
Modeling and Analysis of Real Time Fixed
Priority Scheduling using UML 2.0

RUMPA HAZRA1

SHOUVIK DEY2

ANANYA KANJILAL3

SWAPAN BHATTACHARYA4

1Heritage Institute of Technology, Kolkata, India
2Cognizant Technology Solutions, Kolkata, India

3B.P. Poddar Institute of Management and Technology, Kolkata, India
4National Institute of Technology, Surathkal, Karnataka, India

1(send2rumpa)@gmail.com
2send2shouvik@gmail.com

3ag_k@rediffmail.com
4bswapan2000@yahoo.co.in

Abstract. Real Time Systems (RTS) interact with their environments using time constrained input/output
signals. A functional misbehavior or a deviation from the specified time constraints may have catas-
trophic consequences. Hence, ensuring the correctness of such systems is extremely important and
necessary. The increasing complexities of now-a-days ubiquitous real time systems require using an
adequate modeling language. Unified Modeling Language (UML), a widely used visual object oriented
modeling language, has proved to be effective and suitable for real time systems. The paper discusses
the ability of UML and its profile to determine the schedulability of a fixed priority real time system.
This paper puts stresses on the occurrence of deadlock in using the Priority Inheritance Protocol and
prevention of such using the Priority Ceiling Protocol. Using UML 2.0 Sequence and Timing Diagrams,
we model these two protocols and further, we analyze and compare these models.

Keywords: Real Time Systems, UML, Priority Ceiling Protocol, Priority Inheritance Protocol, Deadlock

(Received March 31st, 2013 / Accepted August 8th, 2013)

1 Introduction

Real time systems are now omnipresent in modern so-
cieties in several domains such as avionics, control
of nuclear power station, multimedia communications,
robotics, systems on chip, air-traffic control, process
control, and numerous embedded systems etc. Devel-
oping a real time embedded system is a sophisticated
and complex task.

A real time system is one in which failure can oc-
cur in the time domain as well as in the more famil-
iar value domain. These systems can have a mixture
of timing constraints, broadly categorised as hard and

soft. A hard time constraint requires that a result must
be produced within a bounded interval otherwise a seri-
ous fault is said to occur. In a soft real time occasional
timing faults may be permitted. Examples of soft real
time system are video play back system, on line trans-
action system, telephone switches as well as electronic
games.

The real world is inherently concurrent, and a real
time system which is linked to the behaviour of the
real world must behave in a concurrent manner. Real
time systems are therefore usually engineered using a
number of concurrently running tasks, with timing con-

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.

(send2rumpa)@gmail.com
send2shouvik@gmail.com
ag_k@rediffmail.com
bswapan2000@yahoo.co.in


Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 37

straints placed on them. Because of this concurrency
there is contention for resources, requiring scheduling
(i.e. how tasks are granted access to a given resource).
The processor is an example of a resource which must
be scheduled, but other resources (such as network or
disk drive bandwidth) may also need to be scheduled.

In RTS, scheduling of tasks with hard deadlines has
been an important area of research. An important prob-
lem that arises in the context of such real time systems
is the effect of blocking. Blocking is occurred due to
the need for synchronization of tasks that share com-
mon logical or physical resources.

UML which is the de facto standard has become one
of the most widely used modeling languages for indus-
trial software systems, essentially because it is a semi-
formal notation, relatively easy to use and well sup-
ported by tools. It encourages the use of automated
tools that facilitate the development process from anal-
ysis through coding. This is particularly true for real
time embedded systems, whose behavioural aspects can
often be described via UML. It is therefore interesting
to consider how well UML is adapted to the real time
context. One important feature of UML stems from its
built-in extensibility mechanisms: stereotypes, tag val-
ues and profiles. These allow adapting UML to fit the
specificities of particular domains or to support a spe-
cific analysis.

The main contribution in this paper is to model, ana-
lyze and compare two existing protocols (Priority Inher-
itance and Priority Ceiling) using UML 2.0 Sequence
and Timing diagram. We could not find any such re-
lated works where this type of comparative analysis has
been done using UML model.

The paper is structured as follows. In section 2 we
provide the background of related work on which the
models are built. Section 3 describes the actual scope
of this work. Section 4 summarises the two real time
scheduling protocols considered here. In Section 5, we
focus on some of the new built-in features of UML 2.0
that fit the requirements of real time systems. Section 6
gives detail of our proposed work and finally section 7
concludes the paper.

