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The utilization of simulation in the design of systems combining different parts (heterogeneous systems) contributes 
with the validation, verification, and observation of the behavior of these parts (individually) and of the cooperation 
between them. The differences between the parts (elements) that compose the model of representation (of a system) 
make these tasks more complex due to three main aspects: the reuse, the preservation of elements and the interface 
compatibility. The reuse of existing elements can facilitate and accelerate the construction of new models or the 
modification of existing ones. Nevertheless, the probability of having a heterogeneous model increases since the 
elements can be developed under conditions that vary in terms of description language, interface configuration, 
operational environment, and others.  Thus, it is highly likely the need of making an element have alterations or 
adaptations that can jeopardize the preservation of its original characteristics or even interfere in intellectual 
properties issues, in order to be reused. The compatibility between interfaces of different elements is neither 
guaranteed. Regarding these challenges, this paper presents DCB (Distributed Co-simulation Backbone), an 
infrastructure for distributed simulation that offers mechanisms for preserving elements of the model from interface 
adaptations and for implementing data translation and communication and synchronization, all of them necessary 
for the execution of a heterogeneous model. By implementing these aspects in a backbone that is independent from 
the elements, DCB can preserve their integrity without loosing the capability of adaptation of heterogeneous 
elements so as to be able to cooperate correctly when integrated into the same simulation model. DCB also permits 
the execution of a simulation with elements distributed in different nodes.  
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1 Introduction 

Simulation allows the emulation and observation of the 
behavior of real systems by executing representation 
models. Currently, the growing size and complexity of 
systems in different domains leads to design and 
implementation techniques that are based on the reuse of 
previously available and tested elements (parts of a 
system). These elements may come from different 
sources, including third-part ones, and may be designed 
and implemented without previous knowledge of other 
elements with which they must cooperate in a given 
environment. This leads to the utilization of 
heterogeneous models as an alternative to represent the 
system behavior with fidelity. 
A representation model is called heterogeneous when it 
combines elements that differ in their implementation 
technology and/or present incompatible functional 
interfaces. The technology for the implementation or 
description may correspond to distinct specification 
languages or techniques [16]. Incompatible interfaces 
occur when the interaction resources of an element (for 

instance regarding the form, number, type, and size of 
these resources, usually available in terms of attributes, 
protocols, or methods) do not match the resources of a 
second element with which it must communicate and 
cooperate.  
Heterogeneous simulation is an approach that offers 
support to the cooperation between heterogeneous 
elements of a simulation model. As the difficulty in the 
utilization of given standards for the design and 
specification of element interfaces and behavior grows, 
because of the diversity and complexity of these 
elements, the benefits of heterogeneous simulation also 
increase.  
As an example, in precision agriculture [14], 
heterogeneous models are useful in the system 
description and simulation before test fields that 
evaluate the cooperation between agricultural equipment 
and the precision systems that are coupled to them. 
Similar benefits can be identified in wireless sensor 
network systems (WSNs) [8], where there is a great 
diversity of cooperating elements, with varying 
capabilities, purposes, and formats.  



The distributed simulation of heterogeneous models is 
useful in situations where it is not possible or 
interesting, for different reasons, to have all elements of 
a model in a single node of a computer network. In some 
situations, there are access restrictions to given 
elements, for instance because of intellectual property 
issues, when an element provider does not want to 
disclose the element code. In this case, the element must 
be remotely integrated into the simulation model 
through its interface. It may also happen that the 
simulation of a given element requires resources that are 
available only in a given node of the network. A third 
situation is the integration of a real-life element to a 
simulation model, through a special interface that is 
available in a given node.  
In the design and implementation of heterogeneous 
systems, very often elements are developed and tested 
independently from each other, usually also using 
distinct design processes and tools. Because of this 
situation, the validation of the individual elements 
cannot consider their interaction with the rest of the 
system, and the first integration tests are performed only 
with the real system and in a very late design stage. This 
delays the detection of problems that could be solved 
with much smaller costs in early design stages [17], if 
appropriate tools were available. In this context, 
heterogeneous distributed simulation techniques offer 
convenient alternatives for the validation of individual 
elements and for observing the interactions between 
them [6].  
Although the research in the field of heterogeneous 
distributed simulation contributes to the consolidation of 
various fundamental issues, for instance related to 
communication, synchronization, performance, and 
modeling, existing solutions in general follow a 
proprietary approach and are developed for solving 
problems in a particular domain. As an example, 
SensorSim [12] is dedicated to the simulation of sensor 
networks and does not provide mechanisms for ensuring 
communication with other tools, even targeted to the 
same domain.  
The High Level Architecture (HLA) standard [11] is a 
remarkable reference in distributed simulation. Although 
HLA has very interesting characteristics regarding 
distribution, it does not administrate the interoperability 
between elements (or federates as referred in HLA) that 
were developed for different RTI (Run-Time 
Infrastructure) implementations. The RTI is responsible 
for the cooperation between federates of the same 
federation. This characteristic led to studies in order to 
find ways to solve interoperability and reuse issues 
regarding federates whose interfaces have been 
implemented for different RTIs [9].  
Considering current restrictions and trends of 
heterogeneous distributed simulation techniques, this 
paper presents the Tangram/DCB (Distributed Co-

