
An extended approach for recovering BPMN and WebML models

from legacy Web applications

DJELLOUL BOUCHIHA1

M IMOUN MALKI 2

HOUDA EL BOUHISSI3

EEDIS Laboratory, University of Sidi Bel Abbes 22000, Algeria
1bou_dje@yahoo.fr

2malki_m@univ-sba.dz
3elbouhissih@univ-sba.dz

Abstract. A Web application is a software system which provides its functionalities through the Web.

Understanding, maintaining and re-engineering legacy Web applications requires a reverse-engineering

process. In a previous work, an ontology based Web application reverse-engineering approach has been

proposed for recovering data models presenting static aspect of the Web application. In this paper we

extend this approach to cover not only static aspect but also the dynamic one. For this end, we recover

also business process and WebML hypertext models beside the data model from the Web applications

code. The main purpose of our work is to prepare legacy Web applications for a future reengineering

toward semantic Web services.

Keywords: Web application, Reverse-Engineering, WebML, Business Process, Semantic Web Services.

(Received January 09, 2009 / Accepted April 26, 2009)

1 Introduction

Since the World Wide Web first became widely accepted,

it has grown to be a huge information and storage medium.

According to Netcraft1, the November 2008 survey shows

worldwide monthly growth of nearly three million web-

sites, with responses now being received from a total of

185167897sites.

Syntactically defined Web applications represent legacy

systems which need to be conceptually reverse-engineered

in order to generate a model driven representation. The

generated representation can be used for maintaining,

understanding, and reengineering the Web applications.

An overview of Web applications reverse-engineering

1http://news.netcraft.com

methodologies and the associated issues can be found in

[9].

In previous work, we developed a solution that parses

only HTML Web pages to create an UML data dia-

gram from a given domain ontology using WordNet as

a bridge for mapping between the ontologies and the

Web page terms [2]. In the current work, we propose an

extended approach which allows generating data model,

as well as business process and hypertext WebML mod-

els from the Web application code. The proposed ap-

proach consists of two phases: (1)Classificationwhich

allows classifying Web application pages into two cat-

egories, notably, Interface Pages and Processing Pages.

(2)Reverse-designwhich aims at extracting design mod-

bou_dje@yahoo.fr
malki_m@univ-sba.dz
elbouhissih@univ-sba.dz


els (hypertext, data and BPMN models) from Web ap-

plications code (HTML+PHP).

Before detailing the phases of the proposed approach,

we see a preview on business process and WebML mod-

els.

2 Background

Our approach relies on selected models, methods, and

tools from the fields of business processes, WebML,

and semantic Web services. In the sequel, we describe

these fields:

Business process:Among the existing notation for

workflow modeling, we use the Business Process Man-

agement Notation (BPMN)2, because of its spreading

adoption, intuitiveness, and effectiveness to represents

real Information Technology (IT) processes. BPMN

splits processes into activities which are connected by

control flows; activities are placed into lanes represent-

ing a given role played by the process users. The control

flow uses branching points and synchronization points,

with associated semantics (conjunctive, disjunctive, ex-

clusive). When the control flows from one lane to an-

other, communication can take place through shared data

or messages.

WebML: The specification of a Web application [5]

according to WebML consists of three models: thedata

model, an extended entity-relationship model; one or

morehypertext models, expressing the application log-

ics; and thepresentation model, describing the visual

aspects of the pages.

A WebML hypertext model consists of several site

views. Site views typically include pages, which in turn

include units and are connected by links; site views may

be substructured into areas which represent a set of log-

ically interrelated pages. A page encloses content units.

Pages and units can be connected through links.

Semantic Web services:The World Wide Web Con-

sortium (W3C) Web Services Architecture Working Group

defines Web services as "a software application identi-

2http://www.bpmn.org/

fied by a Universal Resource Identifier (URI), whose in-

terfaces and bindings are capable of being defined, de-

scribed, and discovered as XML artefacts. Web services

support direct interactions with other software agents

using these XML-based messages exchanged via Internet-

based protocols".

