

 High: class containing error in the range

75%<=error<Max

 Table 1: Descriptive statistics of error data for all different occurrences of no of errors in Eclipse (2.0,

2.1&3.0)

Version Min 25% 50% 75% Max

Eclipse 2.0 1 9 18 29 69

Eclipse2.1 1 6 12 18 24

Eclipse3.0 1 9 18 26 43

Tables 2, 3 and 4 show the descriptive statistics of all

the three versions of Eclipse. It is observed that that

the INTR and NSUB value was zero for at least 75%

of the modules, 50% of the module having LMC

value zero,25% of the module has MPC, NSUP,

EXT, FOUT, COH, FIN, INST and LCOM value

zero.

3 The Hypotheses

For our study, we used two contexts:

 Binary categorization: which classifies classes into

either No-error or Error category (without

differentiating error categories).

 Ordinal categorization: which classifies classes into

four categories: No-error, Nominal, Low, Medium,

and High.

The following are the Null hypotheses for our study:

• Hypothesis 1: There are no useful threshold values

of OO metric that divide between the two categories

of modules (the modules that had errors and those

modules that did not have NO errors) in the binary

categorization for the three releases. We look ahead

to a threshold value for each metric that classifies

classes into the Error and No-error Categories.

• Hypothesis 2: There are no useful threshold values

for OO metrics that divide between any one of the

error categories (Nominal, Low, Medium, and High)

and the No-error category. The second hypothesis is

based on our faith that software metrics can calculate

module error risk level. We look ahead to threshold

values (i.e., one for each error-severity level) for each

metric to differentiate each Error category from the

No-error category. Though we consider each Error

category independently against the No-error category,

we expect a some degree of order among the three

error categories, i.e., Nominal≤ Low ≤ Medium ≤

High.

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 53

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 2: Descriptive statistics for all metrics in Eclipse2.0

Metrics Mean Median
Std.

Deviation
Minimum Maximum

Percentiles

25 50 75

NOM 10.3362 6.0000 19.87652 .00 596.00 3.0000 6.0000 12.0000

LCOM .5897 .0400 9.40281 .00 479.00 .0000 .0400 .2300

AVCC 1.8995 1.5000 1.47203 .00 26.17 1.0000 1.5000 2.4000

NOS 74.7053 29.0000 150.73286 .00 3582.00 10.0000 29.0000 78.0000

UWCS 15.5935 9.0000 35.56403 .00 1646.00 4.0000 9.0000 17.0000

INST 5.2573 2.0000 20.18810 .00 1050.00 .0000 2.0000 5.0000

PACK 7.3480 4.0000 10.25624 .00 146.00 1.0000 4.0000 9.0000

RFC 27.6640 15.0000 39.64387 .00 596.00 5.0000 15.0000 34.0000

CBO 3.6825 2.0000 4.82179 .00 76.00 1.0000 2.0000 4.0000

NLOC 98.8993 40.0000 201.74587 .00 5200.00 13.0000 40.0000 103.0000

FIN 2.1480 1.0000 4.00499 .00 74.00 .0000 1.0000 2.0000

DIT 1.8515 2.0000 .97964 .00 8.00 1.0000 2.0000 2.0000

COH .1743 .1000 .22449 .00 1.00 .0000 .1000 .2700

LMC 2.2976 .0000 5.77804 .00 194.00 .0000 .0000 2.0000

LCOM2 83.1783 5.0000 755.51965 .00 41126.00 1.0000 5.0000 23.0000

MAXCC 4.8569 3.0000 7.77601 .00 229.00 1.0000 3.0000 6.0000

FOUT 1.8627 1.0000 3.14407 .00 69.00 .0000 1.0000 2.0000

EXT 17.3278 8.0000 26.31608 .00 325.00 .0000 8.0000 22.0000

NSUP .8985 1.0000 1.00218 .00 7.00 .0000 1.0000 1.0000

TCC 23.8355 10.0000 48.12150 .00 1222.00 3.0000 10.0000 24.0000

NSUB .4703 .0000 2.80751 .00 81.00 .0000 .0000 .0000

MPC 17.3278 8.0000 26.31608 .00 325.00 .0000 8.0000 22.0000

INTR .2925 .0000 .61960 .00 7.00 .0000 .0000 .0000

CC 29.0928 13.0000 58.96999 .00 1839.00 5.0000 13.0000 31.0000

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 54

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 3: Descriptive statistics for all metrics in Eclipse 2.1

Metrics Mean Median
Std.