simulation Backbone) environment. DCB is a backbone 
for heterogeneous distributed simulation. Tangram is a 
modeling front-end for DCB, which has been designed 
to facilitate the specification of heterogeneous models 
according to the DCB principles. 
The DCB architecture has been designed to preserve the 
original descriptions of the behavior and interface of 
individual elements. Differently from other approaches, 
DCB mechanisms remain completely hidden from the 
elements, which may thus preserve their proprietary 
solutions and do not need to be modified in order to be 
integrated into the simulation model. This promotes a 
much larger reusability of elements than other 
approaches. In a model of a sensor network, for 
instance, a new sensor node with a different interface 
may be added to a model without requiring adaptations 
in its interface or in the interface of other sensor nodes 
with which it will communicate. 
This property is maintained essentially by the complete 
encapsulation, within DCB’s own modules, of strategies 
for distributed simulation and for interaction between 
heterogeneous elements. These strategies consider the 
required adaptation between different languages and 
interfaces used in the design of the individual elements, 
such that the elements remain unaware of them. DCB 
implements the concept of gateway for handling and 
adapting diverse elements’ languages and interfaces. 
This may be combined with interface wrappers, which 
adapt the interface functionality, when required.  
The complete independence between elements is an 
essential aspect also in the DCB’s approach for handling 
distributed simulation. An element does not need to 
maintain information on other elements that interact 
with it. This information is kept inside DCB’s own 
modules. The same approach is used to implement the 
concept of hybrid synchronization. DCB allows the 
interaction between elements that follow different 
synchronization approaches – synchronous, 
asynchronous, and no-time (elements without explicit 
handling of simulation time), but this feature remains 
hidden from the elements.  
The combined utilization of these characteristics – 
independence between elements, preservation of reused 
elements, and hybrid synchronization – offers benefits 
for heterogeneous distributed simulation that are not 
found in other environments or tools. This paper, 
however, will concentrate on the aspects of integration 
and preservation of heterogeneous elements, involving 
the required adaptations, encapsulated in the DCB 
modules, to handle models with diverse languages and 
interfaces. Heterogeneous simulation is largely explored 
in the context of electronic embedded systems [13]. A 
prototype of the Tangram / DCB environment has been 
developed for this domain, considering its main 
requirements but maintaining the general principles of 
the DCB architecture.  



The remaining of this paper is organized as follows. 
Section 2 discusses related work and gives the 
motivation for the development of DCB. The DCB 
principles and architecture are presented in Section 3. 
The Tangram front-end is described in Section 4. 
Section 5 introduces the DCB prototype targeted at the 
embedded systems domain. A case study for the 
validation of this prototype is presented in Section 6. 
Section 7 draws main conclusions and discusses future 
work. 

2 Related Work 
HLA (High-Level Architecture) [5] is an architecture 
defined by the IEEE 1516 standard, which specifies 
rules and interfaces for distributed simulation handled 
by a run-time layer called RTI (Run-Time 
Infrastructure). Based on the concepts of federation and 
federates, this architecture is defined by three main 
components: a common formal model for specification; 
a set of services described in the RTI; and a set of 
functional rules for simulation. A federation is a 
collection of federates. Federates may be simulators, 
sub-systems, or other systems. Federations are built 
according to a formal model that, besides considering 
the specification of the simulation model, also 
establishes a contract between participating federates, 
according to their characteristics, functions, and 
localization. For the execution of a model, federates 
must implement services defined in a HLA Interface 
Specification, in order to interact with the RTI. This 
constraint limits the reuse of federates that have been 
built for executing on other operating system platforms 
or even according to other implementations of the RTI. 
The DCB principles of independence and preservation 
of elements (federates in HLA) overcome these 
restrictions. 
Recent research on the HLA standard has promoted the 
opening of new possibilities for distributed simulation, 
including the use of heterogeneous models [1]. 
Motivated by the inherent complexity of heterogeneous 
simulation, these studies look for alternatives or 
extensions to HLA, in order to meet the requirements of 
heterogeneous models. One of the main issues is the 
adaptation between parts (federates in HLA) that have 
incompatible interfaces or have been developed with 
different languages. 
Some works have concentrated on issues regarding the 
interoperability between different implementations of 
the RTI, since the RTI interface is not standardized and 
federates developed for a given implementation may not 
be interoperable with other ones. There are proposals 
both for a standard RTI interface and for the creation of 
RTI-to-RTI bridges (translators) [9]. The standardization 
of the RTI interface may increase the difficulty in the 
reuse of existing federates that use incompatible 
interfaces, since the federate must be modified. The use 

of RTI-to-RTI bridges makes interoperability dependent 
on the existence of a bridge. Thus, for each different 
RTI, all other RTIs must have a corresponding bridge. 
Proposals have also considered the combined utilization 
of different standards (for instance CORBA and UML) 
as alternative solutions for the interoperability between 
HLA implementations [22]. Evolution has been 
achieved in this perspective, for instance in the mapping 
from RTI to CORBA/IDL (Interface Description 
Language). However, the characteristics of alternative 
standards, such as CORBA and UML, which have been 
developed for other domains, have to be taken into 
account when applied in combination with simulation 
mechanisms, since new problems arise. As a 
consequence, the standards or the associated general-
purpose tools may need to be adapted to the simulation 
domain. 

