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Abstract. Motivated by complex phenomena embedded into time series, this paper proposes EHLAC
(Exponential-Weighted Higher-Order Local Auto-Correlation), an approach to extract features from dy-
namic data based on polynomial relations over time. The main idea for this new approach is to preprocess
data in order to improve modeling performance of different techniques. EHLAC extends the traditional
HLAC (Higher-Order Local Auto-Correlation), introducing non-linear transformations in terms of its
integrals, what inhibits or highlights the influences of observations within the auto-correlation function,
highlighting a wider gamut of data characteristics. This approach is evaluated in a song classification
scenario, whose results evidence that EHLAC complements the set of attributes of HLAC and improves
modeling performance.
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1 Introduction

The feature extraction area aims at assisting modeling
techniques to represent phenomena by condensing and
highlighting important data characteristics into features
[21, 14, 10]. Feature extraction is typically considered
when data is unstructured; when one needs a compact
and meaningful representation of data; or when the di-
rect modeling of raw data provides poor results due
to unrelevant information, such as when dealing with
texts, images [2] and audio [1, 20].

Features can be basically extracted from two types
of scenarios: static and dynamic ones. In the first, the
complete data set is available and, then, it is processed
to obtain features. The second requires the online ex-
traction of features as data arrives and is made avail-
able. The latter is interesting when studying phenomena
such as climate change and pattern detection in videos.
Those phenomena are typically unstable and influenced
by external factors, which require the description of fea-
tures in terms of dynamic components.

One currently relevant example whose effectiveness
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is greatly dependable on good-performing online fea-
ture extraction methods is the task of classifying songs
into genre categories [1]. In that task, every song would
be represented by a sequence of amplitude values. In
order to conduct the classification, one needs to extract
features from songs to represent them. Having such fea-
tures, classification can be performed, however, when
features do not represent songs adequately by providing
enough information regarding their genres, the classifi-
cation results are poor.

Due to this key role played by feature extraction,
several well-known approaches have been applied to
extract features such as Principal Component Analy-
sis (PCA) [16, 22], Independent Component Analy-
sis (ICA) [11], Wavelets [22], Discrete Cosine Trans-
form [5] and High-Order Auto Correlation (HLAC) [8].
Despite the applicability of those approaches, some of
them (e.g., PCA, ICA, and Wavelets) are not adequate
to obtain features when data represents unstable phe-
nomena. The main reason is that such data cannot be
described in terms of static components. Conversely,
HLAC has been widely considered to address the afore-
mentioned scenario, demonstrating good results in sev-
eral application domains [3, 17, 9, 6, 7]. HLAC em-
ploys mask patterns to extract features through the com-
bination of auto-correlation functions. In that sense,
HLAC can characterize complex data features in im-
ages, audio, etc.

When studying HLAC in dynamical scenarios, we
observed that the way HLAC obtains features could
be improved. We here propose the Exponential-
Weighted Higher-Order Local Auto-Correlation ap-
proach (EHLAC), which employs polynomial factors to
the terms of HLAC, introducing the possibility of non-
linear transformations in every term. EHLAC makes
possible to inhibit or highlight the influences of every
observation in the auto-correlation, thus emphasizing
a wider gamut of data characteristics. Classification
experiments confirm this novel approach outperforms
HLAC by means of a more informative data represen-
tation.

The organization of this paper aims at clarifying the
implementation and verification of feature extraction
using HLAC and EHLAC by providing code examples
and evaluations with respect to analytical aspects. This
was motived by sparse HLAC literature regarding its
implementation, which may considerably affect the ob-
tained results. This paper is structured as follows: Sec-
tion 2 presents the original Higher-Order Local Auto-
Correlation; Exponential-Weighted Higher-order Local
Auto-Correlation (EHLAC) is introduced in Section 3;
Experimental results comparing EHLAC against HLAC

are shown in Section 4; Conclusions are drawn in Sec-
tion 5; and, finally, references.