2 Related Works

The vast majority of research work on real time systems
is centered on the concept of task. Real time theory does
not focus on the problem of generating the task set and
assigning non-functional properties to tasks. Generally,
task sets are assumed to be given by the designer, using
some adhoc software design methodology [1]. The con-
cept of a task is central to both the design and analysis
of real time systems.

In particular, formal studies of real time systems fre-
quently represent the time-constrained processing re-
quirements of the system as a set of periodic or sporadic
tasks with deadlines [15, 14, 3]. Both preemptive and
non preemptive scheduling algorithms have been stud-
ied in the literature [12, 13, 14].

Exclusive access to shared resources is typically en-
sured by having a semaphore [4] guard. In priority
inversion [23] higher priority jobs may be blocked by
lower-priority tasks. In one of the earlier attempts at
tackling blocking in the abstract (as opposed to with
respect to a particular environment) Mok [15]proposed
that critical sections execute non-preemptively; while
this approach restricts blocking to the length of the
largest critical section, it has the drawback that even
those tasks that do not ever access shared resources are
subject to blocking.

Lampson and Redell studied priority inversion and
blocking with respect to concurrent programming in
the Mesa environment [9, 10], and proposed a number
of solutions. These were generalized by Sha, Rajku-
mar, and Lehoczky [23], and incorporated into the rate-
monotonic (RM) scheduling framework [7].

UML (Unified Modeling Language)[17] has be-
come one of the most widely used standards for mod-
eling and designing industrial software systems, essen-
tially because it is a semiformal notation, relatively easy
to use and well supported by tools. UML provides a va-
riety of instruments to describe the characteristics of a
generic system in corresponding models. However, it is
not complete, in the sense that the basic elements of the
language cannot cover all potential needs for describ-
ing specific systems from any domain. Hence in some
cases the definition of domain-specific variants of the
UML may be required. The UML however has already
been conceived for extensibility, for which purpose it
provides a built-in profiling mechanism to extend the
language with elements and constructs apt to describe
specialized features, though remaining compliant with
its standard definition [15].

An extension to UML, called UML-RT [22], has
been defined on the basis of ROOM language [21],
which is a useful architectural definition language
specifically developed for modeling complex real time
systems (RTS), and one which is becoming a standard
in the industry for RTS development. UML-RT extends
UML with stereotyped active objects, called capsules
to represent system components, where the internal be-
havior of a capsule is defined using state machines. The
interaction with other capsules takes place by means of
protocols that define the sequence of signals exchanged
through stereotyped objects called ports and specify the

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 38

desired behavior over a connector.
UML has been also used in a large number of time-

critical and resource-critical systems [20]. Despite its
real time capabilities [22, 5, 8, 6] UML has some limi-
tations as well, because it lacks in notations and seman-
tics to represent several aspects that are of particular
concern to real time system developers[2, 11].

The UML Profile for Schedulability, Performance
and Time (SPT-Profile) [20] has been proposed by a
working consortium of OMG member companies. A
different profile proposed in [1] focuses specifically on
the Scheduling sub-profile of the SPT. SPT is still based
on version 1.5 of the UML [16], now superseded by the
new UML 2.0 superstructure[18]. Indeed, to respond to
the changes introduced by the UML 2.0 and also to ad-
dress several requested improvements to better specify
the properties of real time embedded systems, the OMG
has now issued a new RFP for UML Profile for Model-
ing and Analysis of Real time and Embedded Systems
(MARTE) [19].

Maria et al. [24] proposed the capabilities of UML
for task scheduling in RTS. They identified a task set
and showed whether the task set is schedulable or not
using UML model. They use the Priority Inheritance
Protocol to share critical resources. But Priority Inher-
itance Protocol does not prevent deadlock. Their work
did not highlight this issue. We, in this work, have con-
sidered the occurrence of deadlock using Priority Inher-
itance Protocol and propose a better approach to over-
come it.

3 Scope of Work

This paper concentrates on the occurrence of deadlock
when Priority Inheritance Protocol is used and preven-
tion of such using the Priority Ceiling Protocol. The
main objective of this paper is to compare these two
protocols using UML 2.0 Sequence and Timing Dia-
grams.

