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Abstract. ECATNets are an algebraic Petri net category based on a safe combination of algebraic abstract 

types and high level Petri Nets. ECATNets’ semantic are defined in terms of rewriting logic allowing us to 

built models by formal reasoning. Furthermore, the rewriting logic language Maude gives to ECATNEts 

dynamic aspects which are not measurable without simulation. The building of a modelling tool for the 

design and analysis from scratch (for ECATNets for example) is generally prohibitive task. Meta-

Modelling approach is useful to deal with this problem, as it allows (possibly is done graphically) the 

modelling of the formalisms themselves. Since meta-model and model are graphs, further manipulations 

−simulation, transformation and code generation for an existing solver− of the models can be described 
graphically and formally as graph grammar. In this paper, we propose an approach based on the combined 

use of Meta-modelling and Graph Grammars to automatically generate a visual modelling tool for 

ECATNets for analysis and simulation purposes. In our approach, the UML Class diagram formalism is 

used to define a meta-model of ECATNets. The meta-modelling tool ATOM3 is used to generate a visual 

modelling tool according to the proposed ECATNets meta-model. We have also proposed a graph grammar 

to generate Maude description of the graphically specified ECATNets models. Then the rewriting logic 

language Maude is used to perform the simulation of the resulted Maude specification. Our approach is 

illustrated through an example. 
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1. Introduction 

ECATNets are an algebraic Petri net category based on a 

safe combination of algebraic abstract types and high 

level Petri Nets [5]. In addition to modelling, ECATNets 

allow the verification and simulation of concurrent 

systems [4]. The most distinctive feature of ECATNets 

is that their semantic are defined in terms of rewriting 

logic [21], allowing us to build models by formal 

reasoning. The rewriting logic Maude [8] is considered 

as one of very powerful languages in the specification 

and verification of concurrent systems [21]. Rewriting 

logic gives to ECATNets a simple, more intuitive and 

practical version to analyse, without loosing formal 

semantic (mathematical rigor, formal reasoning). 

Furthermore, high level abstraction of this logic makes 

ECATNets, in spite of their complexity, to be dealt as 

simple as possible. The power of Maude in terms of 

specification, programming, simulation and verification 

in addition to the ECATNets’ integration in Maude, 

implies that there is no need to translate ECATNets in 

several languages and thus any risks about their 

semantic loss [7]. On the other hand, the use of the 

rewriting logic language Maude is constrained by the 

textual way to create and deal with ECATNets system. 



Execution under Maude system is done by using 

command prompt style. In this case, we loose the 

graphical aspect of ECATNets formalism which is 

important for the clarity, simplicity and readability of a 

system description. 

The cost of building a modelling tool from the 

scratch is prohibitive. Meta-Modelling approach is 

useful to deal with this problem, as it allows (possibly 

graphical) the modelling of the formalisms themselves 

[11]. A model of formalism should contain enough 

information to permit the automatic generation of a tool 

to check and build models subject to the described 

formalism’s syntax. If this specification is done 

graphically, the time to develop a modelling tool can be 

drastically reduced to a few hours.  

Since meta-model and model are stored as graphs, 

further manipulations of the models can be described 

graphically and formally as graph grammars [24]. Some 

of these manipulations are model simulation or 

animation, model optimisation, for example, to reduce 

its complexity, model transformation into another model 

(equivalent in behaviour), expressed in a different 

formalism, and the generation of textual model 

representations for use by existing simulators or tools. In 

this paper we will focus on the last kind of model 

transformation. These ideas presented above are 

implemented in ATOM3: A Tool for Multi-formalism 

and Meta-Modelling [2].  

In this paper, we propose an ECATNets meta-model 

and we use the meta-modelling tool AToM3 to generate 

automatically a visual modelling tool to process models 

in ECATNets formalism. We also define a graph 

grammar to translate the models created in the generated 

tool to a Maude specification. Then the rewriting logic 

language Maude is used to perform the simulation of the 

resulted Maude specification. 