2 Feature Extraction with Higher-Order Local
Auto-Correlation

Higher-Order Local Auto-Correlation (HLAC) is a
method designed to extract features for a wide range of
applications such as video processing and EEG (Elec-
troencephalography) signal recognition [12]. HLAC is
based on the computation of auto-correlation functions
in order to describe linear relationships among multiple
variables. The definition of higher-order correlation is
presented in Equation 1, which relates the value of func-
tion f(t) at the current time instant t to itself evaluated
on N different time displacements {τ1, τ2, . . . , τN}.

x
(N)
f (τ1, . . . , τN ) ,∫

T

f(t)f(t+ τ1) . . . f(t+ τN )dt (1)

In order to better understand HLAC, consider a one
-dimensional time series X = {x−β , . . . , x−1, x0}.
Now consider vectors, which are also referred to as
masks, whose length vary from two to β + 1. Every
element in this vector can assume the discrete values
{0, 1}. Let the first vector be given by

(
1 1

)
, the

second by
(
1 0 1

)
, the third by

(
1 0 0 1

)
,

and so on. Every time we go for the next vector, we
add an element zero in the middle of the previous one
(when odd, you can either use functions floor or ceil-
ing to define the central element). This mask vector
informs which are the X observations to be considered
by HLAC.

For example, at the beginning, the first mask vector(
1 1

)
is set to the last observations of the sequence,

i.e., x−1, x0, indicating that both will be considered in
the auto-correlation. This means we will multiply both
terms in the form x−1 · x0 and keep the resultant value
on variable i2 (the subscript value 2 indicates the length
of the current vector under evaluation). Then, we move
the vector backwards one element and set its position
on observations x−2, x−1. Consequently, we compute
x−2 · x−1 and add the result to i2, thus, after going
through the whole time series, i2 will contain the inte-
gral of all multiplications for mask vector under length
2. After finishing this stage for vector length 2, the pro-
cedure is again conducted considering vector length 3
and consecutively, until the vector length is equal to the
series length. After finishing all operations, we have the
time series feature vector ~I =

(
i2 i3 . . . iβ+1

)
.
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Program 1 presents the source code, in R [4], used
to compute HLAC. The function parameters are the
one-dimensional time series, the mask vector and the
maximum number of series observations to be consid-
ered (maxlag). Program 2 presents the function com-
pute_hlac which generates the mask vectors and apply
them to the target time series. The result of this proce-
dure is a feature vector including all integrals up to the
maximum number of past observations, which is also
referred to as maxlag.

1 hlac <- function (series, mask, maxlag=500) {
2 i = length(series)
3 integral = 0
4 while (i >= length(mask) & maxlag > 0) {
5 if (i >= length(mask)) {
6 product = 1
7 pos = i
8 for (j in length(mask):1) {
9 if (mask[j] != 0) {

10 product = product * (series[pos] * mask[j
])

11 }
12 pos = pos - 1
13 }
14 integral = integral + product
15 }
16 i = i - 1
17 maxlag = maxlag - 1
18 }
19 integral
20 }

Source code 1: Higher-Order Local Auto-Correlation

1 compute_hlac <- function(series) {
2 result = c()
3 for (j in length(series):1) {
4 mask = rep(0,j)
5 mask[1] = 1
6 mask[length(mask)] = 1
7 result = rbind(result, hlac(series, mask))
8 }
9 result

10 }

Source code 2: Test code to compute HLAC for any
unidimensional series

Observe a comparison of results obtained with the
application of the source code previously presented and
the theoretical integral (Equation 1), which is rarely
available. In this scenario we consider the feature ex-
traction of audio signals, because they correspond to
dynamic data, i.e., observations evolve over time. To
introduce the effects of HLAC, we consider a first ex-
ample using sine functions which are commonly con-
sidered to represent audio signals. This example is com-
posed of 1, 000 observations of the sine function. One
can plot analytical HLAC integrals with the Maxima
System [15], as presented in Program 3, and compare it
to the results from the sine function. By visual inspec-
tion, both results, in Figures 1 and 2, present the same
shape for the feature vector, as expected. However,

we generated the sequence for the sine function using
a given sampling resolution for observations, making
the feature scale (amplitudes of values in Figures 1 and
2) become different for analytical and experimental ap-
proaches. In this situation, we are more interested in
having the same feature shape rather than the ampli-
tudes, although the numerical results tend to approxi-
mate to the analytical ones when the sampling resolu-
tion are higher.