 
Figure 1: ARTIS architecture [2] 

Recent efforts have been focused on alternatives seeking 
more flexibility in handling distributed models targeting 
at heterogeneous components (or federates). An example 
is the ARTIS (Advanced RTI System) framework [2]. 
Based on the HLA standard, it proposes to support the 
execution of distributed and parallel simulations and the 
cooperation between federates. Differently from HLA, 
ARTIS implements an API layer for federate integration 
allocated between the federate and the RTI. This way, 
instead of executing explicit calls to the primitive RTI, 
the federate interacts with a compatible API. This policy 
allows the federates that were developed to the 
implementation of an RTI to be reused in another one. 
Even so, the integration of a federate depends on the 
availability of an API that is compatible with the 
federate interface. Figure 1 presents the structure in 
ARTIS layers. 
The WESE environment [15] supports the distributed 
execution of simulation models. The construction of a 
model has as first requirement the specification of 
components (or elements) in a language called SSL 
(System Specification Language). This description is 
used to entail the model to the internal modules of 
WESE which are responsible for some functions such as 
communication and data handling. A simulation 
manager (SM) executes this task. The SM does not 



communicate directly with the components, but with a 
repository manager (RM). The RM recognizes the 
component interface through object stubs. The object 
stubs contain the component attributes and information 
about machine requirements for simulation and about 
the component behavior.   
Approaches in heterogeneous distributed simulation are 
usually focused on solving problems coming from 
particular application domains. As a consequence, there 
is a tendency in emphasizing only certain features, while 
other ones are not considered. This can be observed in 
different solutions that are targeted to the embedded 
systems domain. 
In multi-language approaches [10], for instance, the 
integration of new components is restricted to languages 
that are supported by the tools, while hybrid 
synchronization and component preservation are not 
considered. A similar situation can be observed in the 
JavaCAD tool [6]. It allows to instantiate IP (intellectual 
property) components from multiple remote providers 
within a distributed simulation model. However, 
although JavaCAD targets at heterogeneous models, 
components may only be connected to the model 
through a particular JavaCAD client, which handles the 
communication. A still higher specificity regarding the 
development of heterogeneous models is found in 
commercial tools that are targeted at electronic systems, 
such as from Coware [4], Cadence [3], Mentor Graphics 
[18], and Synopsys [20]. 
In general, existing environments and tools are targeted 
at given application domains and do not consider 
generality as a main requirement. It may be hard to 
redesign solutions that are proprietary or based on a 
given set of domain-specific requirements in order to 
support new features of a different domain. It is thus 
desirable the development of a general-purpose 
environment that simultaneously addresses 
independence and reuse of components (federates in 
HLA, elements in DCB), hybrid synchronization, and 
transparent distributed simulation. These principles form 
the basis of the DCB architecture, which shows greater 
flexibility and generality in the distributed execution of 
heterogeneous models than other current approaches. 

3 DCB 

DCB has been developed as an intermediate layer 
between elements and the communication medium, 
offering support to the distributed execution of 
heterogeneous simulation models. It offers generic 
mechanisms for communication and synchronization 
between heterogeneous elements, with four main goals: 
the physical distribution of the elements; the 
independence between the elements; the encapsulation 
of mechanisms for time management, adaptation 
between elements, and communication; and hybrid 
synchronization. The encapsulation of these mechanisms 

inside the DCB infrastructure allows a greater 
independence of elements, thus meeting the 
requirements of interoperability and interchangeability 
(substitution of elements) in the cooperation between 
heterogeneous elements. 
DCB does not require that elements make explicit calls 
to a simulation backplane for distribution and 
synchronization operations. As opposed to other 
proprietary solutions, DCB does not impose proprietary 
standards for data exchange. Therefore, DCB reduces 
the need for modifications in the implementation of 
elements to be integrated.  
The DCB infrastructure is general-purpose and is not 
affected by particular simulators or sub-models to be 
integrated into a heterogeneous model. These DCB 
features make the integration of already existing 
elements much easier and more flexible. DCB does not 
impose restrictions on its use in different simulation 
domains. The independence between elements and the 
encapsulation of the mechanisms for managing the 
distribution and heterogeneity are not based on 
requirements of a particular domain. 
As opposed to general-purpose middleware solutions, 
like CORBA, which deal with language interoperability 
and distribution, DCB also considers these requirements 
but is specifically oriented towards distributed 
heterogeneous simulation.  

 
Figure 2: DCB architecture 

In the DCB approach, a heterogeneous model is 
composed of autonomous and distributed elements. 
Elements may be described with different languages 
and/or simulated by any simulators. In order to 
participate in a heterogeneous model, an element must 
have a publicly available interface.  
This means that attributes of the interface need to be 
visible and controllable from outside. By controlling 
these attributes, DCB may configure the way how 
cooperation between elements is performed and may 
implement mechanisms for the automatic configuration 
of a heterogeneous model, including the required 
adaptation between distinct element interfaces and 
implementation languages. This way, internal aspects of 
an element do not impact its integration into a model. If 
elements have been already validated, as expected, the 
system designer may worry only about their integration 
in the model. 



