
Seamless Integration of Heterogeneous Components in a Distributed
Simulation Infrastructure

1BRAULIO ADRIANO DE MELLO

2FLÁVIO RECH WAGNER

1Universidade Federal de Lavras – DCC/UFLA – Lavras, MG
2Universidade Federal do Rio Grande do Sul – PPGC/UFRGS, Porto Alegre, RS

1bmello@dcc.ufla.br 2flavio@inf.ufrgs.br

The utilization of simulation in the design of systems combining different parts (heterogeneous systems) contributes
with the validation, verification, and observation of the behavior of these parts (individually) and of the cooperation
between them. The differences between the parts (elements) that compose the model of representation (of a system)
make these tasks more complex due to three main aspects: the reuse, the preservation of elements and the interface
compatibility. The reuse of existing elements can facilitate and accelerate the construction of new models or the
modification of existing ones. Nevertheless, the probability of having a heterogeneous model increases since the
elements can be developed under conditions that vary in terms of description language, interface configuration,
operational environment, and others. Thus, it is highly likely the need of making an element have alterations or
adaptations that can jeopardize the preservation of its original characteristics or even interfere in intellectual
properties issues, in order to be reused. The compatibility between interfaces of different elements is neither
guaranteed. Regarding these challenges, this paper presents DCB (Distributed Co-simulation Backbone), an
infrastructure for distributed simulation that offers mechanisms for preserving elements of the model from interface
adaptations and for implementing data translation and communication and synchronization, all of them necessary
for the execution of a heterogeneous model. By implementing these aspects in a backbone that is independent from
the elements, DCB can preserve their integrity without loosing the capability of adaptation of heterogeneous
elements so as to be able to cooperate correctly when integrated into the same simulation model. DCB also permits
the execution of a simulation with elements distributed in different nodes.

Keywords: Heterogeneous Models, Distributed Simulation, Integration, Element

(Received October 30, 2008 / Accepted March 16, 2009)

1 Introduction

Simulation allows the emulation and observation of the
behavior of real systems by executing representation
models. Currently, the growing size and complexity of
systems in different domains leads to design and
implementation techniques that are based on the reuse of
previously available and tested elements (parts of a
system). These elements may come from different
sources, including third-part ones, and may be designed
and implemented without previous knowledge of other
elements with which they must cooperate in a given
environment. This leads to the utilization of
heterogeneous models as an alternative to represent the
system behavior with fidelity.
A representation model is called heterogeneous when it
combines elements that differ in their implementation
technology and/or present incompatible functional
interfaces. The technology for the implementation or
description may correspond to distinct specification
languages or techniques [16]. Incompatible interfaces
occur when the interaction resources of an element (for

instance regarding the form, number, type, and size of
these resources, usually available in terms of attributes,
protocols, or methods) do not match the resources of a
second element with which it must communicate and
cooperate.
Heterogeneous simulation is an approach that offers
support to the cooperation between heterogeneous
elements of a simulation model. As the difficulty in the
utilization of given standards for the design and
specification of element interfaces and behavior grows,
because of the diversity and complexity of these
elements, the benefits of heterogeneous simulation also
increase.
As an example, in precision agriculture [14],
heterogeneous models are useful in the system
description and simulation before test fields that
evaluate the cooperation between agricultural equipment
and the precision systems that are coupled to them.
Similar benefits can be identified in wireless sensor
network systems (WSNs) [8], where there is a great
diversity of cooperating elements, with varying
capabilities, purposes, and formats.

The distributed simulation of heterogeneous models is
useful in situations where it is not possible or
interesting, for different reasons, to have all elements of
a model in a single node of a computer network. In some
situations, there are access restrictions to given
elements, for instance because of intellectual property
issues, when an element provider does not want to
disclose the element code. In this case, the element must
be remotely integrated into the simulation model
through its interface. It may also happen that the
simulation of a given element requires resources that are
available only in a given node of the network. A third
situation is the integration of a real-life element to a
simulation model, through a special interface that is
available in a given node.
In the design and implementation of heterogeneous
systems, very often elements are developed and tested
independently from each other, usually also using
distinct design processes and tools. Because of this
situation, the validation of the individual elements
cannot consider their interaction with the rest of the
system, and the first integration tests are performed only
with the real system and in a very late design stage. This
delays the detection of problems that could be solved
with much smaller costs in early design stages [17], if
appropriate tools were available. In this context,
heterogeneous distributed simulation techniques offer
convenient alternatives for the validation of individual
elements and for observing the interactions between
them [6].
Although the research in the field of heterogeneous
distributed simulation contributes to the consolidation of
various fundamental issues, for instance related to
communication, synchronization, performance, and
modeling, existing solutions in general follow a
proprietary approach and are developed for solving
problems in a particular domain. As an example,
SensorSim [12] is dedicated to the simulation of sensor
networks and does not provide mechanisms for ensuring
communication with other tools, even targeted to the
same domain.
The High Level Architecture (HLA) standard [11] is a
remarkable reference in distributed simulation. Although
HLA has very interesting characteristics regarding
distribution, it does not administrate the interoperability
between elements (or federates as referred in HLA) that
were developed for different RTI (Run-Time
Infrastructure) implementations. The RTI is responsible
for the cooperation between federates of the same
federation. This characteristic led to studies in order to
find ways to solve interoperability and reuse issues
regarding federates whose interfaces have been
implemented for different RTIs [9].
Considering current restrictions and trends of
heterogeneous distributed simulation techniques, this
paper presents the Tangram/DCB (Distributed Co-