Deviation
Minimum Maximum

Percentiles

25 50 75

NOM 10.5589 6.0000 20.55899 .00 613.00 3.0000 6.0000 12.0000

LCOM .5947 .0400 9.90558 .00 517.00 .0000 .0400 .2400

AVCC 1.9348 1.5300 1.53548 .00 30.50 1.0000 1.5300 2.4475

NOS 77.9879 30.0000 156.41658 .00 3592.00 10.0000 30.0000 80.0000

UWCS 15.9690 9.0000 36.42494 .00 1740.00 4.0000 9.0000 18.0000

INST 5.4101 2.0000 20.50783 .00 1127.00 .0000 2.0000 5.0000

PACK 7.6482 4.0000 10.92447 .00 151.00 1.0000 4.0000 9.0000

RFC 29.1601 15.0000 42.10427 .00 613.00 5.0000 15.0000 36.0000

CBO 3.6726 2.0000 4.88056 .00 76.00 1.0000 2.0000 4.0000

NLOC 103.3093 42.0000 209.97243 .00 5221.00 14.0000 42.0000 107.0000

FIN 2.1461 1.0000 4.08431 .00 75.00 .0000 1.0000 2.0000

DIT 1.8420 2.0000 .96413 .00 8.00 1.0000 2.0000 2.0000

COH .1783 .1100 .22668 .00 1.00 .0000 .1100 .2800

LMC 2.4737 .0000 6.13886 .00 195.00 .0000 .0000 3.0000

LCOM2 90.1634 5.0000 769.33205 .00 43119.00 1.0000 5.0000 25.0000

MAXCC 5.0193 3.0000 8.14865 .00 229.00 1.0000 3.0000 6.0000

FOUT 1.8365 1.0000 3.07557 .00 69.00 .0000 1.0000 2.0000

EXT 18.6012 8.0000 28.29340 .00 335.00 1.0000 8.0000 24.0000

NSUP .8855 1.0000 .98587 .00 7.00 .0000 1.0000 1.0000

TCC 24.8016 10.0000 50.03921 .00 1226.00 3.0000 10.0000 26.0000

NSUB .4471 .0000 2.74776 .00 81.00 .0000 .0000 .0000

MPC 18.6012 8.0000 28.29340 .00 335.00 1.0000 8.0000 24.0000

INTR .2962 .0000 .64061 .00 9.00 .0000 .0000 .0000

CC 25.0977 10.0000 50.06080 .00 1226.00 4.0000 10.0000 26.0000

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 55

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 4: Descriptive statistics for all metrics in Eclipse3.0

Metrics Mean Median
Std.

Deviation
Minimum Maximum

Percentiles

25 50 75

NOM 10.2326 6.0000 20.35503 .00 845.00 3.0000 6.0000 12.0000

LCOM .6368 .0400 10.15964 .00 646.00 .0000 .0400 .2500

AVCC 1.9265 1.5000 1.56149 .00 42.67 1.0000 1.5000 2.4500

NOS 76.0767 28.0000 158.08140 .00 3614.00 9.0000 28.0000 78.0000

UWCS 15.3086 8.0000 35.92773 .00 1950.00 4.0000 8.0000 17.0000

INST 5.0760 2.0000 19.94747 .00 1257.00 .0000 2.0000 5.0000

PACK 7.8631 4.0000 11.36715 .00 204.00 1.0000 4.0000 10.0000

RFC 28.7772 15.0000 42.75694 .00 847.00 5.0000 15.0000 35.0000

CBO 3.6007 2.0000 5.07228 .00 110.00 1.0000 2.0000 4.0000

NLOC 100.1076 40.0000 205.90128 .00 4879.00 13.0000 40.0000 105.0000

FIN 2.1212 1.0000 4.16362 .00 109.00 .0000 1.0000 2.0000

DIT 1.7698 2.0000 .93040 .00 8.00 1.0000 2.0000 2.0000

COH .1799 .1000 .23473 .00 1.00 .0000 .1000 .2800

LMC 2.4447 .0000 5.89691 .00 188.00 .0000 .0000 3.0000

LCOM2 84.2403 5.0000 748.85147 .00 54396.00 1.0000 5.0000 22.0000

MAXCC 4.9551 3.0000 8.27738 .00 244.00 1.0000 3.0000 6.0000

FOUT 1.7975 1.0000 3.43117 .00 98.00 .0000 1.0000 2.0000

EXT 18.5446 8.0000 29.03112 .00 382.00 .0000 8.0000 23.0000

NSUP .8086 1.0000 .93752 .00 7.00 .0000 1.0000 1.0000

TCC 24.3188 10.0000 51.06310 .00 1399.00 3.0000 10.0000 25.0000

NSUB .3972 .0000 2.66535 .00 89.00 .0000 .0000 .0000

MPC 18.5446 8.0000 29.03112 .00 382.00 .0000 8.0000 23.0000

INTR .3203 .0000 .67277 .00 9.00 .0000 .0000 .0000

CC 24.6391 10.0000 51.21183 .00 1405.00 3.0000 10.0000 25.0000

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

3.1 THE ROC ANALYSIS

ROC is a diagnostic accuracy test [37]. The ROC

method can be used to assess the quality of the

information provided by the classification of classes into

a binary category using a metric. To plot the ROC

curve, we need to define two variables: one binary (i.e.,

0 or 1) and another continuous. In our study, we have

two contexts: the binary and the ordinal categorization.

The classes in the ordinal categorization should be

considered one by one, i.e., we need to plot the ROC

curve for each category (Nominal, Low, Medium, and

High) leaving the No-error category as the option. The

continuous variable in both categorizations is the metric

used in the study. There are four possible outcomes

from a binary classifier. If the outcome from a

prediction is p and the actual value is also p, then it is

called a true positive (TP); however if the actual value

is n then it is said to be a false positive (FP).

Conversely, a true negative (TN) has occurred when

both the prediction outcome and the actual value are n,

and false negative (FN) is when the prediction outcome

is n while the actual value is p. From P positive

instances and N negative instances. The four outcomes

can be formulated in a 2×2 contingency

table or confusion matrix, as follows:

 To draw a ROC curve, only the true positive rate

(TPR) and false positive rate (FPR) are needed (as

functions of some classifier parameter). The TPR

defines how many correct positive results occur among

all positive samples available during the test. FPR, on

the other hand, defines how many incorrect positive

results occur among all negative samples available

during the test.

A ROC space is defined by FPR and TPR

as x and y axes respectively, which depicts relative

trade-offs between true positive (benefits) and false

positive (costs). Since TPR is equivalent

with sensitivity and FPR is equal to 1 − specificity, the

ROC graph is sometimes called the sensitivity vs. (1 −

specificity) plot. Each prediction result or instance of a

confusion matrix represents one point in the ROC space.

The best possible prediction method would yield a

point in the upper left corner or coordinate (0, 1) of the

ROC space, representing 100% sensitivity (no false

negatives) and 100% specificity (no false positives).