The Priority Inheritance Protocol is used for shar-
ing critical resources but it does not prevent deadlock
if nested critical sections are used. The shortcomings
of the existing Priority Inheritance Protocol are repre-
sented using one UML model. Further the Priority Ceil-
ing Protocol is used to overcome these difficulties using
an improved model.

We therefore analyze the schedulability of an appli-
cation with the following characteristics: Task set com-
posed of three dependent periodic tasks T1,T2,T3.

• Tasks T1,T2 and T3 share a critical resource(R1)
and tasks T2 and T3 share a critical resource(R2)

• A task in a critical section can be preempted by a
higher priority task which does not need the same
resource.

• Deadlines are equal to periods.

4 Real Time Scheduling

The scheduler is the part of the operating system that
responds to the requests sent by programs. It inter-
rupts and gives control of the processor to those pro-
cesses. A scheduler provides an algorithm or policy
that determines in which order processes get proces-
sor for execution according to some pre-defined crite-
ria. In a conventional multitasking operating system,
processes interleaved with higher importance (or prior-
ity) processes receive preference. Little or no account
is taken of deadlines. This is clearly inadequate for real
time systems. These systems require scheduling poli-
cies that reflect the timeliness constraints of real time
processes.

Schedulers produce a schedule for a given set of
processes. If a process set can be scheduled to meet
given pre-conditions the process set is termed feasi-
ble. A typical pre-condition for hard real time periodic
processes is that they should always meet their dead-
lines. An optimal scheduler is able to produce a fea-
sible schedule for all feasible process sets conforming
to a given precondition. For a particular process set an
optimal schedule is the best possible schedule accord-
ing to some pre-defined criteria. Typically a scheduler
is optimal if it can schedule all process sets that other
schedules can.

Schedulers may be preemptive or non-preemptive.
The former can arbitrarily suspend a process′s execu-
tion and restart it later without affecting the behaviour
of that process (except by increasing its elapsed time).
Preemption typically occurs when a higher priority pro-
cess becomes runnable. The effect of preemption is that
a process may be suspended involuntarily.

A Non-preemptive scheduler does not suspend a
process in this way. This is sometimes used as a mech-
anism for concurrency control for processes executing
inside a resource whose access is controlled by mutual
exclusion. Many real time application systems are com-
posed of several independent tasks. Every task in real
time systems is commonly executed in a priority-based
manner. When a task releases, at that time a unique
priority is assigned to it. The highest-priority active
task is selected for execution at each instant in time.
To ensure efficient response time it is required to prior-
itize processes so that more important processes always
receive processor attention first if they need it. Inde-

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 39

pendent tasks in a RTS execute on a shared computing
platform comprised of a preemptable processor and se-
rially reusable non-preemptable resources. Each task
requires the processor in order to execute; in addition,
some tasks may simultaneously need exclusive access
to one or more of the resources during part or all of their
execution. Exclusive access to these shared resources is
typically ensured only within critical sections.

The notion of priority is commonly used to order ac-
cess to the processor and other shared resources such as
communication channels. In priority scheduling, each
task is assigned a priority via some policy. Contention
for resources is resolved in favour of the task with the
highest priority that is ready to run.

4.1 Priority Inversion

A priority inversion occurs if the highest priority ac-
tive task cannot execute because some of the resources
needed for its execution are held by some other tasks.
At that point of time the higher priority task is blocked
while the lower-priority tasks execute.

In order to overcome the priority inversion the Pri-
ority Inheritance Protocol can be used.

4.2 Priority Inheritance Protocol

Assigned Priority: When a task releases, this priority is
assigned to the task. It is a unique priority. Current Pri-
ority: It is the priority at which a ready task is scheduled
and executed. It may vary with time.

4.2.1 Rules of the Priority Inheritance Protocol

1. Scheduling rule:- A ready task is scheduled preempt-
ably in a priority driven manner according to current
priority.

2. Allocation rule:- When a task T requests a resource
R,

a) If R is free it is allocated to T and is held by T
until T releases R.

b) If R is not free then the task is blocked.

3. Priority Inheritance rule:- When requesting task T
becomes blocked, the task Tl which blocks T inherits
the current priority Π(t) of T. When Tl releases R
its priority reverts to Π(t′), where t′ is the time it
acquired the resource R.