Figure 2 shows the DCB architecture. It is composed by 
four main modules: DCBSender (DCBS), DCBReceiver 
(DCBR), DCBKernel (DCBK), and gateway. The 
gateway’s main task is to handle the element interfaces, 
while the other modules handle synchronization, data 
management, and cooperation. The rest of this section 
presents the mechanisms that implement these services 
and the role of each module of the DCB infrastructure in 
the distributed execution of heterogeneous models. 
Model configuration  
DCB manipulates information ruling cooperation 
between the elements of a model. This information is 
provided by a mechanism of configuration. Before the 
execution of any simulation task that enables DCB to 
manage cooperation between the elements of a model, 
configurable data structures are read separately from the 
model and DCB modules. This action is called 
‘configuration work’. For each one of the elements a 
particular data structure must be created. The next 
section presents Tangram, an environment that is 
responsible for this task. These are some examples of 
information related to the configuration of each element:  
 Identification and type of input and output attributes;   
 Destination of each output attribute;  
 Type of synchronization;  
 Node hosting the element for execution.   
Such information describes the interface of the element 
used by the Gateway (DCB module) to exchange data 
resulting from the execution of the model. The 
description of interface attributes and the other 
configuration information are specified by the designer 
of the model during its construction. Aspects of 
generality and flexibility of DCB have in the model 
configuration strategy an important basis for the 
preservation of DCB internal modules. They avoid the 
need of alterations in the implementation of these 
modules for the execution of different models.  
Time Management 
Each element has its own Local Virtual Time (LVT), 
which defines a temporal ordering on events within the 
element. The DCB kernel also maintains a unique 
Global Virtual Time (GVT) for synchronous elements 
and another one for asynchronous [7] ones. This global 
time is used to build a global ordering on events from 
different elements. In order to implement this ordering, 
the current DCB prototype implements a special-
purpose element, named TimeMgrGVT. When any 
element tries to advance its LVT, a corresponding 
message is automatically sent to TimeMgrGVT, which 
then re-computes the GVT and, if it is advanced, 
communicates its new value to all other elements. The 
elements’ LVTs cannot be advanced beyond the GVT in 
the synchronous mode.  
DCB also supports the inclusion of elements that do not 
consider a local time for event execution (untimed 
elements). Untimed elements do not require consistency 

in time for output data, but just to maintain an order in 
the source element output in the respective destination.   
The cooperation between elements with distinct modes 
of time advancement is called hybrid synchronization. 
This feature of DCB is based on the fact that a better 
cost/benefit relationship can be achieved by hybrid 
models when compared to pure untimed, synchronous, 
or asynchronous models. Since a synchronous element 
cannot advance its internal time beyond the GVT, it may 
remain idle while waiting other elements to advance, 
even if it does not depend on events coming from them. 
In asynchronous elements, in turn, the independent time 
advancement by an element may optimize the simulation 
time, but causality constraints between elements may be 
violated (violations of LCC-Local Causality 
Constraints), so that rollback may be required. By 
combining both types of synchronization, DCB explores 
their advantages simultaneously. In [23] positive aspects 
in the use of hybrid synchronization are highlighted, 
with the consequent increase of complexity in the model 
execution.  
Gateway 
Gateways adapt element interfaces to the heterogeneous 
model and also implement adapters between 
programming languages used in the implementation of 
each element, if necessary. In order to participate in a 
heterogeneous model, an element must have its interface 
publicly available (see Section 4) and update its 
interface attributes by using a single gateway method:  
Gateway.UpdateAttribute (“attribute name”, value, 
timestamp); 
This rule also applies to the element's LVT, which must 
be available as an interface attribute and controllable 
from the outside. This is a requirement for the 
integration of any simulator or model into a DCB 
heterogeneous model. For this, it uses configuration 
information. The gateway recognizes native methods of 
the element interface to send data to it. The gateway is 
also responsible for data type conversions, when needed. 
If the element encapsulates an IP component that is 
remotely simulated, the gateway and the component will 
be located in different hosts.  
The gateway has four main responsibilities regarding the 
administration of the interface between an element and 
internal modules of DCB:  
1 – Monitoring the updating of values of the output 
attributes of the element interface;  
2 – Data type conversion according to the configuration 
of the heterogeneous model (translation); 
3 – Semantically converting data according to the 
configuration of the model (e.g. when data available in 
an attribute at the source element must be split up and 
delivered in two different attributes at the destination);  
4 – Updating input attributes of the element when 
requested by the internal modules of DCB.  



These characteristics of the gateway are requirements 
for the DCB to support the independence of elements 
(preservation of element interfaces and internal 
implementations) and the encapsulation of mechanisms 
for simulation administration. The interface adaption 
requires changes just in the gateway code.  
DCBReceiver  
The DCBReceiver (DCBR) module receives messages 
from DCBK (executing communication operations) and 
sends them to the elements it represents, via gateway, 
according to the simulation time (synchronization 
function). It is DCBR’s responsibility the consistent use 
of configuration information in the handling of 
messages.  Among these, it must redirect the message 
contents to the correct input attributes of the destination 
element (decoding). The input attributes (in the 
destination) for each of the output attributes (from the 
source) are defined in the configuration of the 
heterogeneous model.   
The DCBR does not execute remote operations. 
Messages are received by the primitives of 
communication of DCBK. In the decoding process of 
received messages, the DCBR identifies the destination 
attribute and its type, among other control information, 
and maintains the message in a waiting list. The 
message will only be sent to the element when there is 
consistency with regard to the model time. If two or 
more messages have the same timestamp, the arrival 
order at the destination is respected. In some situations, 
in which the source element of a message is configured 
as ‘notime’, the contents of the message is sent to the 
destination element without taking into consideration the 
time, however, in the same order as in the source. 
DCBSender  
The DCBSender (DCBS) has the general goal of 
providing the necessary mechanisms to receive requests  
of messages transmitted by the element via its gateway, 
codifying data, and sending the messages to the 
destination using the DCBK communication services. 
The gateway is sensible to value alterations in output 
attributes of the element it represents.     
Multiple output attributes, of a single or multiple source 
elements, can send data to the same input attribute in a 
destination element. In these conditions, DCBS 
maintains the principles of synchronization while 
passing messages to the respective input attribute in the 
destination element. Keeping the history of sent 
messages is part of the DCBS task. This history is used 
for returning to a safe state when the simulation faces 
the occurrence of errors caused by violations of LCC 
[7]. The time rollback to a safe state is a policy foreseen 
only for elements configured for the execution in the 
asynchronous time mode. 
While sending messages coming from elements defined 
as ‘notime’, DCBS assigns a value to the time control 
field of the message, which does not need to be 