The sensitivity and specificity are calculated from the

confusion matrix as follows:

 Sensitivity=tp rate

 =TP/P

Specificity=1−fp rate

 =1−FP/N

We need a criterion to choose a threshold value for a

metric (sensitivity, 1-specificty pair) to balance between

benefits and costs. Our choice is a commonly used

criterion that chooses the pair that has the maximum

value for both sensitivity and specificity [38]. In other

words, we want to minimize false-positives (false

alarms) and false-negatives at the same time. The

threshold values obtained from the ROC analysis need

to be validated by the classification performance of the

ROC before they can be used in practice. The area under

ROC curve ranges between 0 and 1—it measures the

classification performance of using the threshold value

to put classes into Error (flag alarm) or No-error (don’t

flag alarm) categories. The graph below shows three

ROC curves representing excellent, good, and worthless

tests plotted on the same graph. The accuracy of the test

depends on how well the test separates the group being

tested into those with and without the error in classes.

Accuracy is measured by the area under the ROC curve.

An area of 1 represents a perfect test; an area of .5

represents a worthless test. A rough guide for

classifying the accuracy of a diagnostic test is the

traditional academic point system:

The general rule to evaluate the classification

performance is to find the area under the curve

(AUC)[38]:

• AUC=0.5 means no good classification;

http://en.wikipedia.org/wiki/Contingency_table
http://en.wikipedia.org/wiki/Contingency_table
http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/Specificity_(tests)
http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/Specificity_(tests)

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 57

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

• 0.5<AUC<0.6 means poor classification;

• 0.6≤AUC<0.7 means fair classification;

• 0.7≤AUC<0.8 means acceptable classification;

• 0.8≤AUC<0.9 means excellent classification;

• AUC≥0.9 means outstanding classification.

For calculating AU, we have used IBM SPSS

statistics Version 19. The rationale behind the

classification of false positive as false alarm is

that some classes showing not so good result of

sensitivity but good result for specificity value. It

means the threshold value obtained corresponding for

this value from AUC not give the right threshold value

for detecting error free or error prone classes. So, our

aim is to take those pair of sensitivity and specificity

value that has higher value of sensitivity (i.e. true

positive rate) and less specificity (i.e. false positive

rate).

Figure1: Compairing ROC curve for calculating AUC

The practical threshold values should have a

classification performance falls at least within the

acceptable range. Therefore, the metrics that have AUC

within the acceptable (or higher) range will be

considered valid; otherwise, we conclude that we could

not find a practical threshold value for the metric. The

ROC analysis is very effective for data with skewed

distribution and unequal classification error costs [39]

and is suitable for analyzing our data because our data is

not normally distributed and somewhat skewed.

3.2 The Binary Categorization Results

Table 6 shows that the AUC for all metrics in the three

releases falls below the acceptable range. We consider

AUC as an indicator of practical and useful threshold

values. We conclude that the threshold values presented

in Table VI are not practical, because the classification

power as represented by the AUC is either fair or poor.

So, we cannot reject Hypothesis 1 (i.e., There is no

significant classification in the metric between the two

categories of modules). Therefore, we could not find

practical threshold values for the metrics to differentiate

Error and No-error classes.

We conclude that the threshold values presented in

Table VI are only practical for NOS, PACK, RFC,

NLOC, EXT MPC and CC metrics only for Eclipse2.1

and Eclipse 3.0 not for Eclipse2.0. Other metric

thresholds are not practical, because the classification

power represented by the AUC is either fair or poor. So,

we cannot fully accept or reject Hypothesis 1 (i.e., There

is no significant classification in the metric between the

two categories of modules). Therefore, we could not

find practical threshold values for the metrics to

differentiate Error and No-error classes.

3.3 The Ordinal Categorization Results

For testing Hypothesis 2, we tried the same experiment

on more fine-grained error categories (Nominal, Low,

Medium, and High). The identified threshold values are

presented in Table 7. In all the three releases, we noticed

that the metric threshold values for the nominal category

were either poor or fair. The threshold values for the

low, Medium and High categories for the NOS, UWCS,

CC, RFC, NLOC, EXT, MPC, LMC, TCC, PACK,

NOM, LCOM2, INST, CBO, MAXCC, FOUT and

AVCC metrics were valid, practical, and useful, because

their AUCs were within the acceptable and excellent

range, whereas the AUCs of the other metrics were

neither practical nor useful, because they were out of the

acceptable range. Therefore we concluded that

Hypothesis 2 was rejected for the NOS, UWCS, CC,

RFC, NLOC, EXT, MPC, LMC, TCC, PACK, NOM,

LCOM2, INST, CBO, MAXCC, FOUT and AVCC

metrics. Thus, we can use the threshold values for these

metrics.

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 6: Threshold recognized based on the binary categorization

