
Cost and Coverage Metrics for Measuring the Effectiveness of Test
Case Prioritization Techniques

MS.A.ASKARUNISA 1

MS. L.SHANMUGAPRIYA 2

DR.N.RAMARAJ 3

Thiagarajar College of Engineering, Madurai
Thiagarajar College of Engineering, Madurai

GKM Engineering College, Chennai
1(aacse)@tce.edu

2()@tce.edu
3nishanazer@yahoo.com

Abstract. Regression testing is an important and also a very expensive activity in the software life cycle.
To reduce the cost of regression testing, test cases are prioritized. One goal of test case prioritization
technique is to increase a test suite’s rate of fault detection and to reduce the cost of regression testing.
In his paper G. Rothermel [9] has provided a metric, Average Percentage of Fault Detected (APFD),
for measuring rate of fault detection during prioritization. This metric assumes that all test cases and
fault costs are uniform. In practice, test case and fault costs may vary, and in such cases the previous
APFD metric can be unsatisfactory. This paper presents a metric for assessing the rate of fault detection
of prioritized test cases, APFDc, that incorporates varying test cases and fault costs. We have also cal-
culated other new metrics like Average Percentage of Statement Coverage (APSC), Average Percentage
of Branch Coverage (APBC),Average Percentage of Loop Coverage (APLC) and Average Percentage
of Condition Coverage (APCC) based on the coverage criterion for the various prioritization techniques
performed. Test cases are executed using JUnit tool. Code cover tool is used to find code coverage
information. Test case prioritization is performed based on coverage and cost information. By injecting
mutation faults effectiveness of prioritization is measured. Finally, we have implemented all the metrics
considering a few standard java programs.

Keywords: Regression Testing, code coverage, test case prioritization, mutation faults, Average percent-
age of Fault Detection (APFD), Average percentage of Fault Detection with cost (APFDc).

(Received April 01, 2009 / Accepted July 04, 2009)

1 Introduction

Regression testing is needed to detect whether new
faults have been introduced into previously tested code
and whether newly added code functions according to
specification. Regression testing is an important activ-
ity in the software life cycle, but it can also be very
expensive and can account more cost [5]. During Re-
gression testing, the test cases can either be reduced or
optimized or prioritized so as to reduce the time, cost

and resources of the testing process.Test case prioritiza-
tion techniques schedule test cases for regression test-
ing in an order that attempts to maximize some objec-
tive function, such as achieving code coverage quickly
or improving rate of fault detection. An improved rate
of fault detection can provide earlier feedback on the
system under test, enable earlier debugging.[1,2,3,7].
In his paper G. Rothermel [9] has provided a metric,
APFD, for measuring rate of fault detection, and tech-

(aacse)@tce.edu
()@tce.edu
nishanazer@yahoo.com

niques for prioritizing test cases in order to improve
APFD. This metric assumes that all test cases and fault
costs are uniform. In practice, test cases and fault costs
may vary, and in such cases the previous APFD met-
ric can be unsatisfactory. This paper presents a metric
for assessing the rate of fault detection of prioritized
test cases, APFDc, that incorporates varying test cases
and fault costs. These techniques enable practitioners
to perform a new type of prioritization: cost-oriented
test case prioritization. We have also calculated other
new metrices like APSC [11], APBC, APLC and APCC
based on the coverage criterion for the various prioriti-
zation techniques performed.

Test cases are executed using JUnit tool [13]. Code
cover tool [14] is used to find code coverage informa-
tion like Statement coverage, branch coverage, loop cov-
erage and condition coverage. Test case prioritization is
performed based on coverage and cost information. The
effectiveness of the various prioritization techniques can
be obtained by injecting faults. Regression faults vary
in two ways: by locating naturally occurring faults and
by seeding faults. Naturally occurring faults offer exter-
nal validity, but they are costly to locate and often can-
not be found in numbers sufficient to support controlled
experimentation[9].But seeded faults, (hand-seeded or
mutation faults) can be provided in larger numbers, al-
lowing more data to be gathered. In this paper we have
calculated the effectiveness by injecting mutation faults.
We use MuJava tool [16] for generating mutants. Fi-
nally, we have analyzed our results with a few standard
java programs.

Section 2 discusses the prior work on regression test-
ing. In section3 proposed work on Test Case Prioritiza-
tion is discussed. In Section 4 various Test case priori-
tization metrices are compared. Section 5 discusses the
experimental programs, we have taken. In section 6 the
metrics were implemented and the results obtained.