The rest of this paper is organized as follows: 

Section 2 outlines the major related work. We give a 

brief introduction on ECATNets formalism and their 

integration in rewriting logic in section 3. In section 4, 

we recall some concepts about Graph Grammars. In 

section 5, we give an overview of the AToM3 tool. In 

section 6, we define a meta-model for ECATNets and 

we generate a visual tool for this formalism. In section 

7, we propose a graph grammar to generate Maude 

specification of models created with our tool. In section 

8, we illustrate our tool with Router problem. First, we 

have created the ECATNets model for this problem. 

Then we have generated Maude specification of the 

model and invoked the rewriting logic language Maude 

to perform the simulation. Finally, section 9 concludes 

the paper. 

2. Related Work 

In addition to AToM3, there are several visual tools to 

describe formalisms using metamodeling like Generic 

Modeling Environment (GME) [15], MetaEdit+ [18] 

and other tools from the Eclipse Generative Modeling 

Tools (GMT) project such as Eclipse Modeling 

Framework (EMF) [12], Graphical Editing Framework 

(GEF) [14] and Graphical Modeling Framework (GMF) 

[16]. In most of these tools, model transformations have 

to be described textually and user friendly support for 

visual analysis and testing is generally missing. In 

AToM3, the user expresses such transformations by 

means of graph grammar models. Graph grammars are a 

natural, declarative, and general way to express 

transformations.  

There are also similar tools which manipulate 

models by means of graph grammars, such as 

PROGRES [22], GReAT [17], FUJABA [13], TIGER 

[25] and AGG [1]. However, none of these has its own 

meta-modeling layer. Some of them are complemented 

with support for meta-modelling (for example, The 

GReAT model transformation engine is combined with 

GME).  

The combined use of meta-modelling and graph 

grammars taken in AToM3 allow users not only to 

benefit from the advantages of both (meta-modelling 

and graph grammars) but also to model with multi-

paradigm modeling [9]. The AToM3 tool has been 

proven to be very powerful, allowing the meta-modeling 

and the transformations of known formalisms. In [10] 

the authors presented a transformation between 

Statecharts (without hierarchy) and Petri Nets. In [19], 

the authors have presented a formal framework (a tool) 

based on the combined use of Meta-Modeling and 

Graph Grammars for the specification and the analysis 

of complex software systems using G-Nets formalism. 

The framework allows a developer to draw a G-Nets 

model and transform it into its equivalent PrT-nets 

model automatically. In order to perform the analysis 

using PROD analyzer, the framework allows a 

developer to translate automatically each resulted PrT-

Nets model into PROD’s net description language. In 

[20] the authors have proposed an approach for 

transforming UML Statechart and collaboration 

diagrams to colored Petri nets models. More precisely, 

they have proposed an automated approach and a tool 



environment that formally transforms dynamic 

behaviours of systems expressed using UML models 

into their equivalent colored Petri Nets (CPN) models 

for analysis purpose. This transformation aimed to 

bridge the gap between informal notation (UML 

diagrams) and more formal notation (coloured Petri nets 

models). It produces highly-structured, graphical, and 

rigorously-analyzable models that facilitates early 

detection of errors like deadlock, livelock, … .To make 

the analysis more easy, they have used the obtained 

CPN models to generate automatically their equivalent 

description in the input language of INA Petri net tool. 

3. ECATNets 

ECATNets [5] are a kind of net/data model combining 

the strengths of Petri Nets with those of abstract data 

types. The most distinctive feature of ECATNets is that 

their semantic is defined in terms of rewriting logics 

[21]. Motivating ECATNets (Extended Concurrent 

Algebraic Terms Nets) leads to motivating Petri Nets, 

abstract data types, as well as their combination into a 

unified framework [7].  

