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Abstract. The data Grid, a class of Grid Computing, aims at providing services and infrastructure to
data-intensive distributed applications which need to access, transfer and modify large data storages. A
common issue on Data Grids is the data access optimization, which has been addressed through dif-
ferent approaches such as bio-inspired and replication strategies. However, few of those approaches
consider application features to optimize data access operations (read-and-write). Those features define
the application behavior, which supports the optimization of operations, consequently, improving the
overall system performance. Motivated by the need of efficient data access in large scale distributed
environments and by the affordable improvements of application characteristics, this paper proposes a
new heuristic to optimize data access operations based on historical behavior of applications. Through-
out experiments we concluded that applications are better optimized by anticipating different numbers
of future events, which vary over the execution. Then, in order to address such issue, we proposed an
adaptive sliding window which automatically and dynamically defines how many future operations must
be considered to improve the overall application performance. Simulations were conducted using the
OptorSim simulator, which is commonly considered in this research field. Our experimental evaluation
confirms that the proposed heuristic reduces application execution times up to 50% when compared to
other approaches.
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1 Introduction

The availability of low-cost microprocessors and the
computer network evolution have made feasible the de-
velopment of distributed systems. In such systems, pro-
cesses communicate one another in order to perform
the same computing task. Besides reducing costs, those

systems are scalable and more flexible than real parallel
machines [7].

Concepts of distributed systems motivated the de-
velopment of cluster computing, where resources are
usually interconnected in a local area network [26].
These cluster environments have encouraged researches
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on process scheduling optimization, data prefetching,
distributed file systems, fault tolerance and security.
As those systems became more available as well as
the Internet has allowed the access of long-distance re-
sources, scientists started interconnecting them to solve
more complex problems [33]. That approach started
the development of grid computing environments, in
which resources are usually heterogeneous, geograph-
ically distributed and accessible to several users [33].
The intrinsic features of these platforms have required
new researches on job scheduling, data access, fault tol-
erance and security strategies [33]. Besides the evolu-
tion of every topic, the Data Access Problem (DAP) is
still a major concern when dealing with grids, mainly
due to data location and consistency [8]. Other issues
that should be considered are the data migration, repli-
cation, distribution and also the evaluation of the data
access impact on job scheduling approaches [11].

Besides considering the aforementioned topics, re-
lated works (Section 2) present three main drawbacks.
The first is that most of the works consider exclusively
read-only operations [5]. Such situation tends to re-
strict the execution of real-world applications. They
mainly neglect such subject due to the complexity in-
volved in keeping data consistent. The second draw-
back is that many works consider static data access op-
timization approaches, i.e. they do not adapt themselves
according to dynamic grid computing features, such as
users logging into and out, computers connecting and
disconnecting. The last drawback is that the overall sys-
tem performance depends on data access patterns, what
varies according to job system calls. In this way, it is
very important to understand, estimate and/or predict
the job behavior as a way to optimize read-and-write
operations.

The three main drawbacks of related works have
motivated an initial investigation [19], in which we
evaluated a heuristic to optimize job read-and-write op-
erations on distributed environments, based on applica-
tions historical behavior. In that paper, we optimized
next file access operations by considering a window of
future events (every event corresponds to a file access
operation). However, in that study, we considered fixed-
length windows and confirmed they result in an unsatis-
factory response time to grid environments, mainly due
to the high heterogeneity of computational resources
(CPUs, hard disks and networks) and the variation of
reading and writing operations during the process exe-
cution. By considering initial experiments presented in
that paper, we observed that the interposition of read-
and-write events (i.e., events of different types under the
same window length) affects the efficiency of the win-

dow. Thus, we were motivated to investigate whether a
window of future events under the same type of opera-
tion could improve data accesses and, therefore, reduce
costs.

Based on such hypothesis, this paper proposes an
adaptive sliding window to optimize data access by
improving replication, migration and consistency deci-
sions. An adaptive window is defined over the historical
behavior of applications, and it represents the number
of future events that our heuristic analyzes to optimize
decisions. The adaptive window constantly adjusts its
length according to the dynamic behavior of processes,
i.e., the number of similar operations (readings or writ-
ings) under execution. As this approach considers his-
torical job behavior, applications need to be executed at
least once.

The specific contributions of this paper are: 1) the
formalization of the Data Access Problem (DAP); 2) an
analytical optimization model to address DAP, aiming
at minimizing the overall application execution times;
3) proposal of an adaptive sliding window approach to
define how many historical events are considered in the
optimization process. 4) simulations to evaluate the ef-
ficiency of the adaptive sliding window under a wide
range of environments and system configurations (how
read-and-write operations are distributed over time).

Besides all the listed contributions, experimental re-
sults confirm that this new adaptive heuristic outper-
forms other commonly considered ones (e.g., LRU,
LFU and Economic Model, presented in Section 5) in
approximately 50% when dealing with grid environ-
ments.

This paper is organized as follows: Section 2 re-
views related work; Section 3 models the Data Access
Problem (DAP); the proposed adaptive heuristic is pre-
sented in Section 4; Section 5 presents simulation re-
sults and, finally, concluding remarks.

2 Related Work

Several studies have been conducted to improve data ac-
cess on grid environments. Such works are mainly fo-
cused on data replication, distribution and consistency.

Oliker et al. [27] propose a static data allocation
approach and three data-oriented job scheduling algo-
rithms (SI, RI, SYI). The approach attempts to opti-
mize the system overall performance by allocating jobs
where data is available. Among the evaluated schedul-
ing algorithms, SI reduces the average execution time
by 60% when compared to local approaches, and can
execute 40% more jobs.

Rahman et al. [28] present a model which uses
a simple data-mining approach (K-Nearest Neighbor,
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KNN) to select the best replicas from grid sites. To
select the best replica, the authors design an optimiza-
tion technique that considers the network latency and
the disk state. Different file access patterns are inves-
tigated and compared to the KNN algorithm. KNN
shows a performance improvement for sequential and
unitary random file access patterns.

Sun & Xu [34] propose two consistency algorithms:
Lazy-Copy (LC) and Aggressive-Copy (AC). LC up-
dates replicas only when needed, i.e., when a user re-
quires them. This may reduce the bandwidth consump-
tion, avoid unnecessary transfers when data are modi-
fied but not required. AC updates replicas whenever a
change occurs in the original file. Therefore, AC fully
guarantees the consistency, while LC partially guaran-
tees it. In the comparison between the two algorithms,
the Aggressive-Copy reduces the access latency, whilst
Lazy-Copy reduces the bandwidth consumption.

Wang et al. [36] consider the parallel access of data
replicas. The access time is minimized by overlapping
requests, what tends to increase the throughput. The
proposed solution (called MSDT) carries on replicat-
ing data in idle intervals as a way to improve system
performance. That work does not consider data consis-
tency. Results present a speedup factor in the range of
2.72 ∼ 3.06 when comparing MSDT to another tech-
nique (called NoObserve) [15].