Metrics

Used

Eclipse 2.0 Eclipse 2.1 Eclipse3.0

AUC Threshold AUC Threshold AUC Threshold

NOM 0.639 7.500 0.668 6.500 0.686 6.500

LCOM 0.540 .0450 0.541 0.0450 0.560 0.0450

AVCC 0.636 1.615 0.675 1.7450 0.660 1.6250

NOS 0.663 31.500 0.714 38.500 0.717 37.500

UWCS 0.619 8.500 0.664 10.500 0.689 9.500

INST 0.561 1.500 0.612 1.500 0.644 1.500

PACK 0.673 3.500 0.727 4.500 0.706 4.500

RFC 0.680 15.500 0.720 19.500 0.719 18.500

CBO 0.587 2.500 0.578 2.500 0.589 1.500

NLOC 0.663 47.500 0.712 52.500 0.717 51.500

FIN 0.513 0.500 0.507 0.500 0.537 0.500

DIT 0.534 1.500 0.537 1.500 0.522 1.500

COH 0.541 .0450 0.550 0.1050 0.539 0.1050

LMC 0.642 0.500 0.678 0.500 0.675 0.500

LCOM2 0.624 5.500 0.625 5.500 0.656 5.500

MAXCC 0.647 2.500 0.692 3.500 0.686 3.500

FOUT 0.620 1.500 0.609 0.500 0.615 0.500

EXT 0.681 10.500 0.726 11.500 0.715 10.500

NSUP 0.534 0.500 0.533 0.500 0.521 0.500

TCC 0.658 9.500 0.697 12.500 0.705 12.500

NSUB 0.502 0.500 0.514 0.500 0.511 0.500

MPC 0.681 8.500 0.726 11.500 0.715 10.500

INTR 0.521 0.500 0.536 0.500 0.548 0.500

CC 0.645 10.500 0.696 15.500 0.709 15.500

4 Analysis and Discussion on Applying
Thresholds in Practice

For the binary category, we could not identify useful

and practical threshold values to separate classes into

either erroneous or not-erroneous classes. For the

ordinal category, we identified useful and practical

threshold values for the NOS, UWCS, CC, RFC,

NLOC, EXT, MPC, LMC, TCC, PACK, NOM,

LCOM2, INST, CBO, MAXCC, FOUT and AVCC

metrics. We summarized the identified threshold values

in Table VIII for both the Medium and the High

categories. Our expectation was that the threshold

values in the High category should be higher than that in

the Low and Medium category. We observed this

behavior for the Eclipse 2.0 and 2.1version, whereas the

Versions 3.0 data showed the opposite (i.e., low and

Medium values are larger than High values). This result

indicates that our Low, Medium and High categories are

not so distinguishable. The first reading of it is that this

was caused by the abnormal distribution of error

categories. But, for abnormal distributed data the ROC

analysis is effective [32]. As these categories were

ordinal rankings, we merged the Low, Medium and

High categories into one category by finding the average

of all these three categories of every version and again

recalculated threshold values for these metrics as shown

in Table 9. We used the Sensitivity and Specificity

values (they indicate efficiency in classifying faulty

classes) to order the metric values in Table IX. We

noticed that the size metrics (NOS and UWCS) came

before the (CC and RFC) metrics. This information tells

that the size metrics are better indicators of faulty

classes. These results showed that the threshold values

differed from one release to another. With the highest

Sensitivity value as the selection standard, we choose

the final threshold values for the NOS, UWCS, CC,

RFC, NLOC, EXT, MPC, LMC, TCC, PACK, NOM,

LCOM2, INST, CBO, MAXCC, FOUT and AVCC

metrics and result is summarized in Table 10. These

values can be used by developers as a guideline for

designing classes, if the metrics exceed the threshold

value then, there is chances of error prone classes.

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 59

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 7. Threshold values for all metrics

As we did our study on Eclipse, we believe that the

research results can be generalized to the OO systems

that are similar to Eclipse—an industrial-strength

system that is continuously evolving with thousands of

classes. Our idea is based on the fact that we analyzed

the system at the class level and drew the conclusions

from the classes, not from the system. Any OO system

that is as complex as Eclipse shares (among its class

structures) common design attributes such as size,

inheritance, objects, message passing, abstract data

types, and polymorphism[25]; these are the attributes

that the metrics measure. The fact that Eclipse is an

open-source system does not limit our research results to

just the open-source systems because the open-source

model adopted by Eclipse is different from that adopted

by Linux. The Eclipse evolution is managed by a

centralized team of engineers (in IBM Corporation). In

this regard, the evolution of Eclipse is similar to many

large industrial software systems. It is reasonable to

believe that the software engineering process that

controls the evolution of the Eclipse project is similar to

the processes used by other organizations to evolve

software systems that are similar in size and complexity

to Eclipse.

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 60

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 9. Candidate threshold values and their distributions

METRIC

USED

VER. LOW THR. MEDIUM THR. HIGH

THR.

NOM E2.0 9.5 10.50 11.5

E2.1 11.5 12.50 13.5

E3.0 11.5 8.50 9.5

 AVCC E2.0 N/A N/A N/A

E2.1 2.1050 2.1950 2.1650

E3.0 2.1050 N/A N/A

NOS E2.0 32.5 73 77.5

E2.1 88.5 99.5 123.5

E3.0 82.5 74.5 70.50

UWCS E2.0 10.5 17.5 16.5

E2.1 16.5 15.4 24.5

E3.0 17.5 14.5 18.5

INST E2.0 N/A 3.5 4.5

E2.1 3.5 3.5 17.5

E3.0 4.5 3.5 4.5

PACK E2.0 7.5 9.5 12.5

E2.1 8.5 8.5 12.5

E3.0 7.5 N/A 6.5

RFC

E2.0 29.5 33.5 40.5

E2.1 38.5 42.5 49.5

E3.0 39.5 24.5 31.5

CBO E2.0 N/A 4.5 4.5

E2.1 N/A 3.5 2.5

E3.0 3.5 3.5 3.5

NLOC E2.0 57.5 83.5 92.5

E2.1 114.5 129.5 163.5

E3.0 111.5 69.5 95.5

FIN E2.0 N/A 1.500 1.500

E2.1 N/A N/A N/A

E3.0 N/A 1.500 N/A

LMC E2.0 0.500 1.500 2.500

E2.1 2.500 1.500 3.500

E3.0 2.500 N/A 1.500

LCOM2 E2.0 9.500 13.500 42.500

E2.1 15.500 27.500 25.500

E3.0 27.5 10.5 18.5

MAXCC E2.0 4.5 4.5 5.5

E2.1 5.5 6.5 5.5

E3.0 5.5 N/A 4.5

FOUT E2.0 N/A 1.5 2.5

E2.1 1.5 1.5 2.5

E3.0 1.5 N/A 1.5

EXT E2.0 16.5 22.5 31.5

E2.1 25.5 26.5 33.5

E3.0 23.5 N/A 20.5

TCC E2.0 18.5 20.5 31.5

E2.1 23.5 31.5 36.5

E3.0 26.5 21.5 22.5

MPC E2.0 16.5 12.5 31.5

E2.1 25.5 26.5 33.5

E3.0 23.5 N/A 20.5

CC E2.0 14.5 25.5 36.5

E2.1 30.5 38.5 45.5

E3.0 31.5 24.5 26.5

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

Table 10. Candidate threshold values.