consistent in time. DCBR identifies such messages, 
which are immediately forwarded to the element 
(ordered according to the sending element).   
DCBKernel  
The DCBKernel (DCBK) implements the primitives of 
communication between elements of a heterogeneous 
model. These primitives use configuration informations 
of elements to manage the exchange of messages. Each 
output attribute has an input attribute in the destine 
defined in the individual element configuration.  
DCBK disregards the content of messages and does not 
interfere in local actions of their treatment. It neither 
differentiates messages generated by elements from 
administrative messages created by DCBS and DCBR. 
The separation between network operations and the 
administrative actions of simulation gives flexibility to 
the treatment of messages in the distributed operations.      
DCBK recognizes automatically (from configuration 
information) if a destination element is located in the 
same node or in a remote node. If it is located in the 
same node, DCB implements communication through a 
direct call of specific methods. If the element is in a 
different node, then sockets are used for the remote 
communication. The DCBS and DCBR modules are not 
involved with communication issues, which are 
maintained only by DCBK.   
DCBK is also responsible for the storage of a consistent. 
This module is the only one to execute operations 
related to communication with remote nodes, making it 
suitable for extensions aiming at safety and fault 
tolerance policies (e.g. in case of node falling or 
regarding IP component information protection). 

4 Tangram modeling environment  

The Tangram modeling environment presents 
functionalities for the practice of specific activities for 
the heterogenous models. By adding functionalities to 
generate information about the elements of a model, to 
the interface administration and to the modeling 
(assistance in the creation of links between interface 
attributes of elements) the Tangram incorporates the 
principles of generality and flexibility defined in the 
DCB architecture. These principles interfere positively 
for new functionalities. In order to extend the DCB 
architecture presented in Section 3, some specific 
characteristics were added to enhance the 
implementation aspects. These characteristics are 
inspired in specific purpose environments for the 
simulation of Embedded Systems (co-simulation). Thus, 
heterogeneous models are built by instantiating and 
interconnecting elements that are stored in local 
repositories, which are hierarchically organized. These 
repositories may also contain references to elements that 
are only remotely available.  
The services offered by Tangram modeling environment 
can be identified in the cooperated work of 4 main 



modules as it is shown in Figure 3: a graphical modeling 
tool, an import assistant, an adapting functional 
interfaces, and a configuration tool. Section 5.1 
comments on the aspects of implementation of the 
modeling environment prototype separately for each one 
of these modules.  
In order to store an element in a local repository and 
later instantiate it in a heterogeneous model, the 
environment supplies conditions for the designer to 
construct an explicit declaration of the element’s 
interface. Because of this public interface, Tangram does 
not need to know internal details of an element in order 
to integrate it into a heterogeneous model.  
The interface of an element may have several access 
points. Each access point may have several alternative 
definitions, corresponding to levels of different detailing 
for the element, corresponding to different stages of 
specification of the model of system being analyzed and 
designed. In a preliminary model where implementation 
details are not specified yet, the access point may be 
defined as a single port offering a collection of high-
level access methods, with input and output parameters. 
In a level of posterior specification, in which the 
detailing of interface implementation is important, the 
access point may be defined as a bundle of ports, each 
having its own data type. This task is done in a working 
area supplied by the graphical modeling tool.  
The interface specification of a local or remote element 
results in an IPD (IP Description) file. The definition 
includes the element name, the location of the code 
describing the element behavior (maybe an URL for a 
remote element), the language used for describing the 
element behavior, and the icon that represents the 
element in the interface modeling tool.  
The generation of the heterogeneous model is performed 
in two main steps. In the first one, elements are 
instantiated but only an identification of access points is 
introduced. This way, two elements may be 
interconnected without being needed, in this stage, any 
treatment of possible incompatibilities in data formats or 
protocols used by the source and destination elements. 
In a second stage, the interface ports or methods 
contained in the access points are exposed. If interfaces 
of interconnected elements match each other, interface 
ports or methods may be interconnected. If interfaces of 
interconnected elements do not match exactly, still, an 
adaptation is necessary.  
Incompatible interfaces are indicated in the user 
interface environment. Adaptations can be done in the 
element code (adapting functional interfaces) or, in case 
of IP components for which the source code is not 
available, wrappers must be built. Since the interface of 
an IP element is publicly known, wrappers may be built 
without knowledge of internal details of the element. 
Wrapper construction is based on the IPD files 
describing the element interfaces. 

The last stage before execution of the model is attended 
by the configuration tool that performs two main tasks. 
Firstly, it generates XML files that are used for the 
configuration of the DCBS and DCBR modules (or 
internal modules). These files are dynamically read 
during the initialization of the internal modules. This 
avoids their recompilation for each heterogeneous 
model. The second task is the compilation of the 
gateways. The input for these tasks is obtained from the 
XML specification of the heterogeneous model, 
generated by the graphical modeling tool. 

 
Figure 3: Tangram Modules 

Besides the heterogeneous model configuration, the 
XML specification is also used to determine the mode of 
communication between local and remote elements. For 
local elements, message exchange is implemented 
through direct function calls that do not use network 
services, such as sockets, which are necessary to 
interconnect remote elements. These different 
communication mechanisms help improve the 
simulation performance.  