The Priority Inheritance Protocol does not prevent
deadlock, which is explained in the next section us-
ing an example. The Priority Ceiling Protocol can
be used to overcome deadlock.

4.3 Basic Priority Ceiling Protocol

The Priority Ceiling Protocol extends the Priority In-
heritance Protocol to prevent deadlocks. This protocol
makes two key assumptions:

i) The assigned priority of all tasks is fixed.

ii) The resources required by all tasks are known a
priori before the execution of any task begins.

The priority ceiling of a critical resource R is the
highest priority of all the tasks that use the resource
R. Current priority ceiling of a system Π′(t)at any time
′t′ is equal to the highest priority ceiling of all the re-
sources used at that time. If all the resources are free,
then Π′(t)=Ω where Ω is a non existing priority level
that is lower than the lowest priority of all tasks.

4.3.1 Rules of the Basic Priority Ceiling Protocol

1. Scheduling rule:- At the release time t, the current
priority Π(t) of every task is equal to the assigned
priority. The task remains at that priority level ex-
cept by rule 3.

2. Allocation rule:- When a task T request R, one of the
following conditions occur:

a) If R is not free then T becomes blocked

b) If R is free then one of the following conditions
occur:

i) T′s priority is higher than the current priority
ceiling Π′(t), R is allocated to T.

ii) If T′s priority Π(t) is not higher than the pri-
ority ceiling Π′(t),R is allocated to T only if
T is the task holding the resource whose pri-
ority ceiling is Π′(t).Otherwise T′s request
is denied.

3. Priority Inheritance rule:- When T becomes blocked,
the task Tl which blocks T inherits the current pri-
ority Π(t) of T. Tl executes at its inherited priority
until the time it releases every resource whose prior-
ity ceiling is equal to higher than Π(t). At that time
priority of Tl returns to its priority Π′(t′) at the time
t′ when it was granted the resource.

5 UML 2.0 for Real Time System

The Unified Modelling Language (UML) is a graphi-
cal modeling language for visualizing, specifying, con-
structing and documenting the artifacts of software
systems.UML is widely used to express the general-
purpose software design models.

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 40

UML as a real time modeling language has some
limitations. It basically provides a lot of syntax, but not
enough semantics. The UML profile for real time mod-
eling, formally called the UML profile for Schedulabil-
ity, Performance and Time (UML/SPT), was adopted
by the OMG in 2002 [20].

Core of the SPT profile is the general resource mod-
eling framework, itself consisting of three sub-profiles
dealing respectively with resource modeling, concur-
rency and time-specific concepts. Then, based on this
common framework, more specific sub profiles are de-
fined. It is supposed to overcome the limitations which
are related to and provide suitability for modeling real
time systems.

The SPT profile does not invent any new techniques,
but offers the possibility to exchange timeliness proper-
ties between UML modeling tools and schedulability
analysis tools. The profile defines a number of stereo-
types, tagged values and constraints, the user can add
more features depend on requirements.

UML 2.0 provides some concepts, including active
objects, concurrent composite states and concurrent op-
erations. In order to express timing constraints, UML
2.0 provides two data types: Time and TimeExpression.
These timing statements can be used either in state di-
agrams or in Sequence diagrams. Moreover, UML 2.0
introduces a new diagram called Timing Diagram to al-
low reasoning about time to visualize conditions or state
changes over time. UML can better model the real time
software systems through its extended features for real
time systems. In this work we model our work using
some of these features.

6 PROPOSED WORK

In order to describe the task set (mentioned in section
3) and the critical sections of tasks T1, T2 and T3, new
parameters are added that specify the three components
of any critical section.

• Ca: task duration before entering the critical sec-
tion

• Cb: task duration within the critical section

• Cc: task duration after the critical section

Then, the computation time becomes C= Ca + Cb + Cc
In [24] the Priority Inheritance Protocol is used for

sharing a critical resource but this protocol does not pre-
vent deadlock. In this paper the occurrence of deadlock
is first highlighted by considering the following task set
which is described by the classical parameters given in
Table 1. Further, deadlock avoidance is discussed using

the Priority Ceiling Protocol by considering the same
task set.