1 assume(tau > 0)$
2 f(t) := sin(t);
3 plot2d(integrate(f(t)*f(t-tau), t, 0, tau),[tau,0,15

]);

Source code 3: Commands to generate the analytical
feature vector using the Maxima System

Figure 1: Analytical HLAC Results obtained with Max-
ima

3 Exponential-Weighted HLAC

The proposal of the Exponential-Weighted Higher-
Order Local Auto-Correlation (EHLAC) aims at ex-
panding the type of relations extracted by HLAC by
inhibiting or highlighting the influences of certain data
characteristics. This is conducted by applying power
functions to the terms of HLAC which permit to intro-
duce non-linear transformations in observations before
computing the auto-correlation function. EHLAC, de-
fined in Equation 2, is different from HLAC in the sense
it introduces a set of weights w = (w0, w1, . . . , wN ),
in which w ∈ R+. Every i-th weight, i.e., wi, is applied
to the i-th term of a high-order correlation by raising
it to the power of wi. Thus, we employ Equation 2
using non-isometric combinations of weights in order
to assess linear and non-linear features and obtain the
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Figure 2: Experimental HLAC Results obtained with
source code 1

most representative ones. The right-hand side of such
equation computes the correlation in between outputs of
function f(.) under inputs r, r+ τ1, . . . , r+ τN , where
τi, i ∈ (1, N) are time displacements. A power is ap-
plied on every function f(.), modifying the output value
by highlighting or inhibiting it. The left-hand side rep-
resents the feature itself.

x
(N)
f (w0, τ1(w1), . . . , τN (wN )),∫

T

fw0(t)fw1(t+ τ1) . . . f
wN (t+ τN )dt (2)

The EHLAC features extend HLAC by allowing
non-linear relations to be included in feature extraction
for better representation of complex phenomena. In or-
der to better understand EHLAC, consider the function
shown in Program 4, which receives a data sequence,
a mask vector, a new parameter called powermask
and finally the maxlag. The first, second and fourth
parameters are the same as HLAC, and the third one
is a vector, such as the mask, responsible for defining
the powers for sequence observations. For example,
consider the following mask vector

(
1 0 0 1

)
.

In this situation, only two terms of the series are
considered, i.e., the ones in which the vector element
is one. When using EHLAC, the same elements must
have a power associated, for example, the power mask(
1 0 0 1

)
would be the simplest one and it

would generate the same results as HLAC. However,
by modifying its elements, we interfere in observations
before computing the auto-correlation.

1 ehlac <- function (series, mask, powermask, maxlag
=500) {

2 i = length(series)
3 integral = 0
4 while (i > length(mask) & maxlag > 0) {
5 if (i >= length(mask)) {
6 product = 1
7 position = i
8 for (j in length(mask):1) {
9 if (mask[j] != 0) {

10 product = product * ((series[position]
11 * mask[j])**

powermask[j])
12 }
13 position = position - 1
14 }
15 integral = integral + product
16 }
17 i = i - 1
18 maxlag = maxlag - 1
19 }
20 integral
21 }

Source code 4: EHLAC source code

For instance, consider the same one-dimensional
sequence X = {x−β , . . . , x−1, x0}, previously pre-
sented. Now, let the current mask vector under eval-
uation be

(
1 0 0 1

)
and the power mask be(

3 0 0 2
)
. When computing integral i4, ev-

ery pair of observations xt−3, xt would be raised to
xt−3

3, xt
2 before being multiplied.

Program 5 presents the function (written in R [4])
used to compute features for the sine function. Function
generateFeatures is responsible for defining the pow-
ers and function evaluate creates the mask vector and
the power mask to compute EHLAC. By calling gener-
ateFeatures(), we obtain nine feature vectors using the
following powers: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2) and (3, 3). The influences of those
powers in EHLAC are exemplified in Equation 3 for
powers (3, 2). In between those pairs, there are zeros
indicating that intermediary elements of the mask vec-
tor will not be powered to any value (it is important to
observe that those elements are not considered in the
mask either).

x(3,2),
∫
T

sin3(t)sin2(t+ τ1)dt (3)
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1 generateFeatures <- function() {
2 sin = as.ts(read.table("sin.dat"))
3 allfeatures = c()
4 for (power1 in 1:3) {
5 for (power2 in 1:3) {
6 feature = evaluate(sin, power1, power2)
7 allfeatures = cbind(allfeatures, feature)
8 }
9 }