5 Tangram/DCB prototype 

This section presents the Tangram/DCB prototype 
developed for the simulation of heterogeneous models in 
the domain of the Embedded Systems (ESs) project. For 
this reason, the implementation shows some aspects 
which were influenced by this domain’s characteristics, 
however without impairment of the generality principles 
defined in the DCB architecture.   
In the implementation of the prototype, the cooperation 
between the elements described in different levels of 
abstraction, relevant to the ESs project, can be observed 
mainly in the treatment of access points in the modeling 
environment. In DCB, the concern with the construction 
of templates for the cooperation between elements 
described in different modeling and hardware 
description language also reveals dependency on ESs 
characteristics.   
In DCB the concern with the templates is related to the 
reutilization of IP components, an important 
characteristic in the ESs domain. Project techniques 
oriented to the reutilization contribute to reduce cost 
(e.g. failure, time) in the process of these systems 
project. This has motivated the development of 
methodology for the project and reutilization of IPs [19].    
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5.1 Tangram modeling environment implementation 
This section presents details of implementation of 
modules making the Tangram modeling environment.  
IP-based graphical modeling  
The graphical modeling tool allows the instantiation of 
local or remote IP elements that are available in the 
repositories and creates an XML description of a 
heterogeneous model, including all information on 
elements and their interconnections.  
In the first step of the generation of the heterogeneous 
model, the elements are instantiated and their interface 
access points are shown, as illustrated in Figure 4, which 
shows a screenshot of the modeling tool during the 
definition of the heterogeneous model for the case study 
presented in (Section 6). In this example, where only the 
identification of the access points (AP) is shown, the 
access point ‘rc_update’ of the GPSAlert element 
receives a display update request sent by the GPS 
element through its access point ‘sd_req_up’, while the 
access point ‘sd_coord’ sends new coordinates to the 
access point ‘coord_in’ of Display_Driver. Details of 
interface ports or methods inside the access points are 
hidden at this abstraction level. In this example, two 
elements are connected in a high level of abstraction, as 
it can be seen in the connection between the APs 
‘sd_req_up’ and ‘rc_update’ as well as between the APs 
‘sd_coord’ and  ‘coord_in’. 

 
Figure 4: Instantiating and connecting elements through 

access points 
After the connection between the access points, the 
environment allows the visualization of details of gates 
and methods in each one of the access points created 
(second step). In this stage the designer can identify 
compatible and incompatible interfaces. Incompatible 

interfaces are indicated in the user interface through 
different colors attached to the connections between the 
access points, as well as through pop-up messages.  
Import Assistant 
The import assistant helps the user in locating remote 
elements and, if desired and possible, retrieving and 
storing them in the local repositories. The import 
assistant é pré-requisito para a tarefa de modelagem no 
graphical modeling. The information about IPs 
maintained by this module is essential in the process of 
creating elements for the construction of models. 
Adapting functional interfaces  
The environment does not interfere in the adaptation of 
translation of incompatible interfaces when it can be 
done in the element itself. This type of alteration is 
dependable on the level of access to the element. For the 
adaptation using wrappers, the environment offers 
general templates that allow the creation of wrappers 
configured from the IPD files. The designer must 
manually complete the wrapper with its adaptation to the 
interface protocol of the other element to which this 
element is connected. Tangram also helps the user to 
reuse and specialize previous wrappers. A repository of 
reusable wrappers for connecting various elements to 
given bus or interface standards may be thus created. 
From the graphical model, the tool automatically 
generates an XML file that contains all information on 
the heterogeneous model and its elements. This file is 
completely hidden from the user. It is passed to the 
configuration module that will generate the required data 
structures for the simulation.  
Configuration Module  
The Configuration Module implements the service that 
creates a structure of individual data in an XML file for 
each model element from the modeling information. The 
use of this module must precede the execution of the 
model over DCB.    
5.2 DCB implementation  
The mechanisms implemented in the modules which 
support the distributed execution of heterogeneous 
models are shown in Figure 5. In order to extend the 
DCB architecture presented in Section 3, some specific 
characteristics of this implementation were added. The 
inclusion of these characteristics is partially inspired in 
properties that were identified in the ESs co-simulation 
context. Nevertheless, the accuracy in relation to the 
DCB architecture is kept unspoiled. 
In this implementation the Gateway module was divided 
in two parts and the DCBMthread was added. Being so, 
multiple elements of the same node can be executed 
over the same JVM. This decision of implementation 
reduces the use of memory and allows that exchange of 
messages between remote elements, enhancing 
performance (important in the ESs co-simulation).   
The configuration tool described in the previous section, 
apart from generating the XML with individual 



configuration of each element, it also generates 
automatically the corresponding gateways (by 
configuring library templates) for particular languages / 
simulators and access methods. A template is a code 
skeleton that is automatically filled by a configuration 
tool, introduced in Section 5.1. In this implementation 
there are specific templates of the ESs domain to specify 
interface with tools of hardware description. Current 
templates correspond to the following alternatives: 
• An element with a Java interface can directly 
communicate with the gateway by function calls and 
parameter passing, since the gateway (as the other DCB 
modules) is also implemented in Java; 

 
Figure 5: DCB Implementation 

• An element with a C/C++ interface, when 
implemented as a dynamic link library (.dll), can be 
directly loaded by the gateway. Communication is 
performed by routines that access native code offered by 
JNI (Java Native Interface); 
• For an element with a C/C++ interface, whose source 
code is available, a template is added to the code and 
invokes JVM (Java Virtual Machine), thus allowing 
function calls through JNI to Java objects in the 
gateway; 
• A VHDL element is integrated by Modelsim APIs 
(MTI.h library) that provide socket connections;  
• A SystemC element for which a header and a pre-
compiled object source are available may be integrated 
into heterogeneous models by using three auxiliary 
entities: an adapter module, a simulation driver, and the 
gateway. Each one of the ports of a SystemC element is 
connected through a signal to a corresponding port of an 
adapter module. These connections are used by a 
simulation driver, which updates output attributes of the 
element and looks for values of the input attributes 
through the gateway. The simulation driver uses JNI 
calls for communicating with the gateway; and 