Metrics Threshold Rank of use

NOS 61 1

UWCS 119 2

CC 26 3

RFC 44 4

NLOC 78 5

EXT 29 6

MPC 29 7

LMC 2 8

TCC 31 9

PACK 10 10

NOM 13 11

LCOM2 22 12

INST 8 13

CBO 4 14

MAXCC 6 15

FOUT 2 16

AVCC 2 17

4.1 Discussion

The aim of this work is to test the two hypothesis

defined in hypothesis section .The results shows that

there are no acceptable threshold values for each Eclipse

version of the OO metrics that separate between the two

categories of modules(the modules that had errors and

modules that did not have errors) in the binary

categorization. We found the threshold value for some

metrics NOS, PACK, RFC, NLOC, EXT,MPC for

Eclipse 2.1 and Eclipse 3.0, but not for Eclipse 2.0.

That’s why we cannot reject the Hypothesis 1. On the

other hand , in case of ordinal categorization we got the

threshold value for some metrics NOS, UWCS, CC,

RFC, NLOC, EXT, MPC, LMC, TCC,

PACK,NOM,LCOM2,INST,CBO,MAXCC,FOUT,AV

CC for the merged categories(Low, Medium and High

categories), but not for the nominal category. Therefore,

we rejected Hypothesis 2.

Table 11: Comparison of threshold

Metrics Rosenberg

threshold

Shatnawi et.

al. threshold

Proposed

threshold

RFC 100 44 44

CBO 5 13 4

We compared the threshold values that we identified,

which are tabulated in Table 11, with the threshold

values suggested by [40] and [20]. We noticed that our

threshold values are all smaller than theirs (only two

metrics are common). As our assumption is that there

are more errors in the modules before the release so that

smaller threshold values should be able to identify error

prone modules in the development phase. The result is

according to our requirement. We then conducted a test

on their values by applying their threshold values on the

Eclipse system and calculated the Sensitivity and 1-

specificity. The test result shows that Rosenberg’s

thresholds are not useful but Shatnawi et al threshold are

somewhat useful but not totally useful in finding faulty

classes in the Eclipse system, i.e., the sensitivity values

were low.

5 Conclusions and Future Work

Eclipse data (bug and metric data) and Statistical

analysis (ROC and AUC) are used to test the threshold

values of OO metrics in two context, the binary (Error

and No-error) and the ordinal .We have used total 24

software metrics out of which 17 metrics threshold

value are successfully identified which can distinguish

between high risk error prone class in the ordinal

categorization from the No-error classes. We were

unable to find threshold values for the metrics in binary

categorization. We believe that our research findings are

useful for software engineers because our approach help

them to easily estimate the metric values for the classes

that they design and our threshold value give them idea

not to move their design into a high-risk area. The

results are beginning because we only validated the

values using three releases of one system that is in the

pre-release evolution process. On the other hand, we

consider that the findings are a good step because the

values are explicitly associated with a concerned design

factor: the error proneness of Java classes. In terms of

future scope we suggest more empirical studies on this

subject, particularly on how effective these values are in

various contexts.The thresholds should be applied to

other software systems for verifying the correctness.

Since the verification is missing,the thresholds are of

limited practical value at this stage.We will apply these

threshold value in future for different software systems.

References

[1] Kecia A. M. Ferreira, Mariza A. S. Bigonha,

Roberto S. Bigonha, Luiz F. O. Mendes and Heitor

C. Almeida, (February, 2012). Identifying thresholds

for object-oriented software metrics’, Journal of

Systems and Software, Volume 85 No. 2, pp. 244-

257.

http://dl.acm.org/author_page.cfm?id=81453635791&coll=DL&dl=ACM&trk=0&cfid=319069068&cftoken=47454970
http://dl.acm.org/author_page.cfm?id=81453640602&coll=DL&dl=ACM&trk=0&cfid=319069068&cftoken=47454970
http://dl.acm.org/author_page.cfm?id=81453651003&coll=DL&dl=ACM&trk=0&cfid=319069068&cftoken=47454970
http://dl.acm.org/author_page.cfm?id=81453624503&coll=DL&dl=ACM&trk=0&cfid=319069068&cftoken=47454970
http://dl.acm.org/author_page.cfm?id=81453624503&coll=DL&dl=ACM&trk=0&cfid=319069068&cftoken=47454970

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 62

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

[2] Myers G, Badgett T, Thomas T, and Sandler C.

(2004). The Art of Software Testing, 2nd ed,,Wiley,

Hoboken NJ.

[3] Basili V, Briand L, and Melo W. (1996). A

validation of object-oriented metrics as quality

indicators, IEEE Transactions on Software

Engineering; volume 22 No.10, pp. 751–761.

[4] Briand L, Daly J and Wust J. (1998). A unified

framework for cohesion measurement in object-

oriented systems, Empirical Software Engineering;

Volume 3 No.1, pp. 65–117.

[5] Gyimothy T, Ferenc R and Siket I. (2005). Empirical

validation of object-oriented metrics on open source

software for fault prediction, IEEE Transactions on

Software Engineering; Volume 31 No.10, pp. 897–

910.

[6]Shatnawi R and Li W. (2008). The effectiveness of

software metrics in identifying error-prone classes in

post-release software evolution process, Journal of

Systems and Software, Volume 81 No.11, pp. 1868–

1882.

[7] Subramanyam R, and Krishnan M. (2003).

Empirical analysis of CK metrics for object-oriented

design complexity: Implications for software

defects, IEEE Transactions on Software

Engineering, Volume 29 No.4, pp. 297–310.

[8] Victor R. Basili, Lionel Briand and Walcélio L.

Melo (April 1995). A Validation of Object-Oriented

Design Metrics as Quality Indicators, Univ. of

Maryland, Dep. of Computer Science, College Park,

MD, 20742 USA/REP.