simulation Backbone) environment. DCB is a backbone
for heterogeneous distributed simulation. Tangram is a
modeling front-end for DCB, which has been designed
to facilitate the specification of heterogeneous models
according to the DCB principles.
The DCB architecture has been designed to preserve the
original descriptions of the behavior and interface of
individual elements. Differently from other approaches,
DCB mechanisms remain completely hidden from the
elements, which may thus preserve their proprietary
solutions and do not need to be modified in order to be
integrated into the simulation model. This promotes a
much larger reusability of elements than other
approaches. In a model of a sensor network, for
instance, a new sensor node with a different interface
may be added to a model without requiring adaptations
in its interface or in the interface of other sensor nodes
with which it will communicate.
This property is maintained essentially by the complete
encapsulation, within DCB’s own modules, of strategies
for distributed simulation and for interaction between
heterogeneous elements. These strategies consider the
required adaptation between different languages and
interfaces used in the design of the individual elements,
such that the elements remain unaware of them. DCB
implements the concept of gateway for handling and
adapting diverse elements’ languages and interfaces.
This may be combined with interface wrappers, which
adapt the interface functionality, when required.
The complete independence between elements is an
essential aspect also in the DCB’s approach for handling
distributed simulation. An element does not need to
maintain information on other elements that interact
with it. This information is kept inside DCB’s own
modules. The same approach is used to implement the
concept of hybrid synchronization. DCB allows the
interaction between elements that follow different
synchronization approaches – synchronous,
asynchronous, and no-time (elements without explicit
handling of simulation time), but this feature remains
hidden from the elements.
The combined utilization of these characteristics –
independence between elements, preservation of reused
elements, and hybrid synchronization – offers benefits
for heterogeneous distributed simulation that are not
found in other environments or tools. This paper,
however, will concentrate on the aspects of integration
and preservation of heterogeneous elements, involving
the required adaptations, encapsulated in the DCB
modules, to handle models with diverse languages and
interfaces. Heterogeneous simulation is largely explored
in the context of electronic embedded systems [13]. A
prototype of the Tangram / DCB environment has been
developed for this domain, considering its main
requirements but maintaining the general principles of
the DCB architecture.

The remaining of this paper is organized as follows.
Section 2 discusses related work and gives the
motivation for the development of DCB. The DCB
principles and architecture are presented in Section 3.
The Tangram front-end is described in Section 4.
Section 5 introduces the DCB prototype targeted at the
embedded systems domain. A case study for the
validation of this prototype is presented in Section 6.
Section 7 draws main conclusions and discusses future
work.

2 Related Work
HLA (High-Level Architecture) [5] is an architecture
defined by the IEEE 1516 standard, which specifies
rules and interfaces for distributed simulation handled
by a run-time layer called RTI (Run-Time
Infrastructure). Based on the concepts of federation and
federates, this architecture is defined by three main
components: a common formal model for specification;
a set of services described in the RTI; and a set of
functional rules for simulation. A federation is a
collection of federates. Federates may be simulators,
sub-systems, or other systems. Federations are built
according to a formal model that, besides considering
the specification of the simulation model, also
establishes a contract between participating federates,
according to their characteristics, functions, and
localization. For the execution of a model, federates
must implement services defined in a HLA Interface
Specification, in order to interact with the RTI. This
constraint limits the reuse of federates that have been
built for executing on other operating system platforms
or even according to other implementations of the RTI.
The DCB principles of independence and preservation
of elements (federates in HLA) overcome these
restrictions.
Recent research on the HLA standard has promoted the
opening of new possibilities for distributed simulation,
including the use of heterogeneous models [1].
Motivated by the inherent complexity of heterogeneous
simulation, these studies look for alternatives or
extensions to HLA, in order to meet the requirements of
heterogeneous models. One of the main issues is the
adaptation between parts (federates in HLA) that have
incompatible interfaces or have been developed with
different languages.
Some works have concentrated on issues regarding the
interoperability between different implementations of
the RTI, since the RTI interface is not standardized and
federates developed for a given implementation may not
be interoperable with other ones. There are proposals
both for a standard RTI interface and for the creation of
RTI-to-RTI bridges (translators) [9]. The standardization
of the RTI interface may increase the difficulty in the
reuse of existing federates that use incompatible
interfaces, since the federate must be modified. The use

of RTI-to-RTI bridges makes interoperability dependent
on the existence of a bridge. Thus, for each different
RTI, all other RTIs must have a corresponding bridge.
Proposals have also considered the combined utilization
of different standards (for instance CORBA and UML)
as alternative solutions for the interoperability between
HLA implementations [22]. Evolution has been
achieved in this perspective, for instance in the mapping
from RTI to CORBA/IDL (Interface Description
Language). However, the characteristics of alternative
standards, such as CORBA and UML, which have been
developed for other domains, have to be taken into
account when applied in combination with simulation
mechanisms, since new problems arise. As a
consequence, the standards or the associated general-
purpose tools may need to be adapted to the simulation
domain.