From a syntactic point of view, places are marked 

with multi-sets of algebraic terms. Input arcs of each 

transition t, i.e. (p,t), are labeled  by two inscriptions 

IC(p,t) (Input Condition) and DT(p,t) (Destroyed 

Tokens), output arcs of each transition t, i.e. (t,p’), are 

labelled by CT(t,p’) (Created Tokens), and finally each 

transition t is labelled by TC(t) (Transition Condition). 

IC(p,t) specifies the enabling condition of the transition 

t, DT(p,t) specifies the tokens (a multi-set) which have 

to be removed from p when t is fired, CT(t,p’) specifies 

the tokens (a multi-set) which have to be added to p’ 

when t is fired. Finally, TC(t) represents a Boolean term 

which specifies an  additional enabling condition for the 

transition t. the current ECATNets state is given by the 

union of terms having the following form (p,M(p)).  

 

 
Figure 1.  A generic ECATNets 

 
The ECATNets behaviour may be informally 

commented in the following way. A transition t is 

enabled when various conditions are simultaneously 

true. The first condition is that every IC(p,t) for each 

input place p is enabled. The second condition is that 

TC(t) is true. Finally the addition of CT(t,p’) to each 

output place p’ must not result in p’ exceeding its 

capacity when this capacity is finite. When t is fired, 

DT(p,t) is removed from the input place p and 

simultaneously CT(t,p’) is added to the output place p’. 

Transition firing and its conditions are formally 

expressed by rewriting rules [7].  

4. Graph Grammars: an introduction 

Graph grammar [24] is a generalization of Chomsky 

grammar for graphs. It is a formalism in which the 

transformation of graph structures can be modelled and 

studied. The main idea of graph transformation is the 

rule-based modification of graphs as shown in Figure 2.  

 

 
Figure 2.  Rule-based Modification of Graphs 

 
Graph grammars are composed of production rules; 

each having graphs in their left and right hand sides 

(LHS and RHS). Rules are compared with an input 

graph called host graph. If a matching is found between 

the LHS of a rule and a subgraph in the host graph, then 

the rule can be applied and the matching subgraph of the 

host graph is replaced by the RHS of the rule. A 

rewriting system iteratively applies matching rules in the 

grammar to the host graph until no more rules are 

applicable.  

5. AToM
3
: An Overview 

AToM3 is a visual tool for multi-formalism modelling 

and meta-modelling. The two main tasks of AToM3 are 

meta-modelling and model transformation. For meta-

modelling, AToM3 supports visual modelling using 

Entity Relationship (ER) formalism or UML Class 

Diagram formalism, which means that in AToM3, we 

can use either ER model or UML Class Diagram model 

to meta-model the new formalisms of interest. To be 

able to fully specify modelling formalisms, the meta-

formalism may be extended with the ability to express 

constraints (which cannot be expressed within ER or 

UML Class Diagram alone). Constraints provide a view 

on how a construct can be connected to another to be 

P P’ 

TC(t) 
IC(p,t) 

DT(p,t) 

CT(t,p’) 

 
LHS 

Rule = (LHS,RHS) 

RHS 



meaningful, and thus specify static semantics of the 

formalism. Whereas the meta-modelling formalism 

frequently uses a graphical notation, constraints are 

concisely expressed in textual form. For this purpose, 

some systems, including AToM3 use the Object 

Constraint Language OCL used in the UML. As AToM3 

is implemented in the scripting language Python, 

arbitrary Python code may be also used. Once we build 

the meta-models for the interested models, AToM3 can 

generate automatically a visual modelling environment, 

in which you can build and edit the new models. 

For model transformation, AToM3 supports graph 

rewriting, which uses graph Grammar rules to visually 

guide the procedure of the transformation (see section 

4). The rules are specified by the user, and the rules are 

ordered according to certain criteria depending on the 

features of the model to be transformed. Expressing 

computations in the form of graph grammars has some 

advantages over an implicit representation (embedding 

the transformation computation in a program using a 

traditional programming language) [3]. The main 

advantages can be summarized as follows: 

• It is an abstract, declarative, high level 

representation of the computation. This enables 

exchange, re-use, and symbolic analysis of the 

transformation model. 