Oldfield & Kotz [26] propose the Armada frame-
work which launches applications and defines how files
are distributed. It also provides access control and data
access mechanisms. It builds graph structures to repre-
sent the processing and data flow. Experiments com-
pare restructured applications to original ones. Ar-
mada improves throughput of wide-area networks in
40% when compared to original applications.

Dang & Li [11] propose a tree-type structure to cor-
relate data in grid regions aiming at reducing file trans-
fers. When a job needs a file, the approach looks for
high correlation data before asking for transfers. This
reduces network costs and improves the overall appli-
cation performance.

Elghirani et al. [14] define a data management ser-
vice to replicate files on sites as well as a Taboo Search
approach to schedule jobs aiming at optimizing run-
time and system utilization. The Taboo Search attempts
to find good data replication solutions, considering job
data accesses and processing time. Results present per-
formance improvements from 8% to 35%, depending
on the replication and job scheduling approaches.

Kim et al. [22] propose a technique to improve
data access, matching nodes to the best remote data
sources. The authors consider a trace-based synthetic

scenario on PlanetLab to evaluate their heuristic. Re-
sults show that the resource selection outperforms con-
ventional techniques such as latency-based or random
allocations.

Chervenak et al. [10] propose a framework called
Replica Location Service (RLS) which maintains and
provides information on physical locations of replicas.
RLS is used in a variety of production environments
such as the Laser Interferometer Gravitational Wave
Observatory (LIGO) [3], Earth System Grid (ESG) [1]
and Pegasus [12]. Authors presented a performance
study demonstrating that the individual RLS servers
have performed well and scale up to millions of entries
compared to the native MySQL using ODBC clients.

AL-Mistarihi & Yong [4] propose an approach to
address the replica selection problem. The authors con-
sider the Analytical Hierarchy Process (AHP) to solve
that problem, and they evaluate this approach in an ex-
tension of the OptorSim simulator. AHP was employed
to solve this optimization problem using a simplifica-
tion of multiple objectives into a single one. However,
the authors evaluated AHP comparing it only against
a random approach. They could and should at least
compare the performance of AHP against strategies in-
cluded in the OptorSim simulator, such as LRU, LFU
and the Economic Model.

It is important to observe that all previous presented
studies do not consider the dynamic behavior of appli-
cations when taking decisions, likewise, they do not
take advantage of future read-and-write operations to
optimize data accesses.

The dynamic behavior of applications motivated
Ishii & Mello [19] to propose a heuristic that adopts
a fixed length window of future events which aims at
anticipating reading and writing operations. Using fu-
ture events, the heuristic optimizes decisions on repli-
cating, migrating and keeping consistency. This study
confirmed that windows of future events can indeed im-
prove application performance in some scenarios. For
example, when considering environments with read-
only operations, the heuristic improved as much as
100%, however under a low frequency of writing op-
erations (5% of writing and 95% of reading operations)
and low frequency of reading operations (95% of writ-
ing and 5% of reading operations), the heuristic could
not reduce application execution times.

In this previous study [19], the window length is
fixed and defined by the system administrator. Based
on that we attempted different window lengths and an-
alyzed experimental results, such additional work mo-
tivated us to study whether a window of future events,
under the same type of operation, could improve data

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011



Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 29

accesses and, therefore, reduce application execution
times. Thus, in this paper, we propose an adaptive
sliding window to optimize data accesses by improving
replication, migration and consistency decisions.

Figure 1: Example of network interconnection

3 The Data Access Problem

This section aims at defining the Data Access Problem
(DAP). We start with an empirical case study and then
we proceed with the formal definition of DAP.

3.1 An Empirical Case Study

In order to empirically state the DAP, we propose the
following hypothetical case study: let two parallel ap-
plications be composed of the processes presented in
Table 1, where MI represents the million of instructions
executed by processes (during their lifecycles); MR
and MW are, respectively, the number of KBytes/sec
read and write from/into the main memory; HDR and
HDW are, respectively, the number of KBytes/sec read
and write from/into the hard disk (or secondary mem-
ory); NETR and NETS are, respectively, the number
of KBytes/sec received and sent through the computer
network – in this case, the sender (for NETR) and the
receiver (for NETS) processes are presented. For ex-
ample, Table 1 row 1 shows that process p0 consumes
1, 234 MI, reads 123 KBytes/sec (and does not write
data into memory, i.e. MW= 0), it still reads 78
KBytes/sec from the hard disk (and it does not write
data into the hard disk, i.e. HDW=0), receives 12
KBytes/sec from process p1 and sends 532 KBytes/sec
to process p1 .

Now consider that these processes are allocated on
a set C of computers which is described in Table 2,
where CE is a computing element; MIPS represents the
processing capacity in million of instructions per sec-
ond; TMR and TMW are, respectively, the read-and-
write throughput of the main memory (in KBytes/sec);
THDR and THDW are, respectively, the read-and-write
throughput of the hard disk (also in KBytes/sec). Let

Table 1: Processes behavior

App 0

MI MR MW HDR HDW NETR NETS

p0 1,234 123 0 78 0 12 – p1 532 – p1

p1 1,537 23 89 0 12 532 – p0 12 – p0

App 1

MI MR MW HDR HDW NETR NETS

p2 1,221 823 70 78 543 10 – p3 321 – p4

p3 1,137 223 179 324 212 423 – p4 10 – p2

p4 2,237 23 17 12 0 321 – p2 423 – p3

the allocation operator be defined by ∝, where an ex-
ample of allocation, assuming an application composed
of 5 processes, is given by p0 ∝ CE0, p1 ∝ CE1,
p2 ∝ CE2, p3 ∝ CE3 and p4 ∝ CE4. Computers in
C are interconnected according to Figure 1, which also
presents an example of network bandwidths and laten-
cies.

Table 2: Grid site characteristics

CE MIPS TMR TMW THDR THDW

CE0 1,200 100,000 40,000 32,000 17,000

CE1 2,100 120,000 50,000 42,000 19,000

CE2 1,800 100,000 30,000 22,000 9,000

CE3 1,700 95,000 20,000 25,000 11,000

CE4 2,500 110,000 60,000 62,000 30,000

CE5 2,000 110,000 45,000 40,000 17,000

Also consider that all 5 processes (described in Ta-
ble 1) of the 2 parallel applications access a set of files
F = {f0, f1, . . . , f9}. In order to solve the DAP, in
an optimal way, we must explore all possible file dis-
tributions over the 6 computing elements and evaluate
the access cost for every process pi. In such situation,
permutations would be performed to find out all pos-
sible solutions. For example, let a solution where the
subset of files {f0, . . . , f6} is allocated on CE0 and all
others, i.e. {f7, f8, f9}, are placed on CE1. The set of
all possible solutions, for any instance of the problem,
is obtained by computing nz , where n is the number of
computing elements and z is the number of files. Con-
sequently, in the previously mentioned instance, the so-
lution space is equal to 610 = 60, 466, 176.