10 allfeatures
11 }
12 evaluate <- function(series, power1, power2) {
13 result = c()
14 for (j in length(series):1) {
15 mask = rep(0,j)
16 powermask = rep(0,j)
17 mask[1] = 1
18 mask[length(mask)] = 1
19 powermask[1] = power1
20 powermask[length(powermask)] = power2
21 result = rbind(result, ehlac(series, mask,

powermask))
22 }
23 result
24 }

Source code 5: Test code to compute EHLAC for any
unidimensional series

In Figure 3, we present an example on how to gener-
ate features (function generateFeatures). By comparing
them to the results of HLAC (analytical results shown
in Figure 1 and experimental ones in Figure 2), we ob-
serve the presence of different characteristics in feature
vectors. One of them is the same as HLAC, i.e., the
pair (1, 1), others inhibit or highlight the influence of
sequence observations in the auto-correlation function.
In the next section we confirm this influence improves
the classification of sequence.

time

E
H
L
A
C
 
v
a
l
u
e

Figure 3: EHLAC results: nine feature vectors were
generated using the outputs of the sine function sam-
pling

4 Experiments

In order to evaluate and compare EHLAC against
HLAC, we designed two sets of experiments: i) the first
aimed at separating useful information from noise; ii)
the second was designed to classify information. Those
experiments were executed on a set of 32 songs of three
different genres: Solitude on Guitar by Baden Pow-
ell (12 songs), Obscured by Clouds by Pink Floyd (10
songs) and Killers by Iron Maiden (10 songs). Those
songs were converted into the RAW file format, which
simply contains bytes, using the Linux command sox
(Program 6). Songs were originally in the OGG format
and, then, they were translated into binary files contain-
ing 1, 000-unsigned (option ‘-u’) one-byte (option ‘-1’)
samples per second (1 kilohertz, see option ‘-r 1k’). It
is relevant to mention that only the main song channel
(first channel) was converted (option ‘-c 1’).

sox -t ogg in.ogg -t raw -r 1k -u -1 -c 1 out.raw

Source code 6: Linux command used to convert songs

After such conversion, HLAC and EHLAC were ap-
plied on 4 intermediary seconds of every song1. Thus,
those approaches were executed on 4 times 1, 000 sam-
ples per second, composing a sequence with 4, 000 ob-
servations. Feature vectors were then obtained and used
to conduct the two sets of experiments. Every resultant
vector was composed of 4, 000 coefficients or compo-
nents of features.

In the first set, we extracted nine feature vectors for
every song using the following powers: (1, 1), (1, 2),
(1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) and (3, 3), as
previously presented in Section 3. Those nine feature
vectors were compared against a white noise gener-
ated using the R [4] function ‘rnorm()’. This set of
experiments aimed at confirming that feature vectors
present relevant song information other than just ran-
dom data and, consequently, they can indeed represent
songs. The R code presented in Program 7 was exe-
cuted to read the 9-feature vector of every song and
compare them against another 9-feature vector of the
white noise series using the multi-layer artificial neural
network (R function ‘nnet’). This network is available
in R and implemented according to [13, 18].

The neural network was trained using 50% of fea-
tures and tested against the other 50% of data. These
first results confirmed that less than 1% (0.88% accord-
ing to experiments) of every song contains characteris-
tics that fail to be distinguished from noise. This was

1This value was chosen experimentally. There is no conclusive
result in literature about the ideal length to consider, but most re-
searchers take into account a range in [3, 20] seconds.
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a very important first step, which allowed us to con-
firm that features were representative and, therefore, we
could carry on experimenting on real scenarios.

1 # loading the library nnet
2 library(nnet)
3 # reading song features
4 song = as.matrix(read.table("song.features"))
5 # generating white noise
6 noise = matrix(nrow=4000,ncol=9, data=rnorm(9*4000))
7 # classes for classification: song or noise
8 targets <- class.ind( c(rep("song", 4000),
9 rep("noise", 4000)) )

10 # defining the dataset to train and test by
11 # joining song features and noise
12 dataset = rbind(x, y)
13 # defines the first 4,000 coefficients to the song
14 # and the last 4,000 to the noise
15 # also that 2,000 coefficients of each class (song
16 # and noise) will be used to train
17 samp <- c(sample(1:4000,2000), sample(4000:8000,2000

))
18 # training of a neural network, 2 neurons in
19 # the hidden layer (size), weights randomly
20 # initialized in between [-0.1, 0.1] (rang),
21 # the maximum number of iterations was 200 (maxit)
22 result <- nnet(dataset[samp,], targets[samp,],
23 size = 2, rang = 0.1,
24 decay = 5e-4, maxit = 200)

Source code 7: Comparison of EHLAC against white
noise

The second set of experiments compared our ap-
proach, EHLAC, against its predecessor HLAC. In this
second set, we trained the same multi-layer artificial
neural network with the features of 6 out of 12 songs
by Baden Powell, 5 out of 10 songs by Pink Floyd and
finally 5 out of 10 songs by Iron Maiden (such songs
compose the dataset previously introduced). The same
4 intermediary seconds of every song was used to ob-
tain the 9-feature vectors per song. The same R code
was used in this situation, however, the number of neu-
rons in the hidden layer of the artificial neural network
was defined as 25, after a manual search for this param-
eter.