Figure 1: ARTIS architecture [2]

Recent efforts have been focused on alternatives seeking
more flexibility in handling distributed models targeting
at heterogeneous components (or federates). An example
is the ARTIS (Advanced RTI System) framework [2].
Based on the HLA standard, it proposes to support the
execution of distributed and parallel simulations and the
cooperation between federates. Differently from HLA,
ARTIS implements an API layer for federate integration
allocated between the federate and the RTI. This way,
instead of executing explicit calls to the primitive RTI,
the federate interacts with a compatible API. This policy
allows the federates that were developed to the
implementation of an RTI to be reused in another one.
Even so, the integration of a federate depends on the
availability of an API that is compatible with the
federate interface. Figure 1 presents the structure in
ARTIS layers.
The WESE environment [15] supports the distributed
execution of simulation models. The construction of a
model has as first requirement the specification of
components (or elements) in a language called SSL
(System Specification Language). This description is
used to entail the model to the internal modules of
WESE which are responsible for some functions such as
communication and data handling. A simulation
manager (SM) executes this task. The SM does not

communicate directly with the components, but with a
repository manager (RM). The RM recognizes the
component interface through object stubs. The object
stubs contain the component attributes and information
about machine requirements for simulation and about
the component behavior.
Approaches in heterogeneous distributed simulation are
usually focused on solving problems coming from
particular application domains. As a consequence, there
is a tendency in emphasizing only certain features, while
other ones are not considered. This can be observed in
different solutions that are targeted to the embedded
systems domain.
In multi-language approaches [10], for instance, the
integration of new components is restricted to languages
that are supported by the tools, while hybrid
synchronization and component preservation are not
considered. A similar situation can be observed in the
JavaCAD tool [6]. It allows to instantiate IP (intellectual
property) components from multiple remote providers
within a distributed simulation model. However,
although JavaCAD targets at heterogeneous models,
components may only be connected to the model
through a particular JavaCAD client, which handles the
communication. A still higher specificity regarding the
development of heterogeneous models is found in
commercial tools that are targeted at electronic systems,
such as from Coware [4], Cadence [3], Mentor Graphics
[18], and Synopsys [20].
In general, existing environments and tools are targeted
at given application domains and do not consider
generality as a main requirement. It may be hard to
redesign solutions that are proprietary or based on a
given set of domain-specific requirements in order to
support new features of a different domain. It is thus
desirable the development of a general-purpose
environment that simultaneously addresses
independence and reuse of components (federates in
HLA, elements in DCB), hybrid synchronization, and
transparent distributed simulation. These principles form
the basis of the DCB architecture, which shows greater
flexibility and generality in the distributed execution of
heterogeneous models than other current approaches.

3 DCB

DCB has been developed as an intermediate layer
between elements and the communication medium,
offering support to the distributed execution of
heterogeneous simulation models. It offers generic
mechanisms for communication and synchronization
between heterogeneous elements, with four main goals:
the physical distribution of the elements; the
independence between the elements; the encapsulation
of mechanisms for time management, adaptation
between elements, and communication; and hybrid
synchronization. The encapsulation of these mechanisms

inside the DCB infrastructure allows a greater
independence of elements, thus meeting the
requirements of interoperability and interchangeability
(substitution of elements) in the cooperation between
heterogeneous elements.
DCB does not require that elements make explicit calls
to a simulation backplane for distribution and
synchronization operations. As opposed to other
proprietary solutions, DCB does not impose proprietary
standards for data exchange. Therefore, DCB reduces
the need for modifications in the implementation of
elements to be integrated.
The DCB infrastructure is general-purpose and is not
affected by particular simulators or sub-models to be
integrated into a heterogeneous model. These DCB
features make the integration of already existing
elements much easier and more flexible. DCB does not
impose restrictions on its use in different simulation
domains. The independence between elements and the
encapsulation of the mechanisms for managing the
distribution and heterogeneity are not based on
requirements of a particular domain.
As opposed to general-purpose middleware solutions,
like CORBA, which deal with language interoperability
and distribution, DCB also considers these requirements
but is specifically oriented towards distributed
heterogeneous simulation.

Figure 2: DCB architecture

In the DCB approach, a heterogeneous model is
composed of autonomous and distributed elements.
Elements may be described with different languages
and/or simulated by any simulators. In order to
participate in a heterogeneous model, an element must
have a publicly available interface.
This means that attributes of the interface need to be
visible and controllable from outside. By controlling
these attributes, DCB may configure the way how
cooperation between elements is performed and may
implement mechanisms for the automatic configuration
of a heterogeneous model, including the required
adaptation between distinct element interfaces and
implementation languages. This way, internal aspects of
an element do not impact its integration into a model. If
elements have been already validated, as expected, the
system designer may worry only about their integration
in the model.