2 Definition of Regression Testing

Regression testing can be defined as follows:

Let P be a program, let P’ be a modified version of
P, and let T be a test suite developed for P. Regression
testing is concerned with validating P’. To facilitate re-
gression testing, engineers typically re-use T, but new
test cases may also be required to test new functionality.
Both reuse of T and creation of new test cases are im-
portant; however, it is test case reuse that is of concern
here, as such reuse typically forms a part of regression
testing processes [5].

2.1 Related work on Regression Testing Method-
ologies

In particular, researchers have considered four method-
ologies related to regression testing and test reuse: retest-
all, regression test selection, test suite reduction, and
test case prioritization. This section provides additional
background on the various methodologies of regression
testing [10].

2.1.1 Retest-all

When P is modified, creating P’, test engineers may
simply reuse all non-obsolete test cases in T to test P’,
this is known as the retest-all technique [5].

2.1.2 Regression Test Selection

The retest-all technique can be expensive: Regres-
sion test selection (RTS) techniques (e.g., [12, 9]) use
information about P, P’, and T to select a subset of T
with which to test P’. One cost-benefit tradeoff among
RTS techniques involves safety and efficiency. Safe
RTS techniques guarantee that, under certain conditions,
test cases not selected could not have exposed faults in
P’ [12].

2.1.3 Test Suite Reduction

Test suite reduction techniques remove redundant
test cases from T by using information about P and T
.

2.1.4 Test Case Prioritization

Test case prioritization techniques [6,9,10], sched-
ule test cases so that those with the highest priority, ac-
cording to some criterion, are executed earlier in the
regression testing process than lower priority test cases.
A potential advantage of these techniques is that unlike
test case reduction and non-safe regression test selec-
tion techniques, they do not discard tests. Many differ-
ent prioritization techniques have been proposed [4,8,9],
but the techniques utilize simple code coverage infor-
mation like statement and method coverage.

3 Proposed work on Test Case Prioritization

The prioritization techniques most prevalent in lit-
erature and practice involve those that utilize simple
(statement and method) code coverage information. We
have performed test case prioritization based on all types
of coverage’s like Statement coverage, branch cover-

age, loop coverage and condition coverage including
varying cost. We have developed a test case prioriti-
zation framework that prioritizes the various test cases
in two ways viz. Coverage based and Cost oriented as
shown in Figure 1. The description of the framework is
as follows:

3.1 Test case generation

Test case is a combination of inputs, executing func-
tion, expected outputs. We have used the JUnit frame-
work [13] for executing unit tests. JUnit test cases are
Java classes that contain one or more test methods that
are grouped into test suites. A test case tests the re-
sponse of a single method to a particular set of inputs.
For implementation we have used a calculator program
that performs the basic functions of scientific calculator
and have generated nearly 26 test cases and executed
them using JUnit.

3.2 Measuring Code coverage

After generating test cases we found coverage’s for
each test case using Code cover tool [14,17]. Coverage
measurement provides percentage of code that is cov-
ered by test case. Code cover is an open source tool
for finding coverage and it is integrated with JUnit test
cases. This tool supports statement coverage, branch
coverage, loop coverage and condition coverage. The
details of the various coverage percentages for the 26
test cases of Calculator program are shown in Table 1.
We have calculated the total coverage for the calculator

Figure 1: Overview of Test case prioritization.

program as 99% statement coverage,96% branch cover-
age, 70%loop coverage and 100%condition coverage.

Table 1: Coverage percentage for Calculator program

TestCase Statement Branch Loop StrictCondition
(in%) (in%) (in%) (in%)

1 8.1 8.7 0 0
2 8.1 8.7 11.3 0
3 8.1 8.7 0 0
4 11.3 8.7 22.2 11.1
5 6.5 8.7 0 0
6 9.7 8.7 11.1 0
7 9.7 8.7 11 0
8 22.9 5.7 22.2 11.1
.