Table 1: A Task Set Sharing Critical Resources

Task Ri Ci Ca Cb Cc priority
T1 4 2 1 1 0 1
T2 2 5 1 4 0 2
T3 0 5 1 4 0 3

Ri represents release time of task Ti, Ci represents
computation time of task Ti and Pi represents priority
of task Ti.

6.1 Drawback of Priority Inheritance Protocol

Deadlock occurrence is illustrated in Figures 1 and 2 us-
ing a UML 2.0 sequence diagram and a UML 2.0 timing
diagram, respectively.

6.1.1 Description of UML 2.0 Sequence Diagram

In UML 2.0, the notation for an interaction in a se-
quence diagram is a solid-outline rectangle (a rectan-
gular frame). The five sided box at the upper left hand
corner names the sequence diagram: keyword sd fol-
lowed by the interaction name, ”Priority Inheritance
Protocol”. Each lifeline in the diagram represents an
individual participant in the scenario.

s1: Scheduler. A scheduler (in our domain, a pro-
cessor) is responsible for processing the acquisition re-
quests from the clients of a service and based on the
appropriate access control policy for that service, it dis-
penses access to the service. If a service instance is
busy, then the reply may remain pending until the ac-
cess is possible. The scheduler determines a schedule
that allocates a set of scheduling tasks to its set of exe-
cution engines.

r1, r2: Resource. The stereotype
<<SAresource>> of the UML Profile for Schedu-
lability, Performance and Time (schedulability
modeling) represents a kind of protected resource (e.g.,
a semaphore) that is accessed during the execution
of a scheduling task. It may be shared by multiple
concurrent actions and must be protected by a locking
mechanism. The tag ”SAaccessControl” represents
the access control policy for handling requests from
scheduling tasks (in our model, ′Priority Inheritance′).

T1, T2, T3: Task. The stereotype
<<SAschedRes>> of the UML Profile for Schedu-
lability, Performance, and Time (schedulability
modeling) represents a unit of concurrent execution
(in our domain, a task), which is capable of executing

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 41

Figure 1: Sequence diagram showing deadlock occurrence using the example task set given in Table 1

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 42

Figure 2: Timing diagram showing deadlock occurrence using the example task set given in Table 1

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 43

a single scenario concurrently with other concurrent
units. In the general resource modeling of the UML
Profile for Schedulability, Performance and Time, an
action is defined as a kind of scenario. Therefore, the
stereotype <<SAaction>> of this profile (schedula-
bility modeling) is used to characterize the behaviour
of each task in the proposed model.

The new metaclass in UML 2.0, TimeObservation-
Action, is used to know when a task awakes. A time
observation triggers an action that, when executed, re-
turns the current value of time in the context in which it
is executing. It is depicted with the keyword ”now”.

Another new metaclass in UML 2.0, StateInvariant,
is used to show the different states associated with each
lifeline as restrictions. A state invariant is a constraint
on the state of a lifeline. If the constraint is true, the
trace is a valid trace.

Finally, notes are used to display the textual infor-
mation.

6.1.2 Observation from Sequence Diagram

The sequence diagram in Figure 1 shows that deadlock
occurs. T1 is blocked by T3. T3 is waiting for a re-
source that is held by T2. T2 is waiting for a resource
that is held by T3. As a result all of the three tasks are
in the blocking state.

6.1.3 Description of UML 2.0 Timing Diagram

The timing diagram can be stereotyped as
<<SAsituation>> to use it in the context of
schedulability analysis, representing a real time
situation.

The notations of the rectangular frame and the five
sided box are same as in the previous sequence diagram,
but now we have different elements in the model. Five
lifelines are generated one each for the two resources
(r1, r2) and the three tasks (T1, T2 and T3) respectively.
In this case, scheduler (s1) can be ignored, because it
is not necessary to understand the scheduling. Since
the changes in states of different lifelines can be rep-
resented over linear time, there is no need to show the
message passing.

The task states used in the timing diagram are ex-
plained in Table 2. There are two simple states for the
resource lifeline : idle and busy. Using the timing di-
agrams it can be seen how the states get changed over
time for each lifeline. Therefore, it is not required to use
the metaclass StateInvariant as a restriction in lifelines
to know the state value at a particular time.