Figure 2 shows the DCB architecture. It is composed by
four main modules: DCBSender (DCBS), DCBReceiver
(DCBR), DCBKernel (DCBK), and gateway. The
gateway’s main task is to handle the element interfaces,
while the other modules handle synchronization, data
management, and cooperation. The rest of this section
presents the mechanisms that implement these services
and the role of each module of the DCB infrastructure in
the distributed execution of heterogeneous models.
Model configuration
DCB manipulates information ruling cooperation
between the elements of a model. This information is
provided by a mechanism of configuration. Before the
execution of any simulation task that enables DCB to
manage cooperation between the elements of a model,
configurable data structures are read separately from the
model and DCB modules. This action is called
‘configuration work’. For each one of the elements a
particular data structure must be created. The next
section presents Tangram, an environment that is
responsible for this task. These are some examples of
information related to the configuration of each element:
 Identification and type of input and output attributes;
 Destination of each output attribute;
 Type of synchronization;
 Node hosting the element for execution.
Such information describes the interface of the element
used by the Gateway (DCB module) to exchange data
resulting from the execution of the model. The
description of interface attributes and the other
configuration information are specified by the designer
of the model during its construction. Aspects of
generality and flexibility of DCB have in the model
configuration strategy an important basis for the
preservation of DCB internal modules. They avoid the
need of alterations in the implementation of these
modules for the execution of different models.
Time Management
Each element has its own Local Virtual Time (LVT),
which defines a temporal ordering on events within the
element. The DCB kernel also maintains a unique
Global Virtual Time (GVT) for synchronous elements
and another one for asynchronous [7] ones. This global
time is used to build a global ordering on events from
different elements. In order to implement this ordering,
the current DCB prototype implements a special-
purpose element, named TimeMgrGVT. When any
element tries to advance its LVT, a corresponding
message is automatically sent to TimeMgrGVT, which
then re-computes the GVT and, if it is advanced,
communicates its new value to all other elements. The
elements’ LVTs cannot be advanced beyond the GVT in
the synchronous mode.
DCB also supports the inclusion of elements that do not
consider a local time for event execution (untimed
elements). Untimed elements do not require consistency

in time for output data, but just to maintain an order in
the source element output in the respective destination.
The cooperation between elements with distinct modes
of time advancement is called hybrid synchronization.
This feature of DCB is based on the fact that a better
cost/benefit relationship can be achieved by hybrid
models when compared to pure untimed, synchronous,
or asynchronous models. Since a synchronous element
cannot advance its internal time beyond the GVT, it may
remain idle while waiting other elements to advance,
even if it does not depend on events coming from them.
In asynchronous elements, in turn, the independent time
advancement by an element may optimize the simulation
time, but causality constraints between elements may be
violated (violations of LCC-Local Causality
Constraints), so that rollback may be required. By
combining both types of synchronization, DCB explores
their advantages simultaneously. In [23] positive aspects
in the use of hybrid synchronization are highlighted,
with the consequent increase of complexity in the model
execution.
Gateway
Gateways adapt element interfaces to the heterogeneous
model and also implement adapters between
programming languages used in the implementation of
each element, if necessary. In order to participate in a
heterogeneous model, an element must have its interface
publicly available (see Section 4) and update its
interface attributes by using a single gateway method:
Gateway.UpdateAttribute (“attribute name”, value,
timestamp);
This rule also applies to the element's LVT, which must
be available as an interface attribute and controllable
from the outside. This is a requirement for the
integration of any simulator or model into a DCB
heterogeneous model. For this, it uses configuration
information. The gateway recognizes native methods of
the element interface to send data to it. The gateway is
also responsible for data type conversions, when needed.
If the element encapsulates an IP component that is
remotely simulated, the gateway and the component will
be located in different hosts.
The gateway has four main responsibilities regarding the
administration of the interface between an element and
internal modules of DCB:
1 – Monitoring the updating of values of the output
attributes of the element interface;
2 – Data type conversion according to the configuration
of the heterogeneous model (translation);
3 – Semantically converting data according to the
configuration of the model (e.g. when data available in
an attribute at the source element must be split up and
delivered in two different attributes at the destination);
4 – Updating input attributes of the element when
requested by the internal modules of DCB.

These characteristics of the gateway are requirements
for the DCB to support the independence of elements
(preservation of element interfaces and internal
implementations) and the encapsulation of mechanisms
for simulation administration. The interface adaption
requires changes just in the gateway code.
DCBReceiver
The DCBReceiver (DCBR) module receives messages
from DCBK (executing communication operations) and
sends them to the elements it represents, via gateway,
according to the simulation time (synchronization
function). It is DCBR’s responsibility the consistent use
of configuration information in the handling of
messages. Among these, it must redirect the message
contents to the correct input attributes of the destination
element (decoding). The input attributes (in the
destination) for each of the output attributes (from the
source) are defined in the configuration of the
heterogeneous model.
The DCBR does not execute remote operations.
Messages are received by the primitives of
communication of DCBK. In the decoding process of
received messages, the DCBR identifies the destination
attribute and its type, among other control information,
and maintains the message in a waiting list. The
message will only be sent to the element when there is
consistency with regard to the model time. If two or
more messages have the same timestamp, the arrival
order at the destination is respected. In some situations,
in which the source element of a message is configured
as ‘notime’, the contents of the message is sent to the
destination element without taking into consideration the
time, however, in the same order as in the source.
DCBSender
The DCBSender (DCBS) has the general goal of
providing the necessary mechanisms to receive requests
of messages transmitted by the element via its gateway,
codifying data, and sending the messages to the
destination using the DCBK communication services.
The gateway is sensible to value alterations in output
attributes of the element it represents.
Multiple output attributes, of a single or multiple source
elements, can send data to the same input attribute in a
destination element. In these conditions, DCBS
maintains the principles of synchronization while
passing messages to the respective input attribute in the
destination element. Keeping the history of sent
messages is part of the DCBS task. This history is used
for returning to a safe state when the simulation faces
the occurrence of errors caused by violations of LCC
[7]. The time rollback to a safe state is a policy foreseen
only for elements configured for the execution in the
asynchronous time mode.
While sending messages coming from elements defined
as ‘notime’, DCBS assigns a value to the time control
field of the message, which does not need to be