25 4.3 4.3 0 0
26 4.3 4.3 0 0

3.3 Test Case Prioritization

Test case prioritization techniques schedule test cases
so that those with the highest priority, according to some
criterion, are executed earlier in the regression testing
process than lower priority test cases.Previous work [10]
has described the test case prioritization problem as fol-
lows:

Definition:The Test Case Prioritization Problem Given:
T, a test suite; PT, the set of permutations of T; f, a func-
tion from PT to the real numbers.
Problem: : Find T ′εPT such that (for all T ") (T”εPT)
(T” 6=T’) [f(T ′) ≥ f(T")]. In our paper we have imple-
mented two kinds of Prioritization methods viz. Cover-
age based and Cost oriented that are explained in the
following section.

3.3.1Coverage based Test case prioritization
The various prioritization techniques are implemented
based on code coverage information as shown in Stmt_total

Table 2: Test case Prioritization techniques
Mnemonic Description
Stmt_total Prioritizeinorder

oftotalstatementsCovered
Branch_total Prioritizeinorder

oftotalbranchesCovered
Loop_total Prioritizeinorder

oftotalloopsCovered
Condition_total Prioritizeinorderof

totalbasicbooleantermsCovered

prioritization: prioritizes test cases according to the to-
tal number of statements they cover.
Branch_total prioritization: Same as stmt_total pri-
oritization except that they rely on coverage measured
in terms of numbers of branches executed.
Loop_total prioritization: Same as stmt_total priori-

tization except that they rely on coverage measured in
terms of numbers of loops executed.
Condition_total prioritization:Same as stmt_total pri-
oritization except that they rely on coverage measured
in terms of numbers of basic Boolean terms executed.
Prioritization was performed for the calculator program
for 26 test cases for the various techniques mentioned
in Table 2.The results are detailed in Table 3.

Table 3: Prioritization order based on coverage for Calculator Pro-
gram

Prioritization Prioritization
Techniques Order

NoPrioritization 1− 2− 3− 4− 5− 6− 7− 8
−9− 10− 11− 12− 13− 14− 15
−16− 17− 18− 19− 20− 21
−22− 23− 24− 25− 26

Stmt_total 8− 4− 12− 6− 7− 1− 2− 3−
10− 11− 5− 912− 16− 18− 14−

15− 17− 19− 20− 21− 22
−23− 24− 25− 26

Branch_total 13− 16− 18− 1− 2− 3
−4− 5− 6− 7− 8− 9− 10− 11
−12− 14− 15− 17− 19− 20−

21− 22− 23− 24− 25− 26
Loop_total 4− 8− 11− 2− 3− 6− 7− 10

−11− 1− 5− 9− 13− 14−
15− 16− 17− 18− 19− 20−
21− 22− 23− 24− 25− 26

Condition_total 4− 8− 12− 13− 16− 13
1− 2− 3− 5− 6− 7− 9− 10−
11− 14− 15− 17− 19− 20−
21− 22− 23− 24− 25− 26

3.3.2 Cost oriented Test case prioritization

Algorithm 1: Cost-oriented total statement coverage
prioritization.

In this method the test cases are prioritized based
on the various techniques as shown in Table 2 by com-
bining cost and coverage measurement [10]. Algorithm

1 discusses the process of performing Cost-oriented to-
tal statement coverage prioritization. To implement the
above algorithm we need Test case cost, test case cov-
erage and fault severity.
3.3.2.1 Estimating the test case cost

The cost of a test case is related to the resources re-
quired to execute and validate it. Various measures are
possible like

• When the primary required resource is machine or
human time, test cost can be measured in terms of
the actual time needed to execute a test case.

• Another measure considers the monetary costs of
test case execution and validation; this may reflect
hardware cost, wages, cost of materials required
for testing, earnings lost due to delays in failing to
meet target release dates, and so on . We have es-
timated cost by measuring the actual time required
to execute each test case.Estimated cost for Calcu-
lator program is shown in Table 4.

Table 4: Sample cost for Calculator Program
TestCase Cost(Excecution

timeinseconds)
1 0.281
2 0.26
. .

25 0.721
26 0.27

We have estimated cost by measuring the ac-
tual time required to execute each test case. . Estimated
cost for Calculator program is shown in Table 4.
3.3.2.2 Fault Severity
For estimating the fault severity we have to generate
faults and performing mutation testing.

• Fault generationRegression faults vary in two ways:
by locating naturally occurring faults and by seed-
ing faults. Naturally occurring faults offer external
validity, but they are costly to locate and often can-
not be found in numbers sufficient to support con-
trolled experimentation[9].But seeded faults,hand-
seeded or mutation faults can be provided in larger
numbers, allowing more data to be gathered. In
this paper we have calculated the effectiveness by
injecting mutation faults. We have used MuJava
tool [16] for generating mutants.