The time axis is linear so it clarifies absolute timing
of events, state changes and relative timing between the

different lifelines. Therefore, it is not required to use
notes indicating when a task awakes (when the state of
a task changes to ”Ready”) [24].

6.1.4 Result and discussion

Using Timing diagram it can be explained how dead-
lock occurs in Priority Inheritance Protocol.

At time 0, T3 is released and executes at its assigned
priority 3. At time 1, resource R1 is assigned to T3.

At time 2, T2 is released. It pre-empts T3 (as pri-
ority of T2 is greater than priority of T3) and starts to
execute.

At time 3, T2 requests resource R2. R2, being free,
is assigned to T2. The task T2 continues to execute.

At time 4, T1 is released and it pre-empts T2 (as
priority of T1 is greater than priority of T2).

At time 5, T1 requests R1 but R1 is already assigned
to T3. So T1 is now directly blocked by T3 though pri-
ority of T1 is greater than priority of T3. According to
rule 3, T3 inherits T1′s priority (i.e. 1) and T3 continue
execution.

At time 6, T3 request R2 but R2 is already assigned
to T2. So T3 is blocked by T2 though current prior-
ity of T3 (presently priority of T3 is 1 which it inherits
from T1) is greater than priority of T2. According to
rule 3, T2 inherits T3′s priority (i.e. 1) and T2 continue
execution.

At time 8, T2 request for R1 but R1 is already as-
signed to T3. So T2 is blocked by T3. As T3 is already
blocked by T2, deadlock occurs.

Table 2: Task states

State Description
Dormant The task is set up

Ready The task awakes
Preempted When running, the task is preempted
Blocked The task is waiting for a signal or a resource
Running Assignment of processor to task

6.2 Sequence diagram and Timing diagram

Timing diagrams and Sequence diagrams are the two
kinds of interaction diagram more adequate to model
task scheduling. UML allows modeling the traces
of interactions among many objects working together
and providing the important information required for
schedulability analysis, which is captured in Sequence
or Timing diagrams. A Timing diagram is similar to
a Sequence diagram in that they both show scenarios
of collaborations, but they are not the same at all. In

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 44

this work both Sequence diagram and Timing diagram
are used because Sequence diagram or Timing diagram
alone does not depict the scenario completely.

6.2.1 Advantage of Sequence diagram over Timing
diagram

UML Sequence diagrams are used to model the flow
of messages, events and actions between the objects or
components of a system.

Sequence diagrams are often used to design the in-
teractions between components of a system that need to
work together to accomplish a task.

It focuses on when the individual objects interact
with each other during execution. It is particularly use-
ful for modeling usage scenarios such as the logic of
methods and the logic of services.

Sequence diagrams emphasize message sequence,
so the in time of the next message is the message fol-
lowing the current one on the diagram.

Timing diagram does not represent these.

6.2.2 Advantage of Timing diagram over Sequence
diagram

A Timing diagram is a simple representation with time
along the horizontal axis and objects state or attribute
value along the vertical axis.

Although Timing diagrams do not show any infor-
mation beyond that available in annotated Sequence di-
agrams, the absolute timing of events, state changes and
the relative timing among the lifelines is clearer and
more readable than on Sequence diagrams, even when
explicit timing constraints are added. Messages on Se-
quence diagrams are only partially ordered, so in many
cases the relative timing between two messages is not
specified.

When messages on Sequence diagrams begin or fin-
ish on different lifelines, it is not possible to compare
which one starts or terminates first.

Time goes down the page on Sequence diagrams,
but usually linearity is not implied; that is, further down
implies later in time, but the same distance at different
places in the diagram does not imply the same amount
of time. However, each diagram provides different
points of view to the same scenario and both could be
very useful.

6.3 Deadlock Avoidance

Deadlock avoidance is illustrated in Figures 3 and 4 us-
ing a UML 2.0 Sequence diagram and a UML 2.0 Tim-
ing diagram, respectively. Priority Ceiling Protocol is
used to prevent deadlock.

6.3.1 Observation from Sequence Diagram

From the Sequence diagram it can be easily seen that
deadlock can be prevented. All the three tasks complete
their executions.

6.3.2 Result and discussion

The Timing diagram shows how deadlock can be pre-
vented using Priority Ceiling Protocol.