consistent in time. DCBR identifies such messages,
which are immediately forwarded to the element
(ordered according to the sending element).
DCBKernel
The DCBKernel (DCBK) implements the primitives of
communication between elements of a heterogeneous
model. These primitives use configuration informations
of elements to manage the exchange of messages. Each
output attribute has an input attribute in the destine
defined in the individual element configuration.
DCBK disregards the content of messages and does not
interfere in local actions of their treatment. It neither
differentiates messages generated by elements from
administrative messages created by DCBS and DCBR.
The separation between network operations and the
administrative actions of simulation gives flexibility to
the treatment of messages in the distributed operations.
DCBK recognizes automatically (from configuration
information) if a destination element is located in the
same node or in a remote node. If it is located in the
same node, DCB implements communication through a
direct call of specific methods. If the element is in a
different node, then sockets are used for the remote
communication. The DCBS and DCBR modules are not
involved with communication issues, which are
maintained only by DCBK.
DCBK is also responsible for the storage of a consistent.
This module is the only one to execute operations
related to communication with remote nodes, making it
suitable for extensions aiming at safety and fault
tolerance policies (e.g. in case of node falling or
regarding IP component information protection).

4 Tangram modeling environment

The Tangram modeling environment presents
functionalities for the practice of specific activities for
the heterogenous models. By adding functionalities to
generate information about the elements of a model, to
the interface administration and to the modeling
(assistance in the creation of links between interface
attributes of elements) the Tangram incorporates the
principles of generality and flexibility defined in the
DCB architecture. These principles interfere positively
for new functionalities. In order to extend the DCB
architecture presented in Section 3, some specific
characteristics were added to enhance the
implementation aspects. These characteristics are
inspired in specific purpose environments for the
simulation of Embedded Systems (co-simulation). Thus,
heterogeneous models are built by instantiating and
interconnecting elements that are stored in local
repositories, which are hierarchically organized. These
repositories may also contain references to elements that
are only remotely available.
The services offered by Tangram modeling environment
can be identified in the cooperated work of 4 main

modules as it is shown in Figure 3: a graphical modeling
tool, an import assistant, an adapting functional
interfaces, and a configuration tool. Section 5.1
comments on the aspects of implementation of the
modeling environment prototype separately for each one
of these modules.
In order to store an element in a local repository and
later instantiate it in a heterogeneous model, the
environment supplies conditions for the designer to
construct an explicit declaration of the element’s
interface. Because of this public interface, Tangram does
not need to know internal details of an element in order
to integrate it into a heterogeneous model.
The interface of an element may have several access
points. Each access point may have several alternative
definitions, corresponding to levels of different detailing
for the element, corresponding to different stages of
specification of the model of system being analyzed and
designed. In a preliminary model where implementation
details are not specified yet, the access point may be
defined as a single port offering a collection of high-
level access methods, with input and output parameters.
In a level of posterior specification, in which the
detailing of interface implementation is important, the
access point may be defined as a bundle of ports, each
having its own data type. This task is done in a working
area supplied by the graphical modeling tool.
The interface specification of a local or remote element
results in an IPD (IP Description) file. The definition
includes the element name, the location of the code
describing the element behavior (maybe an URL for a
remote element), the language used for describing the
element behavior, and the icon that represents the
element in the interface modeling tool.
The generation of the heterogeneous model is performed
in two main steps. In the first one, elements are
instantiated but only an identification of access points is
introduced. This way, two elements may be
interconnected without being needed, in this stage, any
treatment of possible incompatibilities in data formats or
protocols used by the source and destination elements.
In a second stage, the interface ports or methods
contained in the access points are exposed. If interfaces
of interconnected elements match each other, interface
ports or methods may be interconnected. If interfaces of
interconnected elements do not match exactly, still, an
adaptation is necessary.
Incompatible interfaces are indicated in the user
interface environment. Adaptations can be done in the
element code (adapting functional interfaces) or, in case
of IP components for which the source code is not
available, wrappers must be built. Since the interface of
an IP element is publicly known, wrappers may be built
without knowledge of internal details of the element.
Wrapper construction is based on the IPD files
describing the element interfaces.

The last stage before execution of the model is attended
by the configuration tool that performs two main tasks.
Firstly, it generates XML files that are used for the
configuration of the DCBS and DCBR modules (or
internal modules). These files are dynamically read
during the initialization of the internal modules. This
avoids their recompilation for each heterogeneous
model. The second task is the compilation of the
gateways. The input for these tasks is obtained from the
XML specification of the heterogeneous model,
generated by the graphical modeling tool.

Figure 3: Tangram Modules

Besides the heterogeneous model configuration, the
XML specification is also used to determine the mode of
communication between local and remote elements. For
local elements, message exchange is implemented
through direct function calls that do not use network
services, such as sockets, which are necessary to
interconnect remote elements. These different
communication mechanisms help improve the
simulation performance.

5 Tangram/DCB prototype

This section presents the Tangram/DCB prototype
developed for the simulation of heterogeneous models in
the domain of the Embedded Systems (ESs) project. For
this reason, the implementation shows some aspects
which were influenced by this domain’s characteristics,
however without impairment of the generality principles
defined in the DCB architecture.
In the implementation of the prototype, the cooperation
between the elements described in different levels of
abstraction, relevant to the ESs project, can be observed
mainly in the treatment of access points in the modeling
environment. In DCB, the concern with the construction
of templates for the cooperation between elements
described in different modeling and hardware
description language also reveals dependency on ESs
characteristics.
In DCB the concern with the templates is related to the
reutilization of IP components, an important
characteristic in the ESs domain. Project techniques
oriented to the reutilization contribute to reduce cost
(e.g. failure, time) in the process of these systems
project. This has motivated the development of
methodology for the project and reutilization of IPs [19].