Besides the presented example, it is necessary to
study the problem in real-world conditions. For illustra-
tion purposes, assume that the target environment con-
tains more than 256 computers. In such situation, the
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expected problem solution space would follow the or-
ders of magnitude defined in Table 3, in which we ex-
pect to address thousands of computers storing millions
of files.

Table 3: Solution space to distribute files over computing elements

CE’s # files Solutions: nz

256 320 ≈ 4× 10770

256 3, 200 ≈ 2× 107706

256 32, 768 ≈ 1× 1078913

512 320 ≈ 9× 10866

512 3, 200 ≈ 4× 108669

512 32, 768 ≈ 2× 1088777

1, 024 320 ≈ 1× 10963

1, 024 3, 200 ≈ 9× 109632

1, 024 32, 768 ≈ 3× 1098641

3.2 Formal Definition

A grid computing environment can be represented as a
non-directed graph G = (S, L), where the set of ver-
texes S represents the grid sites (networks of worksta-
tions, parallel machines, clusters, etc.) and the set of
edges L is composed of communication links in be-
tween grid sites. Also consider a set F containing z
files, whose sizes are modeled by function θ(.) : F →
Z+. Each grid site s ∈ S has none, one or more ele-
ments with the storage capacity defined byΩ: S → Z+

which is the size in MBytes of the storage element into
a grid site s. Function αj,i : F × S → Z+ defines the
cost of storing file j on site si. In the same way, the
function δ(.) : F × S → Q+ considers the links in L
to model the communication cost in between grid sites.
Function α is constrained such as αj,i ≤ Ωi ∀j, i.

Consider the set A which contains k parallel appli-
cations executing on a large scale distributed environ-
ment. Let the function φ(.) : A → Z+ represent the
number of processes of each parallel application. Con-
sider set P which contains all processes of all k parallel
applications, i.e. the number of terms in P is equal to

h =
�

a∈A

φ(a). All processes are previously allocated

on the distributed system according to any scheduling
criterion. Every element in P has a set R associated,
which containsm read-or-write file requests. A process
contains particular features, here defined as behavior,

such as processing, memory and input-and-output uti-
lization. Every process, consequently, requires differ-
ent amounts of resources provided by set S of grid sites
as well as the set of communication links L. A process
p ∈ P may access none, one or many files in F .

The cost to transfer file f in between two grid sites s
and s� is modeled in Equation 1. It depends on file size
θ(f) and distance d(s, s�) in between both sites, which
is measured in terms of the network latency and band-
width. Cost ψ is assumed when a constraint forbids the
replication of file f to grid site s�.

δ(s, s�) =

�
θ(fj)d(s, s

�) where s ∈ S, j = 1, . . . , z

ψ = ∞ otherwise

(1)
A file f must be transferred from the shortest path

site s ∈ S whose cost is minimum and defined by func-
tion d(s, s�). The access cost for reading a file f , stored
in a site s, is, therefore, given by Equation 2. Write
operations induct replica updates for every file f ∈ F ,
which consumes resources as described in Equation 3.

rcost(f) = δ(s�, f) = argmin(θ(f)d(s, s�)) ∀ s ∈ S

(2)

wcost(f) =
�

j

δ(s�, fj) ∀j local and remote replicas

(3)
By unifying Equations 2 and 3, the total cost to ac-

cess a file f is determined in Equation 4, considering all
processes in P . Table 4 describes each model parame-
ter, afterwards the data access problem is formalized.

Λ(f) =
�

p∈P

�

j

rcost(fj) + wcost(fj) (4)

Consider a set P of processes which were previ-
ously scheduled on grid sites in S with storage capac-
ities defined by α and transfer costs by δ(s, s�). Let a
set of files F with a given initial file distribution xij
and size θ(f). Assume a set of quintuples TR which
describes read-or-write operations on files in F . The
optimization problem, DAP, consists in determining a
new file distribution yij according to the energy func-
tion defined in Equation 5, which is constrained ac-
cording to Equations 6 and 7 and follows the domains:
xij ∈ {0, 1}, ∀ i, j and yij ∈ {0, 1} ∀ i, j.

Γ(DAP) = min

n�

i

z�

j

(xij − yij)Λ(fj) (5)
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Table 4: Model parameters

Parameter Description

G The graph of environment G(S, L)

S Set of grid sites

s Grid site which contains computers,

workstations, nodes or similar

n Number of grid sites

L Set of communication links

l Data link in between sites, e.g. {s, s�}

α(s) Cost function to store data on site s

δ(s, s�) Communication capacity in between s and s�

θ(f) Size of file f

Ωi Total storage capacity of site si

A Set of parallel applications

a An application

k Number of applications

φ(a) Function which determines the number of

processes of application a

P Set of processes

h Total number of processes

R Set of read-and-write requests

r Read-or-write request to a file f

m Total number of requests

F Set of files

f A file

z Total number of files

i Grid site index in S (si ∈ S)

j File index in F (fj ∈ F )

xij Equals to 1 if fj is stored on site at index i.

0, otherwise

yij Equals to 1 if the new solution allocates fj

on the site at index i. 0, otherwise

TR Set of quintuples to describe read-and-write

operations to files in F

tr A quintuple in TR

u Total number of quintuples

n�

i

xifj ≤ n (6)

z�

j

yij = 1, i = 1, . . . , n (7)

The energy function (Equation 5) attempts to reduce
the cost to request files, considering the distance in be-
tween grid sites, amount of data and storage capacity.
The constraint presented in Equation 6 limits the num-
ber of file replicas, which can not surpass n sites, i.e.
if j = n all storage elements in the grid have one
replica of f each. The constraint given by Equation 7
defines that every replica must be allocated on one site
only. This constraint implies that storage elements do
not have more than one replica of file f . All computing
elements connected to a grid site access the replica on
the storage element of that grid site.

In order to prove that the data access problem is NP-
complete, we demonstrate that it is contained in the NP
set and it is NP-hard. To demonstrate that the DAP is
in NP, a reduction is conducted from the allocation of
multiple copies of the same file on a distributed envi-
ronment (here called Multiple File Allocation (MFA))
which is proven to be NP-complete according to [16].
The MFA problem is defined as:

Instance: Graph G(V,E), for each v ∈ V a us-
age u(v) ∈ Z+ and a storage cost s(v) ∈ Z+, and a
positive integerK .

Question: Is there a subset V � ⊆ V such that, if
for each v ∈ V we let d(v) denote the number of edges
in the shortest path in G from v to a member of V �, we
have:

�

v∈V �

s(v) +
�

v∈V �

d(v) × u(v) ≤ K? (8)

Theorem 1. DAP is NP-complete.