T3 is released at time 0. Ceiling of the system at
time 1 is Ω. When T3 requests R1, it is allocated to T3
according to (i) in part (b) of rule 2. After the alloca-
tion of R1, the ceiling of the system is raised to 1, the
priority ceiling of R1.

At time 2, T2 is released and it pre-empts T3 (as pri-
ority of T2 is greater than priority of T3). At time 3, T2
requests resource R2. R2 is free; however because the
ceiling Π′(3)(=1) of the system is higher than priority
of T2, T2′s request is denied according to (ii) in part (b)
of rule 2. T2 is blocked and T3 inherits T2′s priority.

At time 4, T1 is released and it pre-empts T3 (as
priority of T1 is greater than priority of T3).

At time 5, T1 requests resource R1 and becomes di-
rectly blocked by T3 and T3 inherits T1′s priority. At
time 5, T3 requests for resource R2. R2 is free and it
is allocated to T3 because T3 holding the resource R1
whose priority ceiling is equal to Π′(t)(=1).

At time 6, T3 releases R2 and at time 7, T3 releases
R1. So T3 executes at its inherited priority Π(t) (=1) un-
til the time when it releases every resource whose prior-
ity ceiling is equal to higher than Π(t)(i.e. its inherited
priority). T3 completes its execution at time 7.

At that time 7, T1 and T2 are ready. But T1 has
higher priority (i.e.,1) it resumes.

At time 8, T1 completes its execution and T2 re-
sumes.

7 Conclusions

The behavior of real time software systems do not de-
pend only on the values of input and output signals, but
also on their time of occurrences. Ensuring the cor-
rectness of such systems within the specified time con-
straints is a difficult and complex task. Therefore, com-
plexity of real time systems is continuously increasing
which makes their design very challenging. Unified
Modeling Language (UML), the standard visual object-
oriented modeling language, is suitable to deal with this
complexity.

In the last few years, real time processing seems to
be the essential part of an operating system, and the
scheduling of real time systems is an important area of
research in today′s life. In this paper, we consider fixed

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 45

Figure 3: Sequence diagram showing deadlock avoidance using Table 1

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 46

Figure 4: Timing diagram showing deadlock avoidance using Table 1

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 47

priority scheduling. A model (using UML 2.0 Sequence
diagram and UML 2.0 Timing diagram) has been devel-
oped to represent deadlock occurrence as a drawback
of Priority Inheritance Protocol. Further, Priority Ceil-
ing Protocol is used in another improved model (using
UML 2.0 Sequence diagram and UML 2.0 Timing dia-
gram) to overcome this difficulty.

As the UML profile for Schedulability, Perfor-
mance, and Time is clearly biased towards fixed priority
scheduling (such as Rate Monotonic), we like to extend
the specification to comprise dynamic scheduling (such
as Earliest Deadline First). In future we plan to develop
a model of dynamic priority scheduling (such as Ear-
liest Deadline First) for the prevention of deadlock in
RTS.

References

[1] Bertolino, A., Angelis, G. D., Bartolini, C., and
Lipari, G. A uml profile and a methodology
for real-time systems design. In Proceedings of
the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, IEEE
Computer Society Washington, DC, USA, pages
108–117, 2006.

[2] Bichler, L., Radermacher, A., and Smith, A. S. J.
Evaluating uml extensions for modeling real-time
systems. In Proceedings of 7th IEEE International
Workshop on Object-Oriented Real-Time Depend-
able Systems (WORDS 2002), pages 271–8, Los
Alamitos, CA, USA, 2002. IEEE Computer Soci-
ety.

[3] C.L., L. and J.W., L. Scheduling algorithms for
multiprogramming in a hard-real-time environ-
ment. Journal of the ACM, 20(1):46–61, Jan 1973.

[4] Dijkstra, E. W. Cooperating sequential processes.
In Genuys, F., editor, Programming Languages,
pages 43–112. Academic Press, 1968.

[5] Douglass, B. Designing real-time systems with
uml, embedded systems programming, 1998.

[6] Jigorea, R., Manolache, S., Eles, P., and Peng,
Z. Modelling of real-time embedded systems
in an object-oriented design environment with
uml. In 2nd ARTES Graduate Student Confer-
ence, Chalmers University of Technology, Gote-
borg, Sweden, Mar 2000.