Modeling

Graphical
Modeling

Tool

Import
Assistant

Adapting
Functional
Interfaces

Configuration
Tool

Cosimulation:

DCB

5.1 Tangram modeling environment implementation
This section presents details of implementation of
modules making the Tangram modeling environment.
IP-based graphical modeling
The graphical modeling tool allows the instantiation of
local or remote IP elements that are available in the
repositories and creates an XML description of a
heterogeneous model, including all information on
elements and their interconnections.
In the first step of the generation of the heterogeneous
model, the elements are instantiated and their interface
access points are shown, as illustrated in Figure 4, which
shows a screenshot of the modeling tool during the
definition of the heterogeneous model for the case study
presented in (Section 6). In this example, where only the
identification of the access points (AP) is shown, the
access point ‘rc_update’ of the GPSAlert element
receives a display update request sent by the GPS
element through its access point ‘sd_req_up’, while the
access point ‘sd_coord’ sends new coordinates to the
access point ‘coord_in’ of Display_Driver. Details of
interface ports or methods inside the access points are
hidden at this abstraction level. In this example, two
elements are connected in a high level of abstraction, as
it can be seen in the connection between the APs
‘sd_req_up’ and ‘rc_update’ as well as between the APs
‘sd_coord’ and ‘coord_in’.

Figure 4: Instantiating and connecting elements through

access points
After the connection between the access points, the
environment allows the visualization of details of gates
and methods in each one of the access points created
(second step). In this stage the designer can identify
compatible and incompatible interfaces. Incompatible

interfaces are indicated in the user interface through
different colors attached to the connections between the
access points, as well as through pop-up messages.
Import Assistant
The import assistant helps the user in locating remote
elements and, if desired and possible, retrieving and
storing them in the local repositories. The import
assistant é pré-requisito para a tarefa de modelagem no
graphical modeling. The information about IPs
maintained by this module is essential in the process of
creating elements for the construction of models.
Adapting functional interfaces
The environment does not interfere in the adaptation of
translation of incompatible interfaces when it can be
done in the element itself. This type of alteration is
dependable on the level of access to the element. For the
adaptation using wrappers, the environment offers
general templates that allow the creation of wrappers
configured from the IPD files. The designer must
manually complete the wrapper with its adaptation to the
interface protocol of the other element to which this
element is connected. Tangram also helps the user to
reuse and specialize previous wrappers. A repository of
reusable wrappers for connecting various elements to
given bus or interface standards may be thus created.
From the graphical model, the tool automatically
generates an XML file that contains all information on
the heterogeneous model and its elements. This file is
completely hidden from the user. It is passed to the
configuration module that will generate the required data
structures for the simulation.
Configuration Module
The Configuration Module implements the service that
creates a structure of individual data in an XML file for
each model element from the modeling information. The
use of this module must precede the execution of the
model over DCB.
5.2 DCB implementation
The mechanisms implemented in the modules which
support the distributed execution of heterogeneous
models are shown in Figure 5. In order to extend the
DCB architecture presented in Section 3, some specific
characteristics of this implementation were added. The
inclusion of these characteristics is partially inspired in
properties that were identified in the ESs co-simulation
context. Nevertheless, the accuracy in relation to the
DCB architecture is kept unspoiled.
In this implementation the Gateway module was divided
in two parts and the DCBMthread was added. Being so,
multiple elements of the same node can be executed
over the same JVM. This decision of implementation
reduces the use of memory and allows that exchange of
messages between remote elements, enhancing
performance (important in the ESs co-simulation).
The configuration tool described in the previous section,
apart from generating the XML with individual

configuration of each element, it also generates
automatically the corresponding gateways (by
configuring library templates) for particular languages /
simulators and access methods. A template is a code
skeleton that is automatically filled by a configuration
tool, introduced in Section 5.1. In this implementation
there are specific templates of the ESs domain to specify
interface with tools of hardware description. Current
templates correspond to the following alternatives:
• An element with a Java interface can directly
communicate with the gateway by function calls and
parameter passing, since the gateway (as the other DCB
modules) is also implemented in Java;

Figure 5: DCB Implementation

• An element with a C/C++ interface, when
implemented as a dynamic link library (.dll), can be
directly loaded by the gateway. Communication is
performed by routines that access native code offered by
JNI (Java Native Interface);
• For an element with a C/C++ interface, whose source
code is available, a template is added to the code and
invokes JVM (Java Virtual Machine), thus allowing
function calls through JNI to Java objects in the
gateway;
• A VHDL element is integrated by Modelsim APIs
(MTI.h library) that provide socket connections;
• A SystemC element for which a header and a pre-
compiled object source are available may be integrated
into heterogeneous models by using three auxiliary
entities: an adapter module, a simulation driver, and the
gateway. Each one of the ports of a SystemC element is
connected through a signal to a corresponding port of an
adapter module. These connections are used by a
simulation driver, which updates output attributes of the
element and looks for values of the input attributes
through the gateway. The simulation driver uses JNI
calls for communicating with the gateway; and