The Semantic Web is rooted in the Scientific Amer-

ican article from Berners-Lee and al. [1] who state

"The Semantic Web is an extension of the current Web

in which information is given well-defined meaning,

better enabling computers and people to work in co-

operation". The Semantic Web has added ontology to

the Web services stack. Current intersections between

Web services and the Semantic Web have delivered Se-

mantic Web Services.

3 The proposed approach

Reverse-Engineering is the process of analyzing a sys-

tem in order to identify system components, component

relationships, and intended behaviour. These represen-

tations are then used to create higher level abstractions

of the system.

As shown in Figure 1, the proposed approach allows

providing a model based abstract view of the considered

Web application. Therefore, WebML and business pro-

cess diagrams are generated from an application code

(HTML + PHP) and a potential database. It is a semi-

automatic process assisted by the designer.

Figure 1: The proposed approach.



In the following, we present the two phases involved

in the reverse-engineering process of legacy Web appli-

cations, namely, classification and reverse-design.

3.1 Classification

This phase allows classifying Web application pages

into two categories: Interface PagesandProcessing Pages.

The aim of this phase is to distinguish between pages

that reflect the user behaviour (Interface Pages) and those

that reflect the system behaviour (Processing Pages).

Interface Pages: Called also Static Pages. These

pages contain only the HTML code that runs on the

Web browser. They are served by the Web server and

they do not need to be preprocessed by the application

server. These are HTML pages whose code is accessi-

ble by the user.

Processing Pages:Called also Active Pages. These

pages contain a mixture of HTML tags and executable

code. When an active page is requested, the application

server pre-processes and integrates data from various

resources such as Web objects or databases to produce

a final HTML Web page sent to the browser. These are

the PHP pages whose code is not accessible by the user.

3.2 Reverse-design

This phase aims at extracting design models (hyper-

text, data and BPMN models) from Web applications

code (HTML+PHP). For this end, we extend an on-

tology based Web application reverse-engineering ap-

proach [2]. In its first version, this approach generates

only data models covering only static aspect of the Web

application. In its new version, it generates also BPMN

and WebML hypertext models to cover dynamic aspect

of the Web application.

3.2.1 Extracting static aspect

It consists in extracting WebML data diagram from the

Interface Pages. The intuition underlying this approach

is: a WebML data model is hidden under the user in-

terface of a Web application. This interface exposes

HTML pages to their users’ browsers, possibly enhanced

with client-side scripts in different languages. HTML

pages contain usually, forms, tables, lists, etc.

Figure 2: Process of extracting static aspect [2].

Extracting static aspect consists of three successive

stages (Figure 2): First is the extraction of useful infor-

mation from HTML pages. Second stage is the analy-

sis of the extracted information using domain ontology.

Last stage is the generation of corresponding WebML

data diagram. For more details, refer to [2].

3.2.2 Extracting dynamic aspect

It consists in extracting business process and WebML

hypertext diagrams from the Processing pages. The in-

tuition underlying this approach is: a business process

model can be extracted from PHP code of a Web appli-

cation.

Extracting dynamic aspect consists of two succes-

sive stages (Figure 1): First is thebusiness process de-

sign. Second stage ismapping business processes to

WebML.

A- Business process design

The business process design task, focusing on the

high-level schematization of the processes underlying

the application, results in one or more business process



diagrams, representing the tasks to be executed at ab-

stract level. The designer can annotate the model by

selecting the kind of expected implementation of each

task, by mapping some of them to services. In particu-

lar, with respect to service invocation, it is possible to

specify whether the service has to be modelled and im-

plemented within the system (internal), shall be invoked

as a non-semantic already implemented service (exter-

nal), or needs to be searched and invoked by means of

semantic discovery and invocation techniques (seman-

tic).

For an automatic extracting of a business process

model from a Web application, we propose to use the

following rules:

For Interfaces Pages

• Each HTML page will be translated into a BPMN

activity.