Garey & Johnson [16] present three different ap-
proaches to prove NP-complete problems: restriction,
local replacement and component design. Consider a
problem Π ∈ NP , the proof using the restriction ap-
proach consists in showing that Π contains a known
NP-complete problem Π� as a special case. The main
idea lies in the specification of additional restrictions
on instances of Π, so that the resulting problem will be
identical to Π�. The problem Π does not need to be ex-
actly the same as Π�, but it must preserve yes-and-no
correspondence in their outputs. In local replacement,
we must identify the components, or building blocks,
which integrate the instance of a known NP-complete
problem Π�. In order to prove that a problem Π is
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NP-complete, we look for similarities of the Π� basic
components and relate them to the Π problem. The last
type of proof is the component design, which considers
the constituents of the target problem instance to design
components to be combined and represent the instance
of the already known NP-complete problem.

Proof. In this paper, we prove that DAP is NP-hard by
using the restriction-proof approach. DAP is contained
in NP due to it is possible to build a non-deterministic
machine to verify the graph G(S, L) in polynomial
time. When building the machine, the following is non-
deterministically defined: for each s ∈ S an alloca-
tion xij in which the file fj is mapped, and, for each
l ∈ L the cost α(s, s�). The verification step checks
out, for each f ∈ F , whether the grid site mapping

is valid, this is, if
n�

j

xj ≤ n. Finally, the condition

n�

j

yij = 1, i = 1, . . . , n is evaluated for the new

allocation of files in F .
Consequently, an instance of DAP is translated into

a MFA one. We initially map every element of the set
V in elements in S. Then, we define the number z of
files. Those files are initially allocated on sites in S,
in a random way. This file allocation respects the con-
straint that each grid site s ∈ S has the maximum stor-
age capacity of s(v). Besides that, d(v) is mapped into
d(s, s�) what represents the cost to transfer file f ∈ F

in between two grid sites s and s�, and the function u(v)
is mapped into θ(f), which models the file size. For ev-
ery element e ∈ E, there is a correspondent l ∈ L with
network latency and bandwidth associated.

In the MFA problem, Equation 8 formalizes the ob-
jective function which aims at minimizing costs related
to the allocation of multiple copies of the same file.
This equation is bounded by K . Similarly, in the DAP
problem, the objective function is defined by Equation
5 which also attempts to minimize access costs.

Finally, consider an instance for the DAP where:
given a request r ∈ R which is launched by a pro-
cess p ∈ P when reading or writing on a file f ∈ F .
For any instance of DAP where |S| ≥ 2 and |L| ≥ 2,
the problem presents exponential characteristics and it
is considered NP-complete.

4 Data Access Approach

After stating the DAP, we may address it by using exact
or approximation approaches. Exact approaches guar-
antee optimal solutions for the problem. However, they

may be very time consuming, depending on the prob-
lem and the instance. For small instances, they might
offer acceptable run-time, but, for large instances, they
are prohibitive [35]. This fact motivated the develop-
ment of approximation strategies considering heuristics
and metaheuristics. A heuristic is an algorithm that,
based on the problem knowledge or experience, leads
to appropriate solutions, but there is no guarantee to ob-
tain optimal solutions [16].

Heuristics are commonly considered due to their
trade off in between the solution quality and the time
complexity. Metaheuristic is a type of heuristic to solve
a class of problems and not only a specific one. Exam-
ples of metaheuristics are: Genetic Algorithms (GA)
[18], Ant Colony Optimization (ACO) [13] and Simu-
lated Annealing (SA) [23].

Genetic algorithms have been used as search and op-
timize techniques in several domains [30]. They are
based on the natural selection theory, which guaran-
tees the survival of the most adequate individuals, i.e.
the ones that represent good solutions. This approach
does not ensure optimal solutions for all problem in-
stances, but provides appropriate solutions for a reason-
able number of NP-Complete problems [30].

ACO-based algorithms support the search for paths
in between a given source and a destination. This
bio-inspired approach is based on the stigmergy strat-
egy and the pheromone concentration. Stigmergy is
a communication mechanism used by ants to coordi-
nate global functions. As ants randomly walk look-
ing for food, they lay down pheromone (chemical com-
ponent released by ants) on trails. When another ant
is looking for the food path, it has a certain proba-
bility to follow the previous crossed path (according
to the pheromone concentration). This approach iter-
atively reinforces good paths, supporting the search for
shortest-path solutions on graphs.

Simulated Annealing aims at finding a global mini-
mum for a given energy function [23]. This nomencla-
ture comes from an analogy to the metallurgic process
of annealing, which consists of the controlled heating
and cooling of materials as a way of finding stable en-
ergy states. Those states, for instance, help metallurgic
processes to reduce physical defects on different mate-
rials. This technique introduces the system temperature
concept, which defines the annealing scheduling (heat-
ing and cooling operations). SA supports the search of
global minimal of energy functions.

After stating the DAP, we may address it by using
metaheuristic, which is a type of heuristic to solve a
class of problems and not only a specific one. Exam-
ples of metaheuristics are: Genetic Algorithms (GA)
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[18], Ant Colony Optimization (ACO) [13] and Simu-
lated Annealing (SA) [23]. However, one issue prevents
the adoption of such techniques, which is the dynamic
behavior of data accesses. Those metaheuristics would
model the DAP by evaluating the current accesses as
well as future ones. However, their objective functions
would compose such information in the current mo-
ment, in a way that they tend to optimize the average
behavior. Therefore, such approaches may privilege
remote accesses while they could improve the system
overall performance by replicating data and supporting
local operations. Better solutions could be obtained by
assessing behavior changes and using them to antici-
pate data operations. In order to develop such method,
we must identify the dynamics involved in the process
behavior.

Given the disadvantages presented by the meta-
heuristics, we propose a novel heuristic to approach
the data access optimization using historical applica-
tion behavior and the adaptive sliding window length.
As the heuristic considers the historical process infor-
mation, we can anticipate process read-and-write op-
erations and, therefore, replicate data locally before
needed, what tends to reduce access costs. When data
is locally available, read-and-write operations execute
faster, what avoids access delays. The anticipation of
process events is used to take decisions on data replica-
tion, migration and consistency.

The proposed approach follows the workflow de-
fined in Figure 2, which is composed of the modules:
1) application knowledge acquisition; 2) adaptive slid-
ing window length; and 3) the Heuristic. The following
sections describe the features of each module, including
their integration.

Figure 2: The proposed approach

4.1 Application Knowledge Acquisition

This paper considers applications behavior to guide a
novel heuristic to improve decisions on replication, mi-
gration and consistency of files. The behavior is com-
posed of read-and-write operations issued by applica-
tion processes.