[9] R. A. Khan, K. Mustafa and S. I. Ahson. (2007). An

Empirical Validation of Object Oriented Design

Quality Metrics’, Comp. & Info. Sci., J. King Saud

Univ., Vol. 19, pp. 1-16.

[10] Saïda Benlarbi and Walcelio L. Melo (1999).

Polymorphism Measures for Early Risk Prediction’,

Proceedings of the 1999 International Conference

on Software engineering, Page(s): 334 – 344.

[11] Binkley, A.B. and Schach, S.R (1998). Validation

of the coupling dependency metric as a predictor of

run-time failures and maintenance measures,

Proceedings of the 1998 International Conference

on Software Enggineering, Page(s): 452 - 455 .

[12] Lionel Briand, Prem Devanbu and Walcelio Melo

(1997) An Investigation into Coupling Measures for

C++’, Proc. of the 19th International Conference on

Software Engeneering, 18-23 May, 1997.

[13] Lionel C. Briand, Jürgen Wust, Stefan

Ikonomovski and Hakim Lounis (1998). A

Comprehensive Investigation of Quality Factors in

Object-Oriented Designs: an Industrial Case Study

,ISERN-98-29, IESE-Report No. 47.98/E.

[14] L.C..Briand, J.Daly and V.Porter, (2000).

Exploring the Relationships between Design Measu

res and Software Quality in Object-Oriented

Systems, Journal of Systems and software,Volume

51, pp. 245—273.

[15] Brito e Abreu, F. and Melo, W.(1996)’Evaluating

the impact of object-oriented design on software

quality, Software Metrics Symposium, 1996.,

Proceedings of the 3rd International, pp. 90 – 99.

[16] Cartwright, M. and Shepperd, M. (2000). An

empirical investigation of an object-oriented

software system, Software Engineering, IEEE

Transactions on , pp.786 - 796 .

[17] Harrison, R., Counsell, S. and Nithi, R. (1998).

Coupling metrics for object-oriented design,

Software Metrics Symposium, 1998. Metrics 1998.

Proceedings. Fifth International, pp. 150 – 157.

[18] Mei-Huei Tang , Ming-Hung Kao and Mei-Hwa

Chen / (1999). An empirical study on object-oriented

metrics, Proceedings of the Sixth International

Software Metrics Symposium, 1999, pp. 242 – 249.

[19] Shatnawi, R. (2010). A Quantitative Investigation

of the Acceptable Risk Levels of Object-Oriented

Metrics in Open-Source Systems, IEEE

Transactions on Software Engineering, Volume

36 No. 2 ,pp. 216 – 225.

 [20] Raed Shatnawi, Wei Li,James Swain and Tim

Newman. (2010). Finding software metrics threshold

values using ROC curves, Journal of Software

Maintenance and Evolution: Research and Practice,

Volume 22No. 1, pp. 1–16.

 [21] Raed Shatnawi and Qutaibah Althebyan (2013).

An Empirical Study of the Effect of Power Law

Distribution on the Interpretation of OO Metrics,

ISRN Software Engineering, Volume 2013 (2013),

Article ID 198937, 18 pages.

[22] Sarabjit Kaur, Satwinder Singh and Harshpreet

Kaur (2013). A Quantitative Investigation Of

Software Metrics Threshold Values At Acceptable

Risk Level, International Journal of Engineering

Research & Technology (IJERT), Vol. 2 ,Issue 3,

ISSN: 2278-0181.

[23] M.Lorenz and J.Kidd (1994). Object- Oriented

Software Metrics, Prentice –Hall.

[24] Gyimothy T, Ferenc R and Siket, I. (2005).

Empirical validation of object-oriented metrics on

open source software for fault prediction, IEEE

Transactions on Software Engineering 2005,

Volume 31 No.10, pp. 897–910.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6783
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6783
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6783
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Binkley,%20A.B..QT.&searchWithin=p_Author_Ids:38132989200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schach,%20S.R..QT.&searchWithin=p_Author_Ids:37275546800&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=671604&contentType=Conference+Publications&searchWithin%3Dp_Authors%3A.QT.Binkley%2C+%2FA%2F.B..QT.%26searchWithin%3Dp_Author_Ids%3A38132989200
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=671604&contentType=Conference+Publications&searchWithin%3Dp_Authors%3A.QT.Binkley%2C+%2FA%2F.B..QT.%26searchWithin%3Dp_Author_Ids%3A38132989200
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=671604&contentType=Conference+Publications&searchWithin%3Dp_Authors%3A.QT.Binkley%2C+%2FA%2F.B..QT.%26searchWithin%3Dp_Author_Ids%3A38132989200
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5475
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5475
http://simula.no/people/briand
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Brito%20e%20Abreu,%20F..QT.&searchWithin=p_Author_Ids:37331301600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Melo,%20W..QT.&searchWithin=p_Author_Ids:37314294600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3548
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3548
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cartwright,%20M..QT.&searchWithin=p_Author_Ids:37565913500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shepperd,%20M..QT.&searchWithin=p_Author_Ids:37329329700&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=879814&contentType=Journals+%26+Magazines&searchWithin%3Dp_Authors%3A.QT.Cartwright%2C+M..QT.%26searchWithin%3Dp_Author_Ids%3A37565913500
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=879814&contentType=Journals+%26+Magazines&searchWithin%3Dp_Authors%3A.QT.Cartwright%2C+M..QT.%26searchWithin%3Dp_Author_Ids%3A37565913500
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=879814&contentType=Journals+%26+Magazines&searchWithin%3Dp_Authors%3A.QT.Cartwright%2C+M..QT.%26searchWithin%3Dp_Author_Ids%3A37565913500
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Harrison,%20R..QT.&searchWithin=p_Author_Ids:37329422100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Counsell,%20S..QT.&searchWithin=p_Author_Ids:37323873300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nithi,%20R..QT.&searchWithin=p_Author_Ids:37374289800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5914
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5914
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mei-Huei%20Tang.QT.&searchWithin=p_Author_Ids:37438191500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ming-Hung%20Kao.QT.&searchWithin=p_Author_Ids:37432215300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mei-Hwa%20Chen.QT.&searchWithin=p_Author_Ids:37280982700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mei-Hwa%20Chen.QT.&searchWithin=p_Author_Ids:37280982700&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6580
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shatnawi,%20R..QT.&searchWithin=p_Author_Ids:38111322800&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5439565
http://onlinelibrary.wiley.com/doi/10.1002/smr.v22:1/issuetoc
http://www.hindawi.com/51025861/
http://www.hindawi.com/71734318/