• An HTML page, allowing data acquisition (e.g.,

HTML forms), corresponds to anactivity that re-

ceives a message.

• An HTML page, allowing only data display, cor-

responds to anactivity that sends back a message.

• An HTML page, that invokes PHP page, corre-

sponds to anactivity that calls a service.

• An hypertext link between two HTML pages is

translated into a link between the two correspond-

ing activities.

• All activities that correspond to HTML pages are

grouped in a single lane.

For Processing Pages

• Each PHP page is translated into a BPMN lane.

• Each method in a PHP page is translated into an

activity.

• A method in a PHP page, which does not include

an HTML code, corresponds to aprocessing activ-

ity.

• A method in a PHP page, which includes an HTML

code for the data acquisition (e.g., HTML forms),

corresponds to anactivity that receives a message.

• A method in a PHP page, which includes an HTML

code for displaying data, corresponds to anactivity

that sends back a message.

• Methods of the same PHP page are translated into

activities in the same lane.

• The call for a method (i.e., when a method invokes

a method in the same PHP page) is translated as

a link between the two corresponding activities of

the same lane.

• A link, between two PHP pages, is translated into

link between the two corresponding lanes.

• A link, between an HTML page and a PHP page,

is translated into a link between two lanes.

B- Mapping Business Process to WebML

Once the business process has been designed, work-

flow constraints must be turned into navigation con-

straints among the pages of the activities of the hyper-

text and into data queries on the workflow metadata for

checking the status of the process, thus ensuring that the

data shown by the application and user navigation re-

spect the constraints described by the process specifica-

tion. This applies both to the human-consumed pieces

of contents (i.e., Interface Pages) and to the machine-

consumed contents (i.e., Processing Pages).

For semi-automatic transformation of BPMN dia-

grams to WebML diagrams, we must follow the next:

• For a Web service lane, each activity in the BPMN

model is converted in a WebML activity (an ’A’-

labeled area) populated with a default unit (i.e.,

Solicit units for the BPMN activities that receive

messages from external lanes,Responseunits for

the ones that send back messages,Request-Response

units for the ones that call services and genericOp-

erationunits for the others).



• A suite ofResponseor Solicit units are grouped in

the same WebML page.

• Then the WebML activities are connected by proper

links with a well defined semantic to indicate the

beginning of an activity (’S’-labeled links) or its

end (’C’-labeled links).

• Finally the data model is enriched withCaseand

Activityconcepts that are populated, during the life

of the application, according to the enactment of

the BPMN model (a case instance is created at the

start of a new process and an activity instance is

created at the start of a new activity).

• Additionally, it is possible to annotate the activi-

ties, thus allowing the designer to map the activity

to a coarse hypertext that implements the speci-

fied behaviour on the specified data. For instance,

if an activity must perform a standard Web ser-

vice invocation, it can be translated into a chain

of operations consisting of: (a) transforming ap-

plication data into suitable format for the subse-

quent Web service call (Lowering); (b) invoking

the remote service with the specified parameters;

(c) transforming the response data into suitable in-

ternal format (Lifting); and (d) storing internal ap-

plication data. In any case, the designer is in charge

of refining and detailing the specification of the hy-

pertext models.

4 The approach motivation

Our work has been motivated by the proposed approach

in [4]. It is a model-driven methodology to design and

develop semantic Web services, described according to

the emerging WSMO standard (Web Service Modelling

Ontology [10]). In particular, authors show that busi-

ness processes and Web applications engineering mod-

els have sufficient expressive power to support the semi-

automatic extraction of semantic descriptions (i.e., WSMO

ontologies, goals, Web services, and mediators). Their

method is based on existing models for the specification

of business processes (BPMN) combined with Web ap-

plications engineering models (WebML) for designing

and developing semantically rich Web services. The

proposed approach leads from an abstract view of the

business needs to a concrete implementation of the ap-

plication, by means of several design steps; high level

models are transformed into software components.

Figure 3: Overall picture of the extraction of semantic description of

Web services.