[7] Klein, M., Ralya, T., Pollak, B., Obenza, R., and
Harbour, M. G. A Practitioners Hand book for
Real-Time Analysis: Guide to Rate Monotonic

Analysis for Real-Time Systems. Kluwer Aca-
demic Publishers, Boston , MA, 1993.

[8] Kuster, J. M. and Stroop, J. Consistent design
of embedded real-time systems with uml- rt. In
4th IEEE International Symposium on Object Ori-
ented Real-Time Distributing Computing ISORC
2001, pages 31–40, Los Alamitos, CA, USA,
2001. IEEE Computer Society.

[9] Lampson, B. and Redell, D. D. Experience with
processes and monitors in mesa. In Proceedings
of the 7th ACM Symposium on Operating Systems
Principles, pages 43–44, 1979.

[10] Lampson, B. and Redell, D. D. Experience with
processes and monitors in mesa. Communications
of the ACM, 23(2), Feb 1980.

[11] Lavazza, L., Quaroni, G., and Venturelli, M. Com-
bining uml and formal notations for modelling
real-time system. ACM Software Engineering
Notes, 26(5):196–206, Sep 2001.

[12] Lehoczky, J. and L.Sha. Performance of real time
bus scheduling algorithms. ACM performance
evaluation review Special issue, 4(1), May 1986.

[13] Lehoczky, J., L.Sha, and Strosnider, J. Enhancive
aperiodic responsiveness in a hard real time envi-
ronment. In Proceedings of IEEE Real Time Sys-
tem Symposium, 1987.

[14] Leung, J. and Merrill, M. A note on preemptive
scheduling of periodic real time tasks. information
processing letters, 11(3), Nov 1980.

[15] Mok, A. Fundamental Design Problems of Dis-
tributed Systems for The Hard-Real-Time En-
vironment. PhD thesis, Laboratory for Com-
puter Science, Massachusetts Institute of Technol-
ogy, 1985. Available as Technical Report No.
MIT/LCS/TR-297.

[16] Object Management Group. OMG. OMG
Unified Modeling Language Specification, omg
document- formal/03-03-01 edition, March 2003.

[17] Object Management Group, Massachusetts, USA.
UML Superstructure Specification - version 2.0,
2004.

[18] Object Management Group. OMG. UML 2.0
Superstructure Specification, omg document -
formal/05-07-04 edition, July 2005.

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.



Hazra et al. Modeling and Analysis of Real Time Fixed Priority Scheduling using UML 2.0 48

[19] Object Management Group. OMG. UML Profile
for Modeling and Analysis of Real-Time and Em-
bedded systems, omg document - realtime/05-02-
06 edition, Feb 2005.

[20] Object Management Group. OMG. UML Profile
for Schedulability, Performance and Time Specifi-
cation, omg document -formal /05-01-02 edition,
Jan 2005.

[21] Selic, B., Gullekson, G., and Ward, P. Real-Time
Object-Oriented Modeling. John Wiley and Sons,
Ltd., New York, 1994.

[22] Selic, B. and Rumbaugh, J. Using UML for
Modeling Complex Real-Time Systems. Objec-
Time Limited, 340 March Rd., Kamata, Astario,
Canada, 1998.

[23] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Comput-
ers, 39(9):1175–1185, 1990.

[24] Valiente, M. C., Genova, G., and Carretero, J. Uml
2.0 notation for modeling real time task schedul-
ing. Journal of Object Technology, 5(4), May-
June 2006.

INFOCOMP, v. 12, no. 1, p. 36-48, June 2013.


	Introduction
	Related Works
	Scope of Work
	Real Time Scheduling
	Priority Inversion
	Priority Inheritance Protocol
	Rules of the Priority Inheritance Protocol

	Basic Priority Ceiling Protocol
	Rules of the Basic Priority Ceiling Protocol


	UML 2.0 for Real Time System
	PROPOSED WORK
	Drawback of Priority Inheritance Protocol
	Description of UML 2.0 Sequence Diagram
	Observation from Sequence Diagram
	Description of UML 2.0 Timing Diagram
	Result and discussion

	Sequence diagram and Timing diagram
	Advantage of Sequence diagram over Timing diagram
	Advantage of Timing diagram over Sequence diagram

	Deadlock Avoidance
	Observation from Sequence Diagram
	Result and discussion


	Conclusions