• An element that is located in a remote host can
communicate with the gateway by interprocess
mechanisms such as sockets. In remote cooperation,
only the communication functions that are implemented
in the DCB kernel are automatically adjusted for using
adequate communication primitives. Actions
implemented in the DCBS/DCBR modules and in the
gateway are not affected.
For the configuration actions, the implementation has a
general interface, identified in Figure 5 as ‘Application
DCB’, which has as initial operation the reading of
configuration information of the element (generated by
the modeling environment) and uses the internal data
structures that will be used by the DCB afterward for the
simulation administration. Some examples of this
information are: attributes identification, element
localization, time synchronization type used by the
element, among others.
The DCBR module has a Decode block that, when
receiving a message from other elements according to
the configuration, maintains an organized list based on
the timestamp of the messages. They are forwarded to
the Gateway module synchronizing he timestamp and
the GVT (if the source element is temporized),
maintaining the consistency with the sending order (if
the source element is not temporized). The calculation of
LVT is done in this module by means of permanent
element TimeMgrGVT (as described in Section 3). For
this, the DCBR of each element has an administrative
message that communicates the TimeMgrGVT of all
alteration requests of LVT. Whenever the TimeMgrLVT
detects an alteration of GBT, the DCBK of all elements
is informed.
The Code block of DCBS module, after receiving a
request resulting from the communication between the
update module of DCBS and the Gateway, forwards the
received values to the destination element (identifying
the respective input attribute) specified in the
configuration file. Before sending the message, this is
coded to an appropriate format of DCB aiming
facilitating the administration work, such as translation.
As the messages actions ensuring order,
synchronization, translation, and others, are executed by
DCB in the destination, the DCBS solicits its sending on
request. Mechanisms of message retention are
implemented in this module just to seize problems. For
instance, the DCBS does not send messages with
inconsistent timestamp in relation to GVT (for
synchronous elements in time) generating a warning.
The DCBK module, apart from the in force GVT
register, does not practice operations of simulation
administration. It implements the communication
operations that take into consideration the requirements
generated in the DCBS Code module, either between
local elements (direct call to the LocalReceive and
LocalSend methods) or remote ones (use of sockets –

Component

Gateway
Translation interface

Redirect

DCBR DCBS

Decode

LVT Code

Update

 LocalReceive LocalSend
Receive Send

 DCBMThread SendMessage

Network

Templates:
Java

C/C++
Sockets
VHDL

SystemC
Files

Send and Receive). IN the local communication the
DCBK uses the SendMessage method available in the
DCBMthread module and in communication with
remote elements network services are used. This is the
only module practicing remote operations.
The administration of messages which are sent to local
nodes also have the support of redirect module. This
module is located before the transaltion interface
implemented in the Gateway to cooperate with the
element.
The implementation was done in Java language due to
two main reasons, the flexibility to execute operations in
the web and the ease of portability [21]. Java
characteristics in relation to the web incorporate relevant
capability (regarding portability and communication) in
the development of new approaches to modeling and
simulation. The portability issue facilitates the
cooperation of heterogeneous elements in terms of
executing platform, a plausible situation in ESs projects.
For example, in the study of the case presented in
Section 6, an element described in VHDL and executed
with ModelSim over SunOS was added to the model
with elements described in C++ for Windows. Thus,
expect for Gateway interface adaptations, no alteration
was needed in DCB modules or in the model.

6 Case study

This section illustrates the capabilities of the DCB and
Tangram prototypes by partially describing the design of
a portable GPS-Alert terminal. It receives GPS
coordinates, compares them with user-defined key
points previously stored in memory, and alerts the user
about a point that is approaching, by displaying its
identification.
High-level functional model
Figure 6 shows a first functional model of the system,
which does not imply architectural definitions. It
includes 4 elements, all of them described in Java.

Write(String message)

GPS

Ja
va

Keyboard

>>
0

mode<<

1
spc

2
ABC

3
DEF

4
GHI

5
JKL

6
MNO

7
PQRS

8
TUV

9
WXYZ

Ja
va

GPSAlert

Ja
va

LCD
Display

Ja
va

GPSAlert

L
A
T
I
T
U
D
E

X

L
O
N
G
I
T
U
D
E

Y

g
g
G
m
m
,
m
m
m
M

g
g
g
G
m
m
,
m
m
m
M

GPS
Simulator

Send(int value)

Send(String pos)

Figure 6: Functional model of GPS-Alert system

Computation and communication are described at a high
abstraction level. For communication, a transaction-level
model is built, using primitives like send, receive, read,
and write. Element interfaces in the figure are
represented only by the access points. Since element

interfaces exactly match each other, wrappers are not
required. GPS-Alert is the main system element. It
stores key point coordinates, receives GPS data,
compares coordinates, and communicates with keyboard
and display. Keyboard and Display are abstract Java
models of the real peripherals. GPS-Simulator, which
has only validation purposes, simulates the generation of
a sequence of coordinates, by reading them from a text
file. An XML heterogeneous model specification is
generated by the modeling tool. Gateways can be
automatically generated by configuring Java templates.
This first model is completely homogeneous.
Architectural-level model
The model is then refined to an architectural definition,
as shown in Figure 7. Three IP elements are reused: a
Java microcontroller [12], for implementing the main
GPS-Alert functions, and keyboard and display drivers,
to connect the microcontroller to real peripherals. In this
model, while the drivers are locally available at the
designer’s site, the microcontroller is a third-party IP
model that is remotely simulated at a provider’s site.
Considering the DCB co-simulation capabilities, any
element may be locally or remotely simulated, without
any impact in the heterogeneous model’s functionality
and in the internal description of the elements.
In this architectural model, the GPS-Alert element
description, still written in Java, now mixes an abstract
specification of the computation with a refined
communication at RT level. As previously, computation
is described by the GPS-Alert functionality.