There are two approaches to extract process be-
havior: monitoring and event interception. Monitor-
ing periodically requests information of a given sys-
tem. Examples of monitoring tools are SMART (Self-
Monitoring Analysis and Reporting Technology) [31],
Linux Vmstat [37] and Tcpdump [20]. System moni-
toring is usually based on counters. Counters are vari-
ables which account the system utilization within spe-
cific time intervals. For example, consider SMART. Let
it request the number of hard disk reads and obtain 0 at
a given instant. After 10 seconds, it asks for the infor-
mation again and the system returns 5, what means that
five read operations were executed in between the first
and the second monitoring points. The monitoring ap-
proach grabs the amount of data and what kind of event
has happened in a certain time interval, but it does not
inform when exactly an event happened and its detailed
information. The second approach intercepts process
events and calls a procedure to inform about them (this
approach obtains the exact event moment as well as its
detailed information). However, depending on the event
complexity (such as process system calls) and cost, the
interception may become prohibitive. Examples of the
intercepting tools are the Unix DLSym [21] and Ptrace
[32].

DLSym allows the interception of dynamic proce-
dure calls (from dynamic libraries). This is, when the
program calls a function, instead of having the code in-
ternally, it loads a shared library and runs the procedure.
This approach avoids procedure rewriting and also al-
lows the interception of calls. Consequently, any pro-
cedure in a dynamic shared library can be intercepted,
what helps to build monitoring tools. On the other hand,
Ptrace transparently intercepts process signals and sys-
tem calls. It is usually employed to build diagnosis and
debug tools. Ptrace does not use dynamic libraries and
can intercept any Unix application.

Researchers must evaluate the options in between
monitoring and intercepting and choose the best ap-
proach to address the system under study. Some sys-
tems can only be monitored, while others, only inter-
cepted. Given the physical characteristics, hardware are
usually monitored, while software can be monitored or
intercepted. In this paper, the interception approachwas
chosen due to it allows the continuous extraction of ap-
plication behavior over time. Furthermore, the monitor-
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ing approach may hide behavior in between sampling
intervals.

After extracting the application behavior, we trans-
form the sequence of events in series of numer-
ical values which represent time instants. Ev-
ery event is described by the quintuple tr =
{pid,inode,amt,time,op} where pid is the
identifier of the process that performs the operation,
inode is the file identifier, amt is the amount of data
read or written, time is the time interval in between
operations and op is the operation type (whether read-
ing or writing). A series for u sampling intervals is,
therefore, defined as TR = {tr0, tr1, . . . , tru−1} which
is used to analyze relations among events. Those events
are included in a trace file for future usage. Table 5
presents an example of a trace file.

Table 5: Example of trace file

index pid inode amt time op

1 p41 f0 313 24 r

2 p89 f3 94 171 w

3 p10 f9 92 80 w

4 p32 f0 826 132 w

5 p69 – – 76 d

6 p1 f5 292 70 w

Figure 3: The impacts of sliding window variation

4.2 Adaptive Sliding Window Length

The sliding window length defines the number of future
events that the heuristic analyzes to optimize decisions,

which impact on the system performance. An example
of the impact the sliding window has on applications
execution is shown in Figure 3, that considers a sliding
window approach with fixed length. Four techniques
were evaluated: LRU, LFU, Economic model (see Sec-
tion 5), and the heuristic with fixed window length (la-
bel HEU in Figure 3) [19].

We observe that, for the sliding window length 4,
the application execution time is higher. We observed
this fact occurs due to the heterogeneity and the inter-
position of writing and reading operations. This also
happens for sliding windows 200 and 500, where there
is also high heterogeneity in terms of operations. We
experimentally confirmed that the more homogeneous
is the execution order of reading and writing operations
(i.e. similar operations are arranged consecutively), the
longer can be the prediction horizon, i.e. more future
events can be considered and, therefore, we can set
larger window lengths.

This fact motivated this work that proposes of an
adaptive sliding window approach which considers the
type and number of operations. Thus, we proposed pa-
rameter β to adapt the window length according to con-
secutive homogeneous operations (i.e. reading or writ-
ing). Equation 9 defines the Adaptive Sliding Window
(ASW), where Wt+1 is the next window length, Wt is
the current window length, Op is the number of homo-
geneous operations and β is the factor which determines
modifications in the window length.

Wt+1 = Wt × (1 − β) + Op2×
Op
Wt × β (9)

For example, given W1 = 10, Op = 4 and β =
0.10, we would obtain a next window length equals to
W2 = 9. Note that the window adapts according to the
number of operations under the same type, see Figure
4. On the other hand, when Op is equal toWt (seeW4

in Figure 4) the next window length increases consider-
ably,W5 = 11. Parameter β is experimentally defined
(as presented in Section 5.4).

Figure 4 presents a sample trace file with process
behavior information (in this example we focused only
in reading (r) and writing (w) operations) obtained
through the interception approach (Section 4.1). The
first part of the Figure 4 shows the initial window length
(W1 = 10) and all consecutive operations. The second
part shows how to compute of the next sliding window
length based on Equation 9. Finally, the last part shows
the subsequent windowsW2 = 9,W3 = 8,W4 = 7 and
W5 = 11, which clearly demonstrates the adaptation of
window length according to the behavior of reading and
writing operations.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011



Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 35

Initializing the Adaptive Sliding Window

W1=10

� �� �

rrrrwwrwwr rwrrwwrwwwwwwwrrwrrrrrrr

Calculating window length

rrrr
����

Op=4

wwrwwr → W2 = 10 ∗ (1− β) + 42∗
4

10 ∗ β = 9

r
����

Op=1

wrrwwrww → W3 = 9 ∗ (1− β) + 12∗
1

9 ∗ β = 8

wwwww
� �� �

Op=5

rrw → W4 = 8 ∗ (1− β) + 52∗
5

8 ∗ β = 7

rrrrrrr
� �� �

Op=7

→ W5 = 7 ∗ (1− β) + 72∗
7

7 ∗ β = 11

Window length after executing the ASW approach

W2=9

� �� �

rwrrwwrww

W3=8

� �� �

wwwwwrrw

W4=7

� �� �

rrrrrrr

W5=11

� �� �

rwrrrwwrrwr

Figure 4: Example of the Adaptive Sliding Window with β = 0.10.

By using this mechanism, we compute the number
of similar operations and define the length of the next
window of future events. Thus, it limits how many fu-
ture events will be analyzed. Then, we consider the
window to anticipate data transfers, bringing informa-
tion locally and, therefore, reducing future access costs.

Without the adaptive mechanism, we should set a
fixed length for the sliding window, which is only possi-
ble experimentally (requiring the evaluation of a range
of values for the length). Besides that, a fixed length
might be good for part of the application execution,
while it would reduce the performance in other situa-
tions (time instants). Therefore, the length needs to be
dynamically adapted according to the instantaneous be-
havior of the process (we consider one specific adap-
tive window per process). Moreover, using the adaptive
mechanism, the window fits the process behavior over
time, making it more flexible and efficient.

4.3 The Proposed Heuristic

Let P = {p0, p1, . . . , ph−1} be the set of all pro-
cesses previously scheduled on grid sites, F =
{f0, f1, . . . , fz−1} be the set of files to be accessed,
and O = {r, w, d} (where r is read, w is write and d
represents idle moments) represent the set of types of
operations. Let TR model the series of process behav-
ior, where each element tr ∈ TR describes an operation

op over a file f , executed by process p.
Thus, we anticipate data access operations over TR

by using an adaptive sliding window ASW → [ty, tx]
(considering x > y). This sliding window models the
number of future events (process behavior) considered
when optimizing process data-access operations.