• Mutation testing(sometimes also called mutation
analysis) is a method of software testing, which in-
volves modifying program’s source code in small.
Mutation testing is done by selecting a set of muta-
tion operators and then applying them to the source
program one at a time for each applicable piece of
the source code. The result of applying one mu-
tation operator to the program is called a mutant.
The mutation operators in MuJava tool are shown
in Table 5.

For example, AOP operator replaces ad-

Table 5: Sample cost for Calculator Program
Operators Descriptions

AOP ArithmeticOperatorChange
LCC LogicalConnectorChange
ROC RelationalOperatorChange
APC AccessF lagChange
OV D OverridingV ariableDeletion
OV I OverridingV ariableInsertion
OMD OverridingMethodDeletion
AOC ArgumentOrderChange

dition operator with a subtraction, multiplication,
or division operator [16].For the Calculator pro-
gram 288 mutants were generated. From these 25
mutants have been selected randomly and applied
to the code and the fault matrix was constructed.
The fault matrix for Calculator program is shown
in Table 6.

Table 6: Sample fault matrix for Calculator program
TestCase Fault

1 2 3 4 5 6 . 24 25
1 X
2 X
3 X
4 X X
.

25 X X
26 X X

• Estimating fault severity Cost-cognizant prioriti-
zation also requires an estimate of the severity of
each fault that can be revealed by a test case.Two
possible estimation approaches, however, involve
assessing module criticality and test criticality [10].
Module criticality assigns fault severity based on
the importance of the module ,or some other code
component such as a block, function, object, in
which a fault may occur, while test criticality is as-
signed directly to test cases based on an estimate

of the importance of the test, or the severity of the
faults each test case may detect.

We have considered module criticality for estimating
fault severity. We ranked faults based on severity val-
ues like "Cosmetic", "Moderate", "Severe", "Critical"
as shown in Table 7 and based on these ranked faults we
estimated the fault severity. Total severity , the total of

Table 7: Fault severity values

Severity Severity Description
V alues Levels

4 Critical Productisusable
3 Severe Productfeaturecannot

beused, noworkaround
2 Moderate Productfeaturecannot

beused, onlywithworkaround
1 Cosmetic producthasaminorinconvenience

all the severities for the test cases) and average severity,
Total severity / Number of faults,for each test case were
calculated.For the Calculator program the fault severity
values are shown in Table 8.
3.3.2.3 Award value calculation and Prioritization

For Cost oriented prioritization the test cases are pri-
oritized based on award value.Award value(at)is calcu-
lated using the formula,Award value(at)=covt*g
(criticalityt,costt).Where criticalityt - is an estimate of
the average severity of faults detected by test case t,costt
- is the cost of t, and g - is a function that maps the crit-
icality and cost of t into a value. (Function g simply
divides criticalityt by the costt.) The result is an award

Table 8: Fault severity values
TestCase Total Noof Average Award

fault faults fault V alue
Severity Severity

1 6 2 3 85.409
2 7 3 2.3333 47.56
3 7 3 2.3333 2.708
4 13 5 26 46.598
.

25 1 1 1 7.350
26 1 1 1 19.629

value at for t. The notion behind the use of this compu-
tation is to reward test cases that have greater cost ad-
justments when weighted by the total number of state-
ments they cover.Calculated award value for Calculator
program is shown in Table 8.Test case which has high
award value than other test cases is executed first and so

on.Prioritization was performed for the calculator pro-
gram for 26 test cases for the various techniques men-
tioned in Table 2.The results are detailed in Table 9.