• An element that is located in a remote host can 
communicate with the gateway by interprocess 
mechanisms such as sockets. In remote cooperation, 
only the communication functions that are implemented 
in the DCB kernel are automatically adjusted for using 
adequate communication primitives. Actions 
implemented in the DCBS/DCBR modules and in the 
gateway are not affected. 
For the configuration actions, the implementation has a 
general interface, identified in Figure 5 as ‘Application 
DCB’, which has as initial operation the reading of 
configuration information of the element (generated by 
the modeling environment) and uses the internal data 
structures that will be used by the DCB afterward for the 
simulation administration. Some examples of this 
information are: attributes identification, element 
localization, time synchronization type used by the 
element, among others.  
The DCBR module has a Decode block that, when 
receiving a message from other elements according to 
the configuration, maintains an organized list based on 
the timestamp of the messages. They are forwarded to 
the Gateway module synchronizing he timestamp and 
the GVT (if the source element is temporized), 
maintaining the consistency with the sending order (if 
the source element is not temporized). The calculation of 
LVT is done in this module by means of permanent 
element TimeMgrGVT (as described in Section 3). For 
this, the DCBR of each element has an administrative 
message that communicates the TimeMgrGVT of all 
alteration requests of LVT. Whenever the TimeMgrLVT 
detects an alteration of GBT, the DCBK of all elements 
is informed.  
The Code block of DCBS module, after receiving a 
request resulting from the communication between the 
update module of DCBS and the Gateway, forwards the 
received values to the destination element (identifying 
the respective input attribute) specified in the 
configuration file. Before sending the message, this is 
coded to an appropriate format of DCB aiming 
facilitating the administration work, such as translation.  
As the messages actions ensuring order, 
synchronization, translation, and others, are executed by 
DCB in the destination, the DCBS solicits its sending on 
request. Mechanisms of message retention are 
implemented in this module just to seize problems. For 
instance, the DCBS does not send messages with 
inconsistent timestamp in relation to GVT (for 
synchronous elements in time) generating a warning.  
The DCBK module, apart from the in force GVT 
register, does not practice operations of simulation 
administration. It implements the communication 
operations that take into consideration the requirements 
generated in the DCBS Code module, either between 
local elements (direct call to the LocalReceive and 
LocalSend methods) or remote ones (use of sockets – 
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Send and Receive). IN the local communication the 
DCBK uses the SendMessage method available in the 
DCBMthread module and in communication with 
remote elements network services are used. This is the 
only module practicing remote operations.  
The administration of messages which are sent to local 
nodes also have the support of redirect module. This 
module is located before the transaltion interface 
implemented in the Gateway to cooperate with the 
element.   
The implementation was done in Java language due to 
two main reasons, the flexibility to execute operations in 
the web and the ease of portability [21]. Java 
characteristics in relation to the web incorporate relevant 
capability (regarding portability and communication) in 
the development of new approaches to modeling and 
simulation. The portability issue facilitates the 
cooperation of heterogeneous elements in terms of 
executing platform, a plausible situation in ESs projects. 
For example, in the study of the case presented in 
Section 6, an element described in VHDL and executed 
with ModelSim over SunOS was added to the model 
with elements described in C++ for Windows. Thus, 
expect for Gateway interface adaptations, no alteration 
was needed in DCB modules or in the model.  

6 Case study 

This section illustrates the capabilities of the DCB and 
Tangram prototypes by partially describing the design of 
a portable GPS-Alert terminal. It receives GPS 
coordinates, compares them with user-defined key 
points previously stored in memory, and alerts the user 
about a point that is approaching, by displaying its 
identification.  
High-level functional model 
Figure 6 shows a first functional model of the system, 
which does not imply architectural definitions. It 
includes 4 elements, all of them described in Java.  
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Figure 6: Functional model of GPS-Alert system 

Computation and communication are described at a high 
abstraction level. For communication, a transaction-level 
model is built, using primitives like send, receive, read, 
and write. Element interfaces in the figure are 
represented only by the access points. Since element 

interfaces exactly match each other, wrappers are not 
required. GPS-Alert is the main system element. It 
stores key point coordinates, receives GPS data, 
compares coordinates, and communicates with keyboard 
and display. Keyboard and Display are abstract Java 
models of the real peripherals. GPS-Simulator, which 
has only validation purposes, simulates the generation of 
a sequence of coordinates, by reading them from a text 
file. An XML heterogeneous model specification is 
generated by the modeling tool. Gateways can be 
automatically generated by configuring Java templates. 
This first model is completely homogeneous. 
Architectural-level model 
The model is then refined to an architectural definition, 
as shown in Figure 7. Three IP elements are reused: a 
Java microcontroller [12], for implementing the main 
GPS-Alert functions, and keyboard and display drivers, 
to connect the microcontroller to real peripherals. In this 
model, while the drivers are locally available at the 
designer’s site, the microcontroller is a third-party IP 
model that is remotely simulated at a provider’s site. 
Considering the DCB co-simulation capabilities, any 
element may be locally or remotely simulated, without 
any impact in the heterogeneous model’s functionality 
and in the internal description of the elements. 
In this architectural model, the GPS-Alert element 
description, still written in Java, now mixes an abstract 
specification of the computation with a refined 
communication at RT level. As previously, computation 
is described by the GPS-Alert functionality.  