Kumari & Rajnish Finding error-prone classes at design time using class based OO metrics threshold 63

INFOCOMP, v. 12, no 1, p. 49-63, June 2013

[25] Subramanyam R and Krishnan M. (2003).

Empirical analysis of CK metrics for object-oriented

design complexity: Implications for software

defects’, IEEE Transactions on Software

Engineering 2003,Volume 29 No. 4, pp. 297–310.

[26] Li W and Shatnawi R. (2007). An empirical study

of the bad smells and errors in object-oriented

design, Journal of Systems and Software 2007;

Volume 80 No. 7, pp. 1120–1128.

[27]Yogesh Singh, Arvinder Kaur and Ruchika

Malhotra (2008). Emprical investigation to find the

Effect of Design Metrics on Fault Proneness,

Proceedings of the 2nd national

conference;INDIACOM-2008

[28] Eclipse bug data (for archived releases):

http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse

(Accessed 20 November 2012)

[29] Eclipse source code (for archived releases):

http://archive.eclipse.org/eclipse/downloads/

(Accessed 3 December 2012)

[30] A. Schröter, T. Zimmermann, R. Premraj, and A.

Zeller. (2006). If your bug database could talk..., in

Proceedings of the 5th International Symposium on

Empirical Software Engineering. Volume II: Short

Papers and Posters, 2006, pp. 18-20.

[31] BalaSubramanian N. V. (1996). Object-Oriented

Metrics, Asian Pacific Software Engineering

Conference (APSEC-96), pp. 30-34.

[32] JHAWK metrics reference

http://www.virtualmachinery.com/jhawkreferences.h

tml (Accessed March 2013)

[33] Chidamber S and Kemerer C. (1994). A

metrics suite for object oriented design’, IEEE

Transactions on Software Engineering 1994,

Volume 20 No.6, pp. 476–493.

[34] JHAWK metrics reference

http://www.aivosto.com/project/help/pm-oomisc.

html (Accessed march 2013)

[35] T. J. McCabe (1976). A complexity measure, IEEE

Trans. Software Eng., Volume 2 No. 4, pp. 308–

320.

[36] R. Barker, and E. Tempero, (2007). A Large-Scale

Empirical Comparison of Object-Oriented Cohesion

Metrics, In Proceedings of the 14th Asia-Pacific

Software Engineering Conference, 2007, pp. 414-

421.

[37] Zweig M and Campbell G. (1993). Receiver-

operating characteristic (ROC) plots: A fundamental

evaluation tool in clinical medicine, Clinical

Chemistry 1993; 39(4):561–577.

[38] Hosmer D and Lemeshow S. (2000). Applied

Logistic Regression, Wiley-Interscience, 2nd

ed,,New York NY.

[39] Fawcett T. (2004). ROC graphs: Notes and

practical considerations for researchers, Technical

Report, HP Laboratories, Page Mill Road, Palo Alto,

CA, 2004; 38.

 [40] Rosenberg L. (1998). Applying and interpreting

object oriented metrics’, Software Technology

Conference, 1998.

http://archive.eclipse.org/eclipse/downloads/(Accessed
http://archive.eclipse.org/eclipse/downloads/(Accessed
http://www.aivosto.com/project/help/pm-oomisc