The mechanism of anticipation aims at transferring
files before they are requested by jobs in execution.
This mechanism reduces the access cost due to files are
requested beforehand and they are locally replicated.
Consequently, all this scenario reduces the total execu-
tion time of applications. In Figure 5, a file will be re-
quested at t1, and it was totally transferred in advance.
On the other hand, in Figure 6, the file is requested in
t1, however the transfer was not completed and, in this
case, the heuristic still needs to transfer the spare data.
In this last scenario, the total cost is t2 − t1.

Figure 5: The file is completely transferred

Figure 6: The file is partially transferred

As previously presented in Table 5, every trace line
(event) corresponds to a quintuple tr ∈ TR. Thus, the
proposed heuristic (Algorithm 5) considers the histor-
ical process behavior, represented by TR, and a given
sliding window ASW of future operations to optimize
data accesses on distributed environments. The antic-
ipation of future operations supports the minimization
of communication/synchronization costs related to file
transfers and consistency.
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In this way, consider a process p which executes op-
erations over a file f . Now, let p be at the current exe-
cution or time instant tc and there is a window of events
up to the time instant tf , where tf > tc. The proposed
heuristic evaluates if file f can be retrieved (i.e. to find
the latest version of a replica f �) to the local site where
it is needed. If so, transfer costs and access delays are
reduced and the process performance is improved. In
this circumstance, there are two ways of retrieving f ,
both imply cost Γ (Equation 5):

1. if tc+Γ ≤ tf , then we can completely retrieve file
f , which reduces the process execution time, in Γ
units, to access it;

2. if tc + Γ > tf , then we can reduce tf − tc time
units in overall process execution.

The proposed heuristic is presented in Algorithm 5
and in other auxiliary procedures as follows (procedures
listed in Algorithms 1, 2, 3 and 4).

The method Retrieve(f ) (Algorithm 1) estab-
lishes a new local copy (replication) of the remote file
f and assesses the copy removal option (for data mi-
gration purposes). The method Read(tr) (Algorithm 2)
receives a quintuple tr and, if file f is invalid then it
applies the method Retrieve(f ) and finally reads it.
The method Write(tr) works similarly (Algorithm 3).
The method Invalidate(f ) (Algorithm 4) receives
a file and updates all replicas as invalid.

Algorithm 1 Retrieve(f )

Require:
The f file.

Ensure:
f � replica file retrieved from nearest site.

1: S ← sites subset where there are f copies
2: for each s ∈ S do
3: Λ(f) =

�
p∈P

�
j rcost(fj) + wcost(fj)

4: end for
5: return f �

Every grid site s ∈ S (where the environment is
represented by the graphG(S,L)) has an associated set
of processes which were previously scheduled accord-
ing to any policy. The method getNextProcess(s)
(Algorithm 5, line 3) returns a process p scheduled on
site s. Every grid site s contains the historical traces
of processes (TR, line 4). The pseudocode in between
lines 5 and 13 performs operations tr ∈ TR, considering
the possible types: read, write or idle. From line 14 to
44, the heuristic assesses the feasibility of replication,

Algorithm 2 Read(tr)

Require:
Quintuple {pid,inode,amt,time,op}.

Ensure:
Reading amt from file referenced by inode.

1: if f is “invalid" then
2: Retrieve(f)
3: end if
4: reads

Algorithm 3 Write (tr)

Require:
Quintuple {pid,inode,amt,time,op}.

Ensure:
Writing amt to the file referenced by inode.

1: if f is “invalid" then
2: Retrieve(f)
3: end if
4: writes

Algorithm 4 Invalidate(f )

Require:
The f file.

Ensure:
The subset S of outdated f replicas.

1: S ← site subset where there are f copies.
2: for each s ∈ S do
3: update copy cs of f as “invalid" in site s.
4: end for
5: return S.
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Algorithm 5 DAP Heuristic

Require:
Set of process P = {p0, p1, . . . , ph−1};
Set of files F = {f0, f1, . . . , fz−1};
Set of quintuples TR = {tr0, tr1, . . . , tru−1};
initialASW= 100; ASW > 1; β = 0.10.

Ensure:
Set of file replicas F �.

1: for each p ∈ P do
2: p ← getNextProcess()
3: for each tr ∈ TR do
4: if p = getProcess(tr) then
5: if getOperation(tr)= “Read" then
6: Read(tr)
7: else if getOperation(tr)= “Write" then
8: Invalidate(f )
9: Write(tr)
10: else
11: Sleep(tr.time)
12: end if
13: else if tr.index ≤ u then
14: j ← tr.index
15: ASW← initialASW
16: k ← 1; Op← 0; diff← true
17: prevOp← getOperation(tr)
18: while k < ASW AND j < |TR| do
19: if p = getProcess(trj) then
20: if getOperation(trj ) = “Read" then
21: if f is invalidate OR f is not local AND

none bringing the data then
22: Retrieve(f)
23: end if
24: else
25: if f is invalidate OR f is not local then
26: Retrieve(f)
27: end if
28: end if
29: k ← k + 1
30: currentOp← getOperation(tr)
31: if prevOp = currentOP AND diff then
32: Op← Op+ 1
33: prevOp← currentOp
34: else
35: diff← false
36: end if
37: end if
38: j ← j + 1
39: end while
40: initialASW← ASW× (1− β) +Op2×

Op
ASW × β

41: if initialASW< 2 then
42: initialASW← 2
43: end if
44: else
45: Sleep(tr.time)
46: end if
47: end for
48: end for

migration, consistency and retrieval of files, according
to the historical events in sliding window. Lines 32 to
34 compute the number of similar operations in the cur-
rent window.

Line 41 computes the next window length and line
43 is a special case when window length is less than
2. This special case is a restriction which denies the
absence of further updates in order to avoid shorter-
length windows (which could risk the adaptive ap-
proach). Line 46 corresponds to the situation in which
site s is not responsible by process p and there is no
event in the sliding window, therefore, s remains idle
for a period of time.

4.4 Complexity evaluation

In order to understand the complexity of the proposed
heuristic, we focused on the dominant computations
in the Algorithm 1. The outer loop (line 1) is re-
peated at most P times, therefore, its time complexity
is O(|P |). The loop at line 3 is execute, in worst case,
|TR| times. Further, for each iteration of the inner loop
(line 18), lines from 19 to 38 have the time complexity
of O(|TR|). We concluded that the total time complex-
ity of the heuristic algorithm is O(P ×TR2). Thus, our
heuristic algorithm is low-order polynomial and can be
run quickly for various grid environments with several
sites.