Table 9: Prioritization order based on cost for Calculator Program
Prioritization Prioritization

Techniques Order
No 1− 2− 3− 4− 5− 6− 7− 8

Prioritization −9− 10− 11− 12− 13− 14− 15
−16− 17− 18− 19− 20− 21
−22− 23− 24− 25− 26

Stmt_ 1− 10− 5− 20− 11− 18
total −9− 16− 2− 7− 19− 13

−15− 6− 2− 14− 26− 21− 17−
23− 12− 25− 8− 3− 24

Branch_total 18− 16− 1− 2− 10− 13− 5−
11− 9− 15− 7− 20− 6− 4
−14− 19− 17− 22− 26− 21
−23− 12− 25− 3− 8− 24

Loop_total 4− 2− 10− 11− 7− 6−
12− 8− 3− 1− 5− 9− 13− 14

−15− 16− 17− 18− 19− 20− 21−
22− 23− 24− 25− 26

Condition_total 18− 16− 13− 4− 12− 8−
1− 2− 3− 5− 6− 7− 9− 10− 11−

14− 15− 17− 19− 20− 21− 22
−23− 24− 25− 26

3.4 Measuring Effectiveness of the various priori-
tization Techniques

In our work we have predicted the effectiveness [9,10,11]
of coverage based prioritization techniques using APSC,
APBC,APLC APCC ,APFD metrices and for cost ori-
ented prioritization techniques using APFDc metric.

3.4.1 APSC,APBC,APLC APCC metrics

Depending on the coverage criterion (statement, branch
etc) considered [11], the following metrices were com-
puted. In [11] APLC and APCC metrices were not cal-
culated but we have implemented them in addition.

1. APSC (Average Percentage Statement Coverage).
This measures the rate at which a prioritized test
suite covers the statements.[11]

2. APBC (Average Percentage Branch Coverage). This
measures the rate at which a prioritized test suite
covers the branches. This metric is also repre-
sented as Average Percentage Block Coverage [11].

3. APLC (Average Percentage Loop Coverage). This
measures the rate at which a prioritized test suite
covers the loops.

4. APCC (Average Percentage Condition Coverage).
This measures the rate at which a prioritized test
suite covers the conditions.

Table 10: Test suite and branch coverage

Test Branches Covered
Case 1 2 3 4 5 6 7 8 9 10

1 X X X
2 X X X X X
3 X X X X
4 X X
5 X X X
6 X X X
.
.

25 X X X
26 X X

For example in calculating APBC metric, a test suite
T containing n test cases that covers a set of m branches
is taken.Let TFi be the first test case in ordering T’ of
T which covers branch i. The APBC for test suite T’ is
given by the equation.

APBC measures the weighted average of the percentage
of branches covered over the life of a test suite. APBC
values range from 0 to 100;higher number imply faster
coverage rates.To illustrate this measure, consider the
Calculator program with 11 branches and a suite of 26
test cases 1 through 26, each with branch coverage char-
acteristic as shown in Table10.Consider two orders of
these test cases, order T1(No prioritization):1-2-3-4-5-
6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-
25-26,and order T2(Branch_total prioritization):13-16-
18-1-2-3-4-5-6-7-8-9-10-11-12-14-15-17-19-20-21-22-
23-24-25-26.Figure 2a. and Figure 2b.shows the per-
centage of branch coverage as a function of the fraction
of the test suite used, for the two orders T1 and T2,
respectively.The area under the curve represents the av-
erage of the percentage of branch coverage over the life
of the test suite. Figure 2b. shows APBC for Calculator
program as 93.27% that reflects what happens when the
order of test cases is changed., yielding a "faster cover-
age" suite than T1 with APBC 84 %.

APSC,APLC and APCC are defined in a sim-
ilar manner to APBC,except that they measure rate of

Figure 2a:APBC Test suite T1

Figure 2b: APBC for prioritized suite T2

coverage of statements, loops and conditions respec-
tively. For Calculator Program we got 94.5% APSC
,93.27% APBC,92.2%APLC and 82.2% APCC.

3.4.2 APFD (Average Percentage of Faults De-
tected) metric

Depending on the fault criterion considered, APFD
metric was computed [3],[9] to measure the rate of fault
detection of coverage based prioritization techniques.
APFD measures the weighted average of the percent-
age of faults detected over the life of a test suite. APFD
values range from 0 to 100; higher number simply faster
(better) fault detection rates. Let T be a test suite con-
taining n test cases, and let F be a set of m faults re-
vealed by T. Let TFi be the first test case in ordering T0
of T which reveals fault i. The APFD for test suite T0
is given by the equation.

To illustrate this measure, consider the Calculator pro-
gram with 25 faults and a suite of 26 test cases1through26
as shown in Table 11.