	[1] Kecia A. M. Ferreira, Mariza A. S. Bigonha, Roberto S. Bigonha, Luiz F. O. Mendes and Heitor C. Almeida, (February, 2012). Identifying thresholds for object-oriented software metrics’, Journal of Systems and Software, Volume 85 No. 2, pp. 244-257.
	[2] Myers G, Badgett T, Thomas T, and Sandler C. (2004). The Art of Software Testing, 2nd ed,,Wiley, Hoboken NJ.
	[3] Basili V, Briand L, and Melo W. (1996). A validation of object-oriented metrics as quality indicators, IEEE Transactions on Software Engineering; volume 22 No.10, pp. 751–761.
	[4] Briand L, Daly J and Wust J. (1998). A unified framework for cohesion measurement in object-oriented systems, Empirical Software Engineering; Volume 3 No.1, pp. 65–117.
	[5] Gyimothy T, Ferenc R and Siket I. (2005). Empirical validation of object-oriented metrics on open source software for fault prediction, IEEE Transactions on Software Engineering; Volume 31 No.10, pp. 897–910.
	[6]Shatnawi R and Li W. (2008). The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process, Journal of Systems and Software, Volume 81 No.11, pp. 1868–1882.
	[7] Subramanyam R, and Krishnan M. (2003). Empirical analysis of CK metrics for object-oriented design complexity: Implications for software defects, IEEE Transactions on Software Engineering, Volume 29 No.4, pp. 297–310.
	[8] Victor R. Basili, Lionel Briand and Walcélio L. Melo (April 1995). A Validation of Object-Oriented Design Metrics as Quality Indicators, Univ. of Maryland, Dep. of Computer Science, College Park, MD, 20742 USA/REP.
	[9] R. A. Khan, K. Mustafa and S. I. Ahson. (2007). An Empirical Validation of Object Oriented Design Quality Metrics’, Comp. & Info. Sci., J. King Saud Univ., Vol. 19, pp. 1-16.
	[10] Saïda Benlarbi and Walcelio L. Melo (1999). Polymorphism Measures for Early Risk Prediction’, Proceedings of the 1999 International Conference on Software engineering, Page(s): 334 – 344.
	[11] Binkley, A.B. and Schach, S.R (1998). Validation of the coupling dependency metric as a predictor of run-time failures and maintenance measures, Proceedings of the 1998 International Conference on Software Enggineering, Page(s): 452 - 455 .
	[12] Lionel Briand, Prem Devanbu and Walcelio Melo (1997) An Investigation into Coupling Measures for C++’, Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997.
	[13] Lionel C. Briand, Jürgen Wust, Stefan Ikonomovski and Hakim Lounis (1998). A Comprehensive Investigation of Quality Factors in Object-Oriented Designs: an Industrial Case Study ,ISERN-98-29, IESE-Report No. 47.98/E.
	[14] L.C..Briand, J.Daly and V.Porter, (2000). Exploring the Relationships between Design Measures and Software Quality in Object-Oriented Systems, Journal of Systems and software,Volume 51, pp. 245—273.
	[15] Brito e Abreu, F. and Melo, W.(1996)’Evaluating the impact of object-oriented design on software quality, Software Metrics Symposium, 1996., Proceedings of the 3rd International, pp. 90 – 99.
	[16] Cartwright, M. and Shepperd, M. (2000). An empirical investigation of an object-oriented software system, Software Engineering, IEEE Transactions on , pp.786 - 796 .
	[17] Harrison, R., Counsell, S. and Nithi, R. (1998). Coupling metrics for object-oriented design, Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth International, pp. 150 – 157.
	[18] Mei-Huei Tang , Ming-Hung Kao and Mei-Hwa Chen / (1999). An empirical study on object-oriented metrics, Proceedings of the Sixth International Software Metrics Symposium, 1999, pp. 242 – 249.
	[19] Shatnawi, R. (2010). A Quantitative Investigation of the Acceptable Risk Levels of Object-Oriented Metrics in Open-Source Systems, IEEE Transactions on Software Engineering, Volume 36 No. 2 ,pp. 216 – 225.
	[20] Raed Shatnawi, Wei Li,James Swain and Tim Newman. (2010). Finding software metrics threshold values using ROC curves, Journal of Software Maintenance and Evolution: Research and Practice, Volume 22No. 1, pp. 1–16.
	[21] Raed Shatnawi and Qutaibah Althebyan (2013). An Empirical Study of the Effect of Power Law Distribution on the Interpretation of OO Metrics, ISRN Software Engineering, Volume 2013 (2013), Article ID 198937, 18 pages.
	[22] Sarabjit Kaur, Satwinder Singh and Harshpreet Kaur (2013). A Quantitative Investigation Of Software Metrics Threshold Values At Acceptable Risk Level, International Journal of Engineering Research & Technology (IJERT), Vol. 2 ,Issue 3, ISSN: 227...
	[23] M.Lorenz and J.Kidd (1994). Object- Oriented Software Metrics, Prentice –Hall.
	[24] Gyimothy T, Ferenc R and Siket, I. (2005). Empirical validation of object-oriented metrics on open source software for fault prediction, IEEE Transactions on Software Engineering 2005, Volume 31 No.10, pp. 897–910.
	[25] Subramanyam R and Krishnan M. (2003). Empirical analysis of CK metrics for object-oriented design complexity: Implications for software defects’, IEEE Transactions on Software Engineering 2003,Volume 29 No. 4, pp. 297–310.
	[26] Li W and Shatnawi R. (2007). An empirical study of the bad smells and errors in object-oriented design, Journal of Systems and Software 2007; Volume 80 No. 7, pp. 1120–1128.
	[27]Yogesh Singh, Arvinder Kaur and Ruchika Malhotra (2008). Emprical investigation to find the Effect of Design Metrics on Fault Proneness, Proceedings of the 2nd national conference;INDIACOM-2008
	[28] Eclipse bug data (for archived releases): http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse (Accessed 20 November 2012)
	[29] Eclipse source code (for archived releases): http://archive.eclipse.org/eclipse/downloads/ (Accessed 3 December 2012)
	[30] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller. (2006). If your bug database could talk..., in Proceedings of the 5th International Symposium on Empirical Software Engineering. Volume II: Short Papers and Posters, 2006, pp. 18-20.
	[31] BalaSubramanian N. V. (1996). Object-Oriented Metrics, Asian Pacific Software Engineering Conference (APSEC-96), pp. 30-34.
	[32] JHAWK metrics reference http://www.virtualmachinery.com/jhawkreferences.html (Accessed March 2013) [33] Chidamber S and Kemerer C. (1994). A metrics suite for object oriented design’, IEEE Transactions on Software Engineering 1994, Volume 20 ...
	[34] JHAWK metrics reference http://www.aivosto.com/project/help/pm-oomisc. html (Accessed march 2013)
	[35] T. J. McCabe (1976). A complexity measure, IEEE Trans. Software Eng., Volume 2 No. 4, pp. 308–320.
	[36] R. Barker, and E. Tempero, (2007). A Large-Scale Empirical Comparison of Object-Oriented Cohesion Metrics, In Proceedings of the 14th Asia-Pacific Software Engineering Conference, 2007, pp. 414-421.
	[37] Zweig M and Campbell G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clinical Chemistry 1993; 39(4):561–577.
	[38] Hosmer D and Lemeshow S. (2000). Applied Logistic Regression, Wiley-Interscience, 2nd ed,,New York NY.
	[39] Fawcett T. (2004). ROC graphs: Notes and practical considerations for researchers, Technical Report, HP Laboratories, Page Mill Road, Palo Alto, CA, 2004; 38.
	[40] Rosenberg L. (1998). Applying and interpreting object oriented metrics’, Software Technology Conference, 1998.