5 Experiments

Grid computing researches are based on two types of
experiments: real and simulations [11]. Experiments in
real environments are usually more reliable and confirm
proposed approaches in practice. However, applications
may run for long periods and, furthermore, they need
to be correctly and functionally implemented. Most
likely failures occur during those executions, which in-
fluence the results accuracy. Other workloads, imposed
on the environment, may also interfere in experiments.
Finally, it is very difficult to have fully dedicated en-
vironments to avoid those interferences, mainly when
considering the inherently large scale of grid comput-
ing scenarios.

Simulations approximate real experiments by mod-
eling (using equations) those environments and their it-
erations (computers, processes, operations, etc.). The
advantages of simulations over real experiments are: no
need of building real systems; no limits of experimen-
tal scenarios; full control of the environment and repro-
ducibility of experiments.

Due to the advantages of simulation, this paper
adopts the OptorSim simulator, which is part of the Eu-
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ropean DataGrid EDG Project [5]. This simulator was
originally developed to model the dynamic effects of
data replication, and it is used to model the LCG (Large
Hadron Collide Computing Grid), also considered by
other works [22, 4, 10].

OptorSim models grid environments by using sites
interconnected through communication links (Figure
7). Every grid site contains at least one computing el-
ement (CE, or computer), and one storage element, or
both. Every grid site executes a local replica optimizer
(RO) to take replication decisions and there is a single
global resource broker (RB) to decide on job schedul-
ing. OptorSim models jobs to access a set of files,
which may be replicated on grid sites, according to the
RO. A replica catalog (RC) maps logical names to physi-
cal files and a replica manager (RM) handles replications
and also registers them in the catalog. Figure 7 presents
all components of the OptorSim simulator.

Figure 7: Simulated Data Grid architecture

This simulator allows users to specify the grid topol-
ogy by providing parameters for CE’s and communica-
tion links. In this work, we consider a topology gener-
ated by BRITE [25], a complex-network topology gen-
erator which provides bandwidth and latency informa-
tion based on well-accepted models. Topology gener-
ators are widely used to model large-scale network en-
vironments [25], such as the Internet. BRITE was con-
sidered due to its flexibility, adaptability and interoper-
ability [25]. The BRITE output file contains commu-
nication links with their associated bandwidths and la-
tencies which are used, by OptorSim, to model the grid
environment.

OptorSim requires the definition of a job list to be
associated to a set of files. Jobs may access a subset
of those files, according to an access pattern. The sim-

ulator also has four algorithms to take job scheduling
decisions: Random, QueueLength, AccessCost
and QueueAccessCost. Random randomly assigns
a job to a CE, similarly to Legion scheduling [9].
QueueLength assigns jobs to the shortest-queue CE,
what may represents the idler resource. AccessCost
estimates the access time for all files required by a job,
then, the job is assigned to the CE with the lowest es-
timated cost. The last algorithm operates similarly to
the latter, but it also considers queue length (hybrid ap-
proach).

In addition to the scheduling algorithm, Op-
torSim provides five access optimization ap-
proaches: 1) In SimpleOptimiser, no
replication is performed, files are remotely ac-
cessed; 2) DeleteOldestFileOptimiser
replicates files when jobs need them, remov-
ing the least-recently-used (LRU) replicas; 3)
DeleteLeastAccessedFileOptimiser
replicates files when jobs need them, remov-
ing the least-frequently-used (LFU) replicas; 4)
EcoModelOptimiserBinomial considers
an economic model to determine replications.
In this approach, file replicas are removed ac-
cording to a Binomial estimation function; 5)
EcoModelOptimiserZipf considers an eco-
nomic model to replicate files. Replicas are re-
moved according to a Zipf estimation function.
We employed the approaches LRU, LFU and
EcoModelOptimiserZipf in the experiments
(Section 5.4) in order to compare them with the
heuristic proposed in Section 4.3.

OptorSim provides performance metrics for its en-
tities. For grid sites, OptorSim provides: number of re-
mote reads; number of local reads; percentage of time
that every CE has been active; number of file transfers
that were routed through a site; and the total time (in
seconds) consumed to run all jobs submitted to a site.
For storage elements, OptorSim provides: capacity and
usage, in MB, of the SE. OptorSim also provides the
following metrics for computing elements: job execu-
tion time, in milliseconds; job execution time added to
the queuing time; number of remote file reads of a CE;
number of jobs currently executed by a CE; number of
local file reads of a CE; percentage of time that a CEwas
running jobs; list of the files accessed by jobs running
on a specific CE; and, finally, the total time (in seconds)
to execute all jobs.

5.1 OptorSim Extensions

Some extensions were necessary to adapt OptorSim to
meet our needs. Those extensions provide support for:

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011



Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 39

1) trace files; 2) write operations, and 3) adaptive slid-
ing window of historical operations.

OptorSim provides different file access pattern
approaches: 1) SequentialAccessGenerator,
where files are sequentially accessed; 2) In
RandomAccessGenerator, files are ac-
cessed using a uniform distribution; 3) In
RandomWalkUnitaryAccessGenerator, files
are accessed using a unitary random walk distribution;
4) RandomWalkGaussianAccessGenerator,
where files are accessed using a Gaus-
sian random walk distribution; and 5) In
RandomZipfAccessGenerator, files are ac-
cessed using a Zipf random distribution. Those access
patterns dynamically generate the job behavior, what
did not meet our needs to have historical operations.
That motivated us to develop a new approach: 6)
a trace-based file access approach, where events
represent process operations (behavior). Those events
provide the following information for every operation:
process identification (pid), interval in between con-
secutive access operations (time), file identification
(inode), operation type (op) and volume of data
(amt). Table 5 presents an example of a trace file.

Moreover, the original OptorSim provides only read
operations, thus, we also needed to extend it to incorpo-
rate write operations. This extension was based on the
cost (Equation 3) to write data and propagate it to file
replicas, as presented in Algorithms 3 and 4.

Finally, we developed an adaptive sliding window
strategy to provide future events (operations) based on
historical information, as previously presented in Equa-
tion 9. Experiments have confirmed that the adaptive
sliding window heavily impacts the heuristic perfor-
mance (Section 5.4).

5.2 Environment Parametrization

A 128-site grid was considered in experiments. Every
grid site was composed of one SE where the capac-
ity was modeled by an exponential probability function
with average 100GB (parameter Ω described in Sec-
tion 3). Communication links were modeled by us-
ing the BRITE topology generator which considers the
Barabasi model for Autonomous System [25]. In ad-
dition, BRITE adopts a Heavy-Tail distribution func-
tion to define the addition of nodes and bandwidth (the
minimum bandwidth was 10Mbits/s and the maximum
1, 024 Mbits/s). An exponential distribution function
was considered to model communication delays (with
average 0.5 seconds).

Experimentswere configuredwith 128 jobs (one per
grid site). More jobs may be considered, however when

a set of jobs runs in a specific grid site, the behavior of
each job contributes to the data access behavior issued
by that grid site. Then, by having one job per site, we
can indeed represent the data access patterns of several
individual jobs allocated into the same grid site.