Consider two orders of these test cases, order T1(No
prioritization):1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-
17-18-19-20-21-22-23-24-25-26 and order T2(stmt_ to-
tal prioritization) :8-4-12-6-7-1-2-3-10-11-5-9-13-16-18-
14-15-17-19-20-21-22-23-24-25-26.Figure 3a. and Fig-
ure 3b. show the percentages of detected faults of the

Table 11: Fault matrix for Calculator program
TestCase Fault

1 2 3 4 . 7 . 24 25
1 X
2 X
3 X
4 X X
5 X
.
.

25 X
26 X X

fraction of the test suite used, for the two orders T1 and
T2 respectively. In the graph of APFD the horizontal
axis denotes "Test suite Fraction" and the vertical axis
denotes "Percentage of detected faults".

The area under the curve represents the av-
erage of the percentage of detected faults over the life
of the test suite. Figure 3b. Shows APFD for Calcula-
tor program as 61.6%. From Figure 3b it is clear that
the prioritized order T2 results in the earliest detection
of the most faults than the order T1(No prioritization).,
with APFD 54.05%.

Similarly we have computed the APFD for the other
coverage criterion as shown in Table 12.

Table 12: Prioritization order based on cost for Calculator Program
PrioritizationTechniques APFD(in%)

NoPrioritization 54.05
Stmt_total 61.6

Branch_total 57.14
Loop_total 61.44

Condition_total 67.7

Figure 3a: APFD for Test suite T1

3.4.3 APFDc (Average Percentage Faults Detected
with cost) metric

Depending on the cost criterion we have
considered in section 3.3.2.1, APFDc metric is com-

Figure 3b: APFD for Prioritized suite T2

puted [10].Let T be a test suite containing n test cases
with costs t1; t2; : : : ; tn. Let F be a set of m faults
revealed by T, and let f1; f2; : : : ; fm be the severities
of those faults. Let TFi be the first test case in an or-
dering T’ of T that reveals fault i. The (cost-cognizant)
weighted average percentage of faults detected during
the execution of test suite T’is given by the equation:

To illustrate this measure, consider the Calculator pro-
gram with 25 faults and a suite of 26 test cases (1 through
26) as shown in Table 11.

Consider two orders of these test cases, order T1(No
prioritization):1-2-3-4-5-6-7-8-9-10-11-12-13-14-5-16-
17-1819-20-21-22-23-24-25-26 and order T2(cost ori-
ented stmt_total prioritization) :1-10-5-20-11-18-9-16-
2-4-7-19-13-15-6-22-14-26-21-17-23-12-25-8-3-24. Fig-
ure 4a. and Figure 4b show the percentages of detected
faults of the fraction of the test suite used, for the two
orders T1 and T2, respectively. In the graph of APFDc
the horizontal axis denotes "Percentage Total Test Case
Cost Incurred". Now, each test case in the test suite
is represented by an interval along the horizontal axis,
with length proportional to the percentage of total test
suite cost accounted for by that test case. The verti-
cal axis denotes" Percentage Total Fault Severity De-
tected". Now, each fault detected by the test suite is
represented by an interval along the vertical axis, with
height proportional to the percentage of total fault sever-
ity for which that fault accounts.

The area under the curve represents the average of
the percentage of detected faults over the life of the test
suite. Figure 4b. shows APFDc for Calculator pro-
gram as 84.09%.From Figure 4b. it is clear that the
prioritized order T2 results in the earliest detection of
the most faults than the order T1(No prioritization).,

with APFDc 53.86%.Similarly we have computed the
APFDc for the other coverage-cost criterion as shown
in Table 13.

Table 13: APFDc metric for Calculator program
PrioritizationTechniques APFD(in%)

NoPrioritization 53.86
Stmt_total 84.09

Branch_total 82.48
Loop_total 61.84

Condition_total 70.71

Figure4a.:APFDc for Test suite T1

Figure4b: APFDc for Prioritized suite T2

4 Comparison of the various Test case priori-
tization metrices

We have made an analysis of the various metri-
ces calculated for test case prioritization techniques .We
have considered the Calculator program for our analy-
sis with 26 test cases. For Calculator Program we got
94.5% APSC, 93.27% APBC, 92.2%APLC and 82.2%
APCC. Table 14 gives the details of the APFD and APFDc
metrices for the Calculator program. From the table it
is clear that the APFDc metric is higher than the APFD
metric for all the prioritization techniques except when
No prioritization is done.