• The theoretical foundations of graph rewriting 

systems may assist in proving correctness and 

convergence properties of the transformation 

tool. 

In the next sections, we will discuss how we use 

AToM3 to meta-model ECATNets formalism, how to 

generate the ECATNets visual modelling environment, 

and how to convert models in ECATNets formalism to 

their equivalent description in Maude for the simulation 

purpose. 

6. Meta-Modelling of ECATNets 

To build models of ECATNets formalism in AToM3, we 

have to define a meta-model for ECATNets. The meta-

formalism used in our work is the UML Class Diagrams 

and the constraints are expressed in Python code [23]. 

Since ECATNets consist of places, transitions, and 

arcs from places to transitions and from transitions to 

places, we have proposed to meta-model ECATNets two 

Classes to describe Places and Transitions, and two 

associations for Input Arcs and Output Arcs as shown in 

Figure 3. We have also specified the visual 

representation of each class or association according to 

the notation presented in Figure 1. 

Given our meta-model, we have used AToM3 tool to 

generate a visual modelling environment for ECATNets 

models. Figure 4 shows the generated ECATNets tool 

and a dialog box to edit a place. Each place has two 

attributes (name and initial marking) which are defined 

in the proposed Meta-model (see Figure 3 in 

ECATNetsPlace class).  

 

Attributes:

  - Name :: String

  - initMarking :: List

Constraints:

  > MoreThenOneInputArc

  > MoreThenOneOutput

Multiplicities:

  - To InputArc: 0 to N

  - From OutputArc: 0 to N

ECATNetPlace

Attributes:

  - Name :: String

  - TC :: String

Multiplicities:

  - From InputArc: 0 to N

  - To OutputArc: 0 to N

ECATNetTransition

InputArc

Attributes:

  - IC :: List

  - DT :: List

  - ListVariables :: List

Multiplicities:

  - To ECATNetTransition: 1 to 1

  - From ECATNetPlace: 1 to 1

OutputArc
Attributes:

  - CT :: List

  - ListVariables :: List

Multiplicities:

  - To ECATNetPlace: 1 to 1

  - From ECATNetTransition: 1 to 1

 

Figure 3.  ECATNets Meta-Model 

 

 

Figure 4. Generated tool to process ECATNets models  

7. Generation of Maude Specification 

In order to simulate ECATNets models, it is necessary 

to translate these models into their equivalent 

representations in Maude syntax. In this section we 

show how to use the modelling environment generated 

in the previous section to generate Maude specification. 

We do this by defining a Graph Grammar to traverse the 

ECATNets model and generate the corresponding code 

in Maude. The advantage of using a graph grammar to 

generate the textual code is the graphical and high-level 



fashion. The graph grammar has an initial Action which 

opens the file where the code will be generated and 

decorates all the Transition and Place elements in the 

model with temporary attributes to be used in the 

conditions specified in the rules. In Transition elements, 

we use two attributes: current and visited. The current 

attribute is used to identify the transition in the model 

whose code has to be generated, whereas the visited 

attribute is used to indicate whether code for the 

transition has been generated yet. In Place elements, we 

use also two attributes: fromVisited and toVisited. The 

fromVisited attribute is used to indicate whether this 

place is processed as input place whereas the toVisited 

attribute is used to indicate if this place is processed as 

output place. 

In our graph grammar, we have proposed six rules 

which will be applied in ascending order by the 

rewriting system until no more rules are applicable. We 

are concerned here by code generation, so none of these 

rules will change the ECATNets models. These rules are 

shown in figure 5 and described as follows: 

Rule1: genLHS_rl(priority 1): is applied to locate a 

place (not previously processed) which is related to 

current transition with an input arc, and generate the 

corresponding Maude specification. 

Rule2: betweenLHSandRHS(priority 2): is applied to 

generate Maude code which separates LHS and RHS of 

the equivalent rewriting rule. 