Figure 3 summarizes the extraction of semantic de-

scription of services from the application design. The

design flow represents the main steps of the develop-

ment process. The various steps produce some inter-

mediate artefacts (BPMN models, WebML skeletons,

data models, hypertext models), possibly enriched by

imported ontological descriptions (on top of Figure 3)

and are exploited for devising the set of WSMO spec-

ifications (at the bottom of Figure 3). Descriptions of

Web services (both in terms of capabilities and of their

choreography interface), goals and mediators are de-

rived from business process models and WebML mod-

els, whereas the implementation of the application front-

end and of the services is automatically generated from

the high-level models.

5 Running Example

Our approach consists in analysing the Web applica-

tions code for recovering BPMN and WebML models,

but since this implementation code is protected by the

application server and can’t be displayed to the Web

customer, then we developed our own Web application

example in HTML and PHP code.



5.1 Example description

For the discussion we will consider a running exam-

ple derived from the Shipment Discovery scenario pro-

posed by Blue Company. Due to the limited length of

the paper, we don’t present the whole application code,

but we only present the architecture of the Web appli-

cation implemented by the Blue Company (Figure 4).

Figure 4: The Web application architecture.

Blue Customers acquire information about the prod-

uct to be shipped through theShipment Interface. This

information represents the selection criteria of the ade-

quate operation selected later. TheShipment Interface

deals with aMiddle Programwhich carries the selec-

tion criteria to aDiscovery Engine. When theDiscovery

Enginereturns a list of operations offering a shipment

service compatible with the selection criteria, theMid-

dle Programinvokes the returned operations to obtain

actual shipment offers. Finally the customer chooses

one offer through theShipment Interfaceto achieve its

request.

5.2 Web application reverse-engineering process

For checking our approach, we developed a tool called

OntoWeR+. The tool allows generating WebML data

diagrams using domain ontology. It also allows ex-

tracting BPMN diagrams from Web applications and

transforming them into WebML hypertext models. The

tool allows representing only valid diagrams so that the

translation to WebML is always guaranteed. Genera-

tion rules for hypertexts have been built based on the

experience and the theory presented in [3].

The generated diagrams by OntoWeR+ from the pre-

sented Web application above are as follow:

5.2.1 Extracting static aspect

Figure 5 shows the WebML data diagram used by the

Shipment Web application. The data diagram has three

main domain entities:Shipment, describing each ship-

ping;ShipmentOperation, describing Blue shipment op-

eration; andLocation, describing the geographical en-

tities involved in the shipment process. EachShipment

is related to aShipmentOperationand to anOrigin and

Destination Location. EachShipmentOperationis con-

nected to severalLocation entities representing ship-

ment locations and pick up points. Both theLocation

and theShipmentOperationentities have some sub en-

tities in order to easily specialize their characteristics.

Figure 5: A portion of the WebML data diagram used by the Ship-

ment Web application.

The data diagram includes also a very simple model

for describing the status of the process: entityCase

tracks the execution of the process instances and entity

Activity registers all the activity instances performed

within everyCase. Notice that more complex models

could be adopted, for registering the user performing

the activities and other information.



Figure 6: Workflow representing the interaction of the running ex-

ample (BPMN notation).

5.2.2 Extracting dynamic aspect

A- Business process design

The BPMN diagram of the running case is repre-

sented in Figure 6 which describes the shipment man-

agement.

From the Interface Pages we obtained theShipment

Interfacelane. From the Processing Pages we obtained

the remaining lanes.

B- Mapping Business process to WebML

The hypertext models have been automatically gen-

erated from the BPMN specification of Figure 6 and

then have been manually refined by the designer.

• MappingShipment Interfacelane into WebML hy-

pertext diagram.