5 Experimental Programs used for prioritiza-
tion

We have considered the following java pro-
grams for our experimental study viz Payroll calcula-
tion, Calculator program and two consecutive versions

Table 14: APFD and APFDc calculation for Calculator Program
Prioritization APFD APFDc

Techniques (in%) (in%)
NoPrioritization 54.05 53.86

Stmt_total 61.6 84.09
Branch_total 57.14 82.48

Loop_total 61.44 61.84
Condition_total 67.7 70.71

of Arrays program of java Utility package (jdk1.4and
jdk1.5). The Payroll program computes the pay and
loan details of employees and in the Calculator program
we have designed a scientific calculator that calculates
all arithmetic, logical, trignometric operations. The Ar-
rays program from the java Utility package (jdk1.4) per-
forms Sorting, searching, filling etc. and the Arrays
program from the java Utility package (jdk1.5) performs
Sorting, filling, hashing etc.The details of above pro-
grams are shown in Table 15 as follows.

Table 15: Experimental program detailsLOC- Lines of code, NOM-
No.of Methods,NOC-No.of classes, CC-CyclomaticComplexity

Program LOC NOC NOM CC Noof
TestCase

Payroll 320 2 10 27 29
Calculator 536 1 15 55 58
Arraysof 1010 1 70 188 203

Jdk1.4
Arraysof 1360 1 79 250 255

Jdk1.5

In the table 15, Cyclomatic complexity provides an up-
per bound for the number of test cases that are to be
written for complete testing of the application. Test
cases were written and executed using JUnit framework.

6 Result Analysis

We have performed the analysis for the various men-
tioned programs and we have executed the various test
cases using JUnit framework.We have written 29 test
cases for payroll program,26 test cases for calculator
program,203 test cases for jdk1.4 and 255 test cases
for jdk1.5We found coverage information using Code
Cover tool.[14] for all the programs namely Statement
coverage(SC), branch coverage(BC), loop coverage(LC)
and condition coverage(CC) and prioritized the test cases
using the techniques mentioned in Table 2..The total
coverage for each program is as shown in Table 16. To
measure the effectiveness of coverage based prioritiza-
tion techniques we have calculated the various metrices
viz. APSC, APBC, APLC and APCC.The details are in
Table 17. To measure how quickly the prioritized test

Table 16: Coverage information provided by Code cover
Program SC BC LC CC

(%) (%) (%) (%)
Payroll 95 90 67 88

Calculator 99 96 70 100
ArraysofJdk1.4 94 80 69 70
ArraysofJdk1.5 95 82 70 71

Table 17: Calculation of coverage based metrices
Program Coverage Matrix (in %)

APSC APBC APLC APCC
Payroll 95.1 91.2 90.1 80.1

Calculator 94.5 93.27 92.2 82.2
ArraysofJdk1.4 95.2 93.3 91.2 91.3
ArraysofJdk1.5 95.5 94.6 93.6 93.5

suite detects faults, we have injected faults using Mu-
Java tool[16]. We have generated mutants using muta-
tion operators as mentioned in Table 5.From the faults
injected, we created fault matrix which gives the details
of which test case detected what fault. From this in-
formation we calculated the metric APFD for coverage
based test case prioritization techniques.APFD compu-
tation is used to measure the rate of fault detection for
each prioritized test suite for each mutant group on each
version. The collected score were analyzed to deter-
mine whether techniques improved the rate of fault de-
tection. To perform Cost oriented Test case prioritiza-
tion, we have prioritized test cases using prioritization
techniques as shown in Table 2 by combining cost and
coverage measurement using Algorithm 1 as described
in section 3.3.2.We have estimated cost by measuring
the actual time required to execute each test case . We
considered module criticality for estimating fault sever-
ity. We estimated the fault severity based on sever-
ity values shown in Table 7.Total severity and average
severity (criticalityt) for each test case were calculated.
Then Award value is calculated .Test case which has
high award value is executed first and so on. Then ef-
fectiveness of cost oriented prioritization techniques are
measured using APFDc metric.Table 18 gives the com-
plete set of metrices calculated for proving the effec-
tiveness of various test case prioritization techniques.

From the table it is clear that the average percent-
age of fault detection is higher since we have the vary-
ing cost factor and considering the severity of faults.In
real time applications the cost factors and the severity
of faults varies always and hence APFDc is considered
to be a better metric compared to APFD.