Rule3: genRHS_rl(priority 3): is applied to locate a 

place (not previously processed) which is related to 

current transition with a output arc, and generate the 

corresponding Maude specification. 

Rule4: genTC(priority 4): is applied to generate the 

appropriate Maude syntax depending on the TC of the 

transition, and mark the transition as visited. 

Rule5: InitialisePlace(priority 5): is applied to locate 

and initialise temporary attributes in places for 

processing the next transition . 

Rule6: SelectTransition(priority 6): is applied to select 

a ECATNets transition that has not been previously 

processed to generate its equivalent rewriting rule in 

Maude.  

The graph grammar has also a final action which 

erases the temporary attributes from the entities and 

closes the output file. Finally, we have assigned the 

execution of this graph grammar to a button labelled as 

"Generate Maude Description" in Figure 4.  

 

 

Figure5. Graphs Graph Grammar to generate Maude 

specification from an ECATNets model 

 

 

 

::==== 

LHS RHS 

current = = 0 

visited = = 0 
current =  1 

visited = = 0 

::==== 

6.- SelectTransition. Priority : 6 

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS 

fromVisited = = 1 

toVisited = = 0 
fromVisited =  0 

toVisited =  0 

::==== 

5.- InitialisePlace. Priority : 5 

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

current = = 1 

visited = = 0 
fromVisited = = 0 

 

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

2

3

1
LHS 

1.- genLHS_rl. Priority : 1 

RHS 

current = = 1 

visited = = 0 

fromVisited =  1 

 

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

2

3

1

LHS RHS 

current = = 1 

visited = = 0 
current =  2 

visited = = 0 

::==== 

2.- betweenLHSandRHS. Priority : 2 

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

RHS 

current = = 2 

visited = = 0 
toVisited =  1 

 

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

3

2

1

::==== 

LHS 

current = = 2 

visited = = 0 

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

3

2 1

toVisited = = 0 

 

3.- genRHS_rl. Priority : 3 

LHS RHS 

current = = 2 

visited = = 0 
current =  0 

visited =  1 

::==== 

4.- genTC. Priority : 4 

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1



8. Steps of ECATNets Simulator: router problem 

example 

In this section,  we describe the most principal steps of 

ECATNets Simulator trough an example presented in 

[6] about communication network that relies messages 

senders to receivers. We present first the ECATNets 

model describing this example via the generated tool. 

Thereafter, the translating of this model into its 

equivalent Maude specification using proposed graph 

grammar will be shown. Finally, the simulation of this 

example under Maude system will be given. 

8.1. Example presentation 

This example is about a network of communication 

that joins three messages senders to three receivers. 

Every sender (respectively receiver) is joined to a port of 

network. Every group of senders (or/and of receivers) 

sends (receives) messages in parallel.  

The Figure 6 presents the ECATNets model of the 

router problem created in our tool. Places, transitions 

and arcs inscriptions are as follows: 

Places: route, R1, R2, R3, S1,S2 ,S3, Queue1, 

Queue2, Queue3, Adr1,Adr2, Adrn. 

Transitions: From-S1, From-S2, From-S3, To-R1, 

To-R2, To-R3, Check-Adr1, Check-Adr2, Check-Adr3. 

Arcs Inscriptions: we use the definition in term of 

algebraic specification of the queue: q is a variable of 

type queue. front(q) is a function that returns the 

message m that is in the head of the queue q. addq(m, q) 

is a function that adds the message at the end of q. 

remove(q) is a function that returns the remainder of the 

queue q after deleting the first message (in head).  

 

 

Figure6. ECATNets modeling a router problem created 

in our tool 

It must be noted that the initial state (initial marking) 

of the ECATNets model is indicated by its places 

marking. For each place in model, we have place name 

on the upper and its contents marking inside. The 

marking of place S1 for example is (m1, A1). 