Figure 7 shows a WebML hypertext model repre-

senting a fragment of the Blue Web application: a home

page calledSelect Product to Shipallows the customer

to choose a product (with Status "Not shipped") from

the Products Listindex unit. When a product is cho-

sen, the ’S’-link starts theOrganize Shipmentactivity,

showing theProduct Detailsdata unit in theOrganize

Shipmentpage, together with a form (Search Shipment

Offers). The data submission triggers the invocation of

a shipment operation (Search Shipment Offersrequest-

response unit), whose results are lifted by theStore Ship-

ment OffersXML-in unit. The activity is completed

(’C’-link) and following one is started. TheSelect Ship-

ment Offerpage is shown, containing a list ofShip-

ment Offers(an index unit displaying the resulting op-

erations). The customer chooses an offer and thus trig-

gers theConfirm Shipment Offerrequest-response unit,

whose results are stored locally. Finally, the customer

is redirected to the home page.

Figure 7: The hypertext WebML diagram corresponding to the Ship-

ment Interface lane of the BPMN.

Figure 8: The hypertext WebML diagram corresponding to the Mid-

dle program lane of the BPMN.

• Mapping Middle Programlane into WebML hy-

pertext diagram.



Figure 8 shows the hypertext WebML specification

of the BlueMiddle Program. The hypertext diagram

implements theMiddle Programlane of the BPMN di-

agram. In the upper part of Figure 6, thesearchShip-

mentSolicitunit implements the first activity of the lane,

waiting for an incoming message. TheShipmentRe-

questis received bysearchShipmentSolicitand is passed

to the Send Selection Criteriaactivity. TheSend Se-

lection Criteria unit sends the selection criteria to the

Discovery Engine. TheDiscovery Enginereturns a set

of operations compatible with the selection criteria and,

for each returned operation, an appropriate XSLT style

sheet describes the Lowering and Lifting; the resulting

operations are stored byStore Selection Criteria Re-

sult unit. Then, theInvoke Offer Operationsactivity

is repeated for each valid returned operation. The ac-

tivity consists of a request for a shipment offer, made

by theOffer Operation Invokerunit. The proper XSLT

style sheets for the Lowering and Lifting are selected

according to the results ofDiscovery Engine. Each re-

turned offer is stored byAdd Offerunit. Finally, Send

Offersactivity prepares the results of theShipmentRe-

quest(Extract Valid Offersunit), converts them to the

Blue data model (Lowering unit) and returns them to

the customer (ShipmentOfferResponseunit). Once the

customer selects one of the offers, theReceive Chosen

Offer activity is triggered (lower part in the Figure 8).

The confirmShipOfferSolicitreceives the message and

the previously stored offer is retrieved within theIn-

voke Shipment Operationactivity (Extract Confirmed

Offer unit). Then the shipment message is composed

by Lowering with the appropriate XSTL style sheet and

Shipment Operation Invokersends the message to the

discovered shipment operation. FinallyShipmentCon-

firmationResponsesends a confirmation message to the

customer about the result of the shipment operation.

6 Conclusion and perspectives

In this paper, we propose an extended approach that

allows generating WebML and business process dia-

grams, from the Web application code (HTML + PHP).

This work is an extension of an ontology based Web

application reverse-engineering approach [2]. In its old

version, this approach covered only static aspect by a

simple data diagram. In its current version, the ap-

proach covers also dynamic aspect of the Web appli-

cation by BPMN and WebML hypertext diagrams. A

tool has been implemented for supporting the proposed

approach in this paper.

The approach was applied to a simulated project

with the aim of testing, improving and evaluating the

approach. Due to the less availability of the Web ap-

plications code, the decision to carry out the validation

of the approach through a "simulated project scenario"

was considered to be the optimal approach evaluation

strategy.

A variety of reverse-engineering methods and tools

have already been developed, such as: [6] which pro-

pose a Web application re-engineering approach, based

on the cloned pattern analysis; it aims to identify and

generalize static and dynamic pages and the naviga-

tion model of a Web application. [7] perform "source

code" independent reverse-engineering of Web appli-

cations; the generated models are graphs that include

the relationships between server-side actions and pages.