Table 18: Calculated metrices for the selected ex-
perimental programs

7 Conclusion and future work

We have performed coverage and cost based priori-
tization and examined the effectiveness of prioritization
techniques in terms of coverage and rate of fault detec-
tion for some standard java programs. We considered
the mutation faults to increase the test suite’s rate of
fault detection. From the study it is shown that Prioriti-
zation improves the rate of fault detection. In real time
applications the cost factors and the severity of faults
varies always and hence APFDc is considered to be a
better metric compared to APFD.Thus to improve the
rate of fault detection we have computed a number of
metrices that predicts the quality and effectiveness of
the various prioritization techniques required for regres-
sion testing. These metrices also helps the Test Man-
ager in selecting a better prioritization Technique there
by reducing the time, cost and resources during regres-
sion testing.

As a future work, we intend to apply requirement
changes for performing the prioritization techniques and
also considering varied cost factors like hardware cost,
wages, cost of materials required for testing, earnings
lost due to delays in failing to meet target release dates,
and so on.

References

[1]. S. Elbaum, A. Malishevsky, and G. Rothermel,
Prioritizing Test Cases for Regression Testing, Proc. Int’l
Symp. Software Testing and Analysis, pp. 102-112,
Aug. 2000.

[2]. S. Elbaum, A. Malishevsky, and G. Rothermel,
Incorporating Varying Test Costs and Fault Severities
into Test Case Prioritization,Proc. Int’l Conf. Software
Eng., pp. 329-338, May 2001.

[3] S. Elbaum, A.G. Malishevsky, and G. Rother-
mel, Test Case Prioritization: A Family of Empirical
Studies, IEEE Trans.Software Eng., vol. 28, no. 2, pp.
159-182, Feb. 2002.

[4] J. Kim and A. Porter, A History-Based Test Pri-
oritization Technique for Regression Testing in Resource
Constrained Environments, Proc. Int’l Conf. Software
Eng., pp. 119-129, May2002.

[5] K. Onoma, W-T. Tsai, M. Poonawala, and H.
Suganuma,Regression Testing in an Industrial Environ-
ment, Comm.ACM, vol. 41, no. 5, pp. 81-86, May
1988.

[6] G. Rothermel, R. Untch, C. Chu, and M.J. Har-
rold, Prioritizing Test Cases for Regression Testing, IEEE
Trans. Software Eng.,vol. 27, no. 10, pp. 929-948, Oct.
2001.

[7] W.E. Wong, J.R. Horgan, S. London, and H.
Agrawal, A Study of Effective Regression Testing in
Practice, Proc. Int’l Symp. Software Reliability Eng.,
pp. 230-238, Nov. 1997.

[8]J.-M. Kim, A. Porter, and G. Rothermel, An Em-
pirical Study of Regression Test Application Frequency,
Proc. Int’l Conf. SoftwareEng., pp. 126-135, June
2000.

[9] H. Do, G. Rothermel, On the use of Mutation
faults in Empirical Assessments of Test case prioritiza-
tion Techniques, IEEE Trans. Software Eng., vol. 32,
no. 9, Sept. 2006

[10] Alexey G. Malishevsky_ Joseph R. Ruthru_y
Gregg Rothermely Sebastian Elbaumy, Cost-cognizant
Test Case Prioritization, Technical Report TR-UNL-CSE-
2006-0004, Department of Computer Science and En-
gineering,University of NebraskaLincoln, Lincoln, Ne-
braska, U.S.A., 12 March 2006

[11]Zheng Li,Mark Harman,and Robert M.Hierons,Search
Algorithms for Regression Test Case Prioritization, IEEE
Trans. Software Eng.,vol. 33, no. 4, pp. 225-237, Apr.
2007.

[12]D. Binkley.Semantics guided regression test cost
reduction. IEEE Transactions on Software Engineering,23(8):498-
516, August 1997.

[13] Hyunsook Do, Gregg Rothermel, Alex Kin-
neer,Empirical Studies of Test Case Prioritization in a
JUnit Testing Environment, Proceedings of the 15th In-
ternational Symposium on Software Reliability Engi-
neering (ISSRE’04)1071-9458,2004 IEEE

[14] www.codecover.org
[15] www.junit.org
[16] www.mujava.org
[17]L.Shanmugapriya.A.Malini,A.Askarunisha, Anal-

ysis of Java Based Coverage Testing Tools,IEEE Inter-
national Advance Computing Conference,March2009.