8.2. Translating ECATNets Model to Maude 

Description 

This step has graphical representation of an ECATNets 

model as input. It consists of translating this graphical 

representation into its equivalent Maude description 

using the graph grammar defined in previous section. To 

realise this translation, the user have to click on the 

"Generate Maude Description" button in the interface of 

the generated tool.  

In fact, Maude specification contains on one hand 

the structure of the ECATNet and on the other hand, the 

initial state of this ECATNets. The output of this step is 

the file (router.maude) which contains two elements: an 

equivalent code in Maude of ECATNet structure and an 

initial state in Maude syntax as shown in Figure 7.  

 

 

Figure 7. Generated Maude specification of router 

model 

As illustrated in Figure7, the initial state of the 

ECATNets model in Maude syntax is a sequence of 

pairs separated with points. Where the first element of 

pair is a place and the second one is its marking. For 

example, The pair <S1;(m1,A1)> indicate that place S1 

has (m1,A1) as marking. 

8.3. Simulation 

The output of the previous steps (router.maude file) is 

the input of this one. In order to perform the simulation 

of the resulted Maude specification, we have invoked 

the rewriting logic language Maude. Simulation consists 

of transforming the initial state to another by doing one 

or many rewriting actions. Therefore, in addition to 

generated file, the user may give to the Simulator the 

number of rewriting steps if (he/she) wants to check 



intermediary states. If this number is not given, the 

Simulator continues the simulation operation until 

reaching a final state. We notice that infinite case is 

possible. The Result marking (final state) of the 

simulation is given in the same manner as initial one. 

In our example (see Figure 8), we have asked the 

application to perform the simulation on the following 

initial state without indicating the number of rewriting 

steps: 

S1;(m1,A1)>. <S2;(m2,A2)>. <S3;(m3,A3)>. 

<Queue1;EmptyQueue>. 

<Queue2;EmptyQueue>.<Queue3;EmptyQueue>. 

<Adr1;A1>. <Adr2;A2>. <Adr3;A3>. 

The result marking of the simulation is: 

<R1; m1>. <R2; m2>. <R3; m3>.<Queue1; 

EmptyQueue>. <Queue2; EmptyQueue>. <Queue3; 

EmptyQueue>.  

This final marking indicates that all submitted 

messages (m1, m2 and m3) from senders (S1, S2 and S3 

respectively) in network of communication are achieved 

in their destinations (R1, R2 and R3 respectively) 

according to their addresses (A1, A2 and A3 

respectively). 

 

 

Figure8. Execution of ECATNet example under Maude 

system. 

 

 

 

9. Conclusion  

In this paper, we have proposed an approach based on 

combining Meta-modelling and Graph Grammars to 

automatically generate a visual modelling tool for 

ECATNets for simulation and analysis purposes. 

ECATNets are a category of algebraic Petri Nets based 

on a safe combination of algebraic abstract types and 

high level Petri Nets. ECATNets’ semantic are defined 

in terms of rewriting logic allowing us to built models 

by formal reasoning. The cost of building a visual 

modelling tool (for ECATNets for example) from 

scratch is prohibitive. We have demonstrated in this 

work that Meta-Modelling approach is useful to deal 

with this problem since it allows the modelling of the 

formalisms themselves. By means of Graph Grammars, 

models manipulations are expressed on a formal basis 

and in a graphical way. In our approach, the UML Class 

diagram formalism is used as meta-formalism to propose 

a meta-model of ECATNets. The meta-modelling tool 

ATOM3 is used it to generate a visual modelling tool 

according to the proposed ECATNets meta-model. We 

have also proposed a graph grammar to generate Maude 

description of the graphically specified ECATNets 

models. Then the rewriting logic language Maude is 

used to perform the simulation of the resulted Maude 

specification.  

In a future work, we are planning to hide the steps of 

the Simulation. The objective of this hiding is to 

unburden the user from having to manually invoke 

Maude language and to manipulate the textual version of 

the result of simulation. For this purpose, the result of 

simulation (final state) will be returned in graphical way 

to ECATNets model structure. 
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