A uniform distribution function (average 10) was
used to determine the number of files accessed by every
job (i.e. the set of files accessed by a job). Files in the
OptorSim have fixed size and can be model by follow-
ing the chunk representation in the GFS [17]. The be-
havior of every job is assigned to the simulator by using
a configuration file, which may be synthetic or obtained
by using an interception approach (Section 4.1 and Ta-
ble 5). All jobs have the same probability to run in ev-
ery CE of the environment. An exponential distribution
function was adopted to model the job inter-arrival time
(average 1, 500ms).

Processing capacities were obtained by using the
benchmark SPEC CINT 2000, which is a standard way
of measuring CPU performance. It generates a perfor-
mance measurement based on a referencemachine (Sun
Ultra 10) [2]. For example, a Pentium IV has a perfor-
mance of 0.5 CINT 2000. In this work, every CE is ho-
mogeneous and has a processing power of 1.0k CINT
2000 (or 1, 000 CINT 2000). The CPU homogeneity
does not influence in the data access operations which
are the main focus of this paper.

We consider the same job scheduling algo-
rithm in every experimental scenario, which is the
QueueAccessCost (Section 5) and the same trace
file to describe the data access pattern of files (Section
5.1).

5.3 Intrusion Analysis when Capturing Information

We evaluated costs involved in acquiring the necessary
application knowledge (operations, also called events)
to generate trace files and, therefore, assessed the pro-
posed approach. The same cost involved in obtaining
such information would be necessary in a real envi-
ronment. Two acquiring approaches were considered:
Ptrace [32] and the DLSym [21] under two bench-
marks: Nbench [24] and Bonnie [6]. Nbench
probes the CPU capacity in terms of float-point oper-
ations as well as the memory subsystem. Bonnie per-
forms read-and-write operations on files. Experiments
were executed 30 times on a Intel Core i7 CPU
2.67GHz, 8GB RAM and 250GB HD. We have
evaluated the execution time of such benchmarks with
and without acquiring mechanisms. Table 6 presents
results which confirm that the intrusion is lower than
12% in the worst case of Ptrace and 1.5% for DLSym.
Each value in Table 6 corresponds to the benchmark
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execution time and its standard deviation, respectively.
This confirms that the second approach, this is DLSym,
would better suit on a real environment, that is why we
selected it.

Table 6: Information capture approach evaluation

Bench Time(s) Ptrace DLSym

Nbench 272.81 309.69 276.78

±5.99 ±20.26 ±5.46

Bonnie 10.41 11.97 10.47

±0.03 ±0.07 ±0.04

Nbench Impact 11.91% 1.43%

Bonnie Impact 13.03% 0.57%

5.4 Results

This section presents experimental results which are or-
ganized according to the previously described environ-
ment: 128-site grid. Charts present bars which corre-
spond to the average of 30 executions (this number of
executions is based on the Central Limit Theorem [29],
which supports the obtainment of a significative statis-
tical measurement).

Experiments are categorized according to the per-
centage of read-and-write operations. For example,
Figure 9 presents an environment with 5% of the writ-
ing operations, i.e., the trace file has 5% of events clas-
sified as w (Table 5).

We evaluated three optimization techniques: LRU,
LFU and the Economic Model (ECO). All those tech-
niques are available in the OptorSim simulator. We
also compared the results of such techniques against
the heuristic proposed is this paper. The DAP heuris-
tic is evaluated under different values of parameter β:
{0.05, 0.10, 0.15}.

In Figure 8, the simulated environment has 100%
of reading operations and 10 files are accessed by jobs.
The x-axis corresponds to parameter β considered by
the heuristic and the y-axis represents the average ex-
ecution time of jobs (in seconds). As shown in Figure
8, the heuristic was capable of reducing the job execu-
tion time in one order of magnitude, when compared to
other data replication techniques.

Figure 8: Environment with 100% of reading operations

Figure 9: Environment with 5% of writing operations

In Figure 9, the environments deal with 5% of writ-
ing and 95% of reading operations and 10 files are ac-
cessed by jobs. The heuristic reduced the execution
time in one order of magnitude, but, when β = 0.15,
the results are similar to the other techniques.

Figure 10: Environment with 95% of writing operations
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In Figure 10, the simulated environments present
95% of writing and 5% of reading operations and 10
files are accessed by jobs. The heuristic has reduced
job execution times in around 40%. When β = 0.15,
the heuristic results were worse than other replication
techniques.

We also compared the results of the adaptive heuris-
tic to the ones obtained in the initial paper [19]. From
that, we concluded that this heuristic presents similar
execution times to the environments under 100% of
reading operations, and this new approachwas 10% bet-
ter for the environment under 5% of writing operations
and 15% better for the environment under 95% of writ-
ing operations, what confirms the need for an adaptive
window.

These results confirm improvements in application
performance and suggest the adoption of the adaptive
sliding window length. We observed that the adap-
tation of the sliding window is better when consider-
ing β ∈ [0.05, 0.10]. In the considered scenario, we
experimentally confirmed that β ∈ [0.05, 0.10] gives
more relevance to the current window, Wt, according
to Equation 9, and when increasing β, more relevance
is given to Op. This fact, allow us to conclude that as
β gets lower, the adjustment of the window length is
improved.

The reduction of access costs was obtained due to
the adaptation of the sliding window length (i.e., the
window now follows the dynamic behavior of pro-
cesses), which updates the number of future events
considered when taking decisions on data replication,
migration and consistency. We also observed that
the greater the differences in access patterns (different
types of operations – read, write and idle – interposed),
the unstabler the application performance is.

6 Conclusions

This paper has presented a history-based data access op-
timization approach for grid computing environments.
Our main objective is to minimize the application exe-
cution time by optimizing data accesses and, therefore,
improve decisions on replication, migration and consis-
tency. From that, we proposed an adaptive sliding win-
dow length which aims at providing the dynamic be-
havior of application operations to our data access opti-
mization heuristic.

The proposed approach also considers concepts of
monitoring and intercepting system calls to capture ap-
plications operations and compose processes histories
(i.e. the trace files obtained by intercepting calls). We
kept such histories due to we believe that it is very im-
portant to understand, estimate and/or predict processes

behavior as a way to optimize read-and-write opera-
tions, which was cleared confirmed. In addition, we
defined an analytical optimization model for the Data
Access Problem (DAP), which was considered to study
approaches for minimizing the overall application exe-
cution times.

Simulations were conducted to study the efficiency
of our heuristic using the adaptive sliding window
length, under a wide range of environments and sys-
tem configurations (frequency of read-and-write op-
erations). Experimental results confirm that our ap-
proach outperforms other commonly considered ones
(e.g., LRU, LFU and Economic Model) in approxi-
mately 50% when dealing with grid environments. Be-
sides using historical information, the results motivate
further work in designing and implementing on-line
prediction mechanisms to take autonomic decisions on
data replication, migration and consistency.
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