 
Figure 7: Architectural model of GPS-Alert system 

Communication, however, considers the real 
microcontroller interface, consisting of I/O ports and 
interrupt signals. The same mixed-level modeling in 
Java is used for the GPS-Simulator, Keyboard, and 
Display elements. Figure 7 shows the interface attributes 
contained in the element access points. 



Kbd-Driver is described in C++. Display-Driver is 
described in SystemC and implements a proprietary 
interface. A heterogeneous (Java/C++/SystemC) and 
distributed heterogeneous model is thus built. Gateways 
and internal modules are generated by configuring Java, 
C++, and SystemC templates. For C++ and SystemC 
elements, besides the gateways, also the C++ code 
accessing the JNI functions is generated. Table 1 shows 
the size (in source code lines) of elements and respective 
gateways. 

Table 1: Size of  elements and gateways 

Element Element 
Language 

Element 
size 
(lines) 

Size of 
gateway 
generated 
(lines) 

TimeMgrGVT Java 81 140 
GPS Alert Java 349 159 
GPS Simulator Java 107 120 
LCD Display Java 398 138 
Display driver  SystemC 269    218 * ** 
Keyboard Java 208 152 
Keyboard drv  C++ 309    243 * 

* includes the C++ code that gives access to JNI 
** includes the simulation driver (75 lines) and the 

complementary module (11 lines) 
Even for much more complex elements, their gateways 
will still have reduced sizes, since their sizes are only 
proportional to the number of interface signals of the 
respective IP components. The internal modules for all 
elements have always the same size: 172 lines of Java 
code for FA and 206 lines for DCBA. The DCB kernel 
also has a constant size of 227 lines of Java code. 
TimeMgrGVT, also with a constant size of 221 lines, is 
automatically inserted into the heterogeneous model. It 
is responsible for the overall synchronization, as 
explained in Section 4. 
Simulation performance 
In order to make a concrete comparison of simulation 
times between different models, we observe the time 
consumed by a complete screen update, performed 
through a series of messages sent to the Display 
element. This activity starts when a first update message 
is sent and ends when the last message has been 
processed by the Display element. In the high-level 
functional model, messages are sent by the GPS-Alert 
element, while in the architectural model the messages 
are sent by the Display-Driver element. 
The number of messages for a display update is larger in 
the architectural model because of the model refinement 
at a lower abstraction level. In this model, 282 messages 
are required for a complete display update, while in the 
functional model only 42 messages are required. In both 
cases, 9 control messages, sent by DCB and related to 
synchronization between the elements, are required.  
Both models have been initially simulated with the 
Display element located in the same network node as the 

respective origin element. In a second step, the Display 
element has been moved to a distinct node, connected by 
a 100 Mbps network adapter. Both nodes have been 
completely isolated from the remaining network. In the 
functional model, the mean time to update the display 
has been 60 ms in the local simulation and 320 ms in the 
distributed one. In the architectural model, the local 
execution took 79 ms and the distributed one 304 ms. 
It can be observed that the architectural model is only 19 
ms (or 31.7%) slower than the functional one, when we 
consider only local simulation. This overhead is due 
both to the refined description of the communication and 
to the language adaptation (all elements in the functional 
model are described in Java, while the Display-Driver 
element in the architectural model is described in 
SystemC). 
The distributed execution, in turn, is faster in the 
architectural model when compared to the functional 
one, even if the simulation is performed at a lower 
abstraction level. This apparently odd behavior is due to 
the way the Display-Driver element is implemented in 
the architectural model. It executes an infinite loop, 
constantly monitoring its interface attributes, thus 
consuming a large simulation time. In the distributed 
execution, this element has been allocated to a separate 
node. In this way, the processing power of this node is 
entirely devoted to this element, which is not executed 
concurrently with the other elements anymore.  

7 Final remarks and future work 

In this article we introduce an infrastructure for the 
integration of heterogeneous elements called Distributed 
Cosimulation Backbone (DCB). It is not targeted 
towards simulation performance. Its main goals are the 
preservation of elements, adaptation of heterogeneous 
interfaces, and distributed simulation. With the objective 
of offering resources for the construction of models and 
the adaptation of interfaces, the article also introduces 
the Tangram as a modeling and configuration 
environment aiming the execution over DCB.  
Tangram and DCB do not impose severe rules on the 
description of the elements’ communications, which 
could limit the reuse of already existing heterogeneous 
elements (including IP components). Beyond the reuse 
we also enhance the construction of new elements with 
tools/languages best adapting to the objectives of the 
model being constructed.  
The management of distribution and communication 
between elements that are located at different sites and 
described with different languages is entirely 
encapsulated within gateways and internal modules that 
are automatically generated and kept independent from 
the element’s code.  
This principle of DCB operation is fundamental for the 
purposes of integrity preservation of elements and the 
adaptation of interfaces. This feature distinguishes 



Tangram from other general-purpose distributed 
communication solutions. 
Some studies of case were presented, developed in the 
domain of the embedded systems project, in two 
different levels of abstraction: high-level functional 
model and architectural-level model. In the first level all 
the elements are described in the same language and 
they do not incorporate architecture details of the real 
system. In the second level three more elements were 
integrated into the first version of the model; two of 
them described in different language, incorporating 
some architectural details. Despite the changes, there 
was no impact over the functionality of the model or 
over the internal description of the elements previously 
integrated into the model. 
In order to enhance simulation performance, simulation 
code generation will consider in the future dedicated 
implementations for gateways and internal modules in 
two special cases: non-distributed models and 
homogeneous models. Future work will also consider 
capabilities for elements classification and search, to be 
added to the modeling environment. 
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