[8] describe a WWW application reverse-engineering

methodology specifically intended for applications cre-

ated using ASP.NET; the result is a mapping of HTML

and ASP controls into WebML. However, none of these

approaches addresses the special issue of reengineering

legacy Web application to semantic Web services, ex-

cept some tentative such as [11] which propose a method-

ology for automatcially/ semi-automatically transition-

ing legacy applications to Semantic Web Services by

adopting a formal approach. For that, we think about

completing the proposed approach in this paper to have

a whole framework for re-engineering legacy Web ap-

plications to semantic Web services with a WSMO based

specification. The framework will consist of two major

phases, each one address a particular issue:



1. Phase of reverse-engineering legacy Web applica-

tions: This phase consist in extracting WebML and

BPMN models from Web application code. It is a

semi-automatic phase shared between the system

and the designer.

2. Phase of semantic Web services engineering: this

phase generates the implementation code of Web

services, as well as the remaining WSMO compo-

nents (Web services, goals and mediators). It is a

semi-automatic phase shared between the system

and the programmer.

References

[1] Berners-Lee T., Hendler J., and Lasilla O.,The Semantic

Web. Scientific American, May 2001.

[2] Bouchiha Dj., Malki M., Benslimane S-M.Ontology

Based Web Application Reverse-Engineering Approach.

INFOCOMP (Journal of Computer Science) VOLUME

6-N. Pages: 37-46. 1-MARCH 2007.

[3] Brambilla M., Generation of webml web application

models from business process specifications. In Proceed-

ings of the 6th International Conference on Web En-

gineering (ICWE 2006). ACM Press, New York, NY,

USA, 85-86. 2006.

[4] Brambilla M., Ceri S., and Facca F-M.,Model-Driven

Design and Development of Semantic Web Service Ap-

plications. ACM Transactions on Internet Technology

(TOIT), Volume 8, Issue 1, November 2007.

[5] Ceri S., Fraternali P., Bongio A., Brambilla M., Comai

S., and Matera M.,Designing Data-Intensive Web Appli-

cations. IMorgan Kaufmann, San Francisco, CA, USA.

2002.

[6] De Lucia A., Francese R., Scanniello G., and Tor-

tora G., Reengineering Web Applications Based on

Cloned Pattern Analysis. Proceedings of the 12th IEEE

International Workshop on Program Comprehension

(IWPC’04). 2004.

[7] Draheim D., Lutteroth C., and Weber G.,A Source

Code Independent Reverse Engineering Tool for Dy-

namic Web Sites. Proc. 9th European Conference on

Software Maintenance and Reengineering (CSMR’05),

pp168-177. 2005.

[8] Katsimpa T., Panagis Y., Sakkopoulos E., Tzimas G.,

and Tsakalidis A.,Application Modelling using Reverse

Engineering Techniques. Proceedings Symposium on

Applied Computing (SAC’06), pp1250-1255. 2006.

[9] Patel R., Coenen F., Martin R., and Archer L.,RE-

VERSE ENGINEERING OF WEB APPLICATIONS: A

TECHNICAL REVIEW. June/July 2007.

[10] Wang, H. H., Gibbins, N., Payne, T., Saleh, A. and Sun,

J. A Formal Semantic Model of the Semantic Web Ser-

vice Ontology (WSMO). In: Twelfth IEEE International

Conference on Engineering of Complex Computer Sys-

tems, Auckland, New Zealand, July 11 - 14, 2007.

[11] Wang H-H., Gibbins N., Payne T-R., and Saleh A.,

TTransitioning Applications to Semantic Web Services:

An Automated Formal Approach. Journal of Interoper-

ability in Business Information Systems (IBIS), Vol. 3/6,

ISSN 1862-6378, January, 2008.


	Introduction
	Background
	The proposed approach
	Classification
	Reverse-design
	Extracting static aspect
	Extracting dynamic aspect


	The approach motivation
	Running Example
	Example description
	Web application reverse-engineering process
	Extracting static aspect
	Extracting dynamic aspect


	Conclusion and perspectives