Figure 4 presents the error of the multi-layer artifi-
cial neural network during the training stage (it shows
the average and standard deviation for the first 200 iter-
ations – this experiment was executed 5 times in order
to obtain the averages and standard deviations). We ob-
serve, as iterations perform, the error is still high when
classifying songs using HLAC. This happens because
HLAC feature vectors still have a high degree of sim-
ilarity, what jeopardizes machine learning and also the
separation of patterns. On the other hand, EHLAC re-
sults indicate a good tendency in reducing errors, con-
firming its features improve data representation and,
thus, song classification.

Table 1 presents the classification results (aver-
ages and standard deviations for correct classifications)
using HLAC and EHLAC. This experiment was ex-

Figure 4: Training error for EHLAC decreases faster
than for HLAC

ecuted for 5 times and correct (hits) and incorrect
(misses) classification results were counted. We ob-
serve EHLAC outperforms HLAC under the same sce-
nario, confirming it aggregates more information in fea-
ture vectors and improves learning. The most separa-
ble artist is Baden Powell because of the differences in
his style. The drawbacks of HLAC were stronger when
separating Pink Floyd and Iron Maiden songs, due to
they present more similarities.

Table 1: Results: hits per artist (average and standard
deviation)

Artist HLAC EHLAC

Baden Powell 65.78%± 1.21% 91.44%± 3.98%
Pink Floyd 28.05%± 0.97% 86.32%± 3.06%
Iron Maiden 26.78%± 1.98% 66.17%± 4.97%

After obtaining such results, we decided to employ a
Welch Two Sample T-Test, which is an adaptation of the
Student’s T-Test when two samples possibly have dif-
ferent variances as observed in this situation [19]. Thus,
we defined three different hypothesis tests. The first
compares EHLAC and HLAC results for Baden Pow-
ell songs, the second evaluates our approach in terms of
Pink Floyd songs, and the last assesses results for Iron
Maiden ones. The tests compare, for a given song set,
the null hypothesis of equal average of correct classifi-
cation using HLAC and EHLAC, against the alternative
hypothesis, which states that the averages are different.

Table 2 presents the Welch Test results, which con-
firm all null hypotheses can be discarded as there is not
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enough intersection between every pair of distributions.
This is evident by the Welch’s T results, which con-
firm a far distance in between averages. Thus, we fi-
nally confirm EHLAC aggregates more information in
feature vectors and improves results obtained with its
predecessor HLAC.

Table 2: Results considering Welch’s Two Sample T-
Test

Artist Welch’s T Degrees ρ-value
Result of Freedom

Baden Powell 14.0 4.8 4.7× 10−5

Pink Floyd 40.5 4.8 2.8× 10−7

Iron Maiden 17.0 5.3 7.3× 10−6

5 Conclusions and Future Work

This paper proposed a new feature extraction approach
called EHLAC (Exponential-Weighted Higher-Order
Local Auto-Correlation) which employs powers to the
Higher-Order Local Auto-Correlation approach. By us-
ing powers, EHLAC introduces the possibility of non-
linear transformations in every term of HLAC, inhibit-
ing or highlighting the influences of observations in the
auto-correlation function.

Experiments confirm EHLAC can improve results
obtained with HLAC. The first set of experiments cor-
roborates EHLAC aggregates more and important infor-
mation to features, allowing to separate song features
from noise. After this first step, we decided to classify
songs according to their features extracted using HLAC
and EHLAC. In that scenario, EHLAC strongly outper-
formed HLAC as confirmed by the hypothesis tests con-
ducted. From that, we conclude EHLAC is useful to ob-
tain information embedded in dynamic data. Although
the experiments performed were based on arbitrarily
chosen parameters in order to exemplify EHLAC us-
age, it is possible to devise a greedy algorithm to search
for significant power coefficients and higher-order auto-
correlations. Such algorithm can, for instance, create
new features according to their level of information gain
until it reduces to zero. As future work, we also intend
to assess the feature space built using EHLAC.
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