Figure 7: Architectural model of GPS-Alert system

Communication, however, considers the real
microcontroller interface, consisting of I/O ports and
interrupt signals. The same mixed-level modeling in
Java is used for the GPS-Simulator, Keyboard, and
Display elements. Figure 7 shows the interface attributes
contained in the element access points.

Kbd-Driver is described in C++. Display-Driver is
described in SystemC and implements a proprietary
interface. A heterogeneous (Java/C++/SystemC) and
distributed heterogeneous model is thus built. Gateways
and internal modules are generated by configuring Java,
C++, and SystemC templates. For C++ and SystemC
elements, besides the gateways, also the C++ code
accessing the JNI functions is generated. Table 1 shows
the size (in source code lines) of elements and respective
gateways.

Table 1: Size of elements and gateways

Element Element
Language

Element
size
(lines)

Size of
gateway
generated
(lines)

TimeMgrGVT Java 81 140
GPS Alert Java 349 159
GPS Simulator Java 107 120
LCD Display Java 398 138
Display driver SystemC 269 218 * **
Keyboard Java 208 152
Keyboard drv C++ 309 243 *

* includes the C++ code that gives access to JNI
** includes the simulation driver (75 lines) and the

complementary module (11 lines)
Even for much more complex elements, their gateways
will still have reduced sizes, since their sizes are only
proportional to the number of interface signals of the
respective IP components. The internal modules for all
elements have always the same size: 172 lines of Java
code for FA and 206 lines for DCBA. The DCB kernel
also has a constant size of 227 lines of Java code.
TimeMgrGVT, also with a constant size of 221 lines, is
automatically inserted into the heterogeneous model. It
is responsible for the overall synchronization, as
explained in Section 4.
Simulation performance
In order to make a concrete comparison of simulation
times between different models, we observe the time
consumed by a complete screen update, performed
through a series of messages sent to the Display
element. This activity starts when a first update message
is sent and ends when the last message has been
processed by the Display element. In the high-level
functional model, messages are sent by the GPS-Alert
element, while in the architectural model the messages
are sent by the Display-Driver element.
The number of messages for a display update is larger in
the architectural model because of the model refinement
at a lower abstraction level. In this model, 282 messages
are required for a complete display update, while in the
functional model only 42 messages are required. In both
cases, 9 control messages, sent by DCB and related to
synchronization between the elements, are required.
Both models have been initially simulated with the
Display element located in the same network node as the

respective origin element. In a second step, the Display
element has been moved to a distinct node, connected by
a 100 Mbps network adapter. Both nodes have been
completely isolated from the remaining network. In the
functional model, the mean time to update the display
has been 60 ms in the local simulation and 320 ms in the
distributed one. In the architectural model, the local
execution took 79 ms and the distributed one 304 ms.
It can be observed that the architectural model is only 19
ms (or 31.7%) slower than the functional one, when we
consider only local simulation. This overhead is due
both to the refined description of the communication and
to the language adaptation (all elements in the functional
model are described in Java, while the Display-Driver
element in the architectural model is described in
SystemC).
The distributed execution, in turn, is faster in the
architectural model when compared to the functional
one, even if the simulation is performed at a lower
abstraction level. This apparently odd behavior is due to
the way the Display-Driver element is implemented in
the architectural model. It executes an infinite loop,
constantly monitoring its interface attributes, thus
consuming a large simulation time. In the distributed
execution, this element has been allocated to a separate
node. In this way, the processing power of this node is
entirely devoted to this element, which is not executed
concurrently with the other elements anymore.

7 Final remarks and future work

In this article we introduce an infrastructure for the
integration of heterogeneous elements called Distributed
Cosimulation Backbone (DCB). It is not targeted
towards simulation performance. Its main goals are the
preservation of elements, adaptation of heterogeneous
interfaces, and distributed simulation. With the objective
of offering resources for the construction of models and
the adaptation of interfaces, the article also introduces
the Tangram as a modeling and configuration
environment aiming the execution over DCB.
Tangram and DCB do not impose severe rules on the
description of the elements’ communications, which
could limit the reuse of already existing heterogeneous
elements (including IP components). Beyond the reuse
we also enhance the construction of new elements with
tools/languages best adapting to the objectives of the
model being constructed.
The management of distribution and communication
between elements that are located at different sites and
described with different languages is entirely
encapsulated within gateways and internal modules that
are automatically generated and kept independent from
the element’s code.
This principle of DCB operation is fundamental for the
purposes of integrity preservation of elements and the
adaptation of interfaces. This feature distinguishes

Tangram from other general-purpose distributed
communication solutions.
Some studies of case were presented, developed in the
domain of the embedded systems project, in two
different levels of abstraction: high-level functional
model and architectural-level model. In the first level all
the elements are described in the same language and
they do not incorporate architecture details of the real
system. In the second level three more elements were
integrated into the first version of the model; two of
them described in different language, incorporating
some architectural details. Despite the changes, there
was no impact over the functionality of the model or
over the internal description of the elements previously
integrated into the model.
In order to enhance simulation performance, simulation
code generation will consider in the future dedicated
implementations for gateways and internal modules in
two special cases: non-distributed models and
homogeneous models. Future work will also consider
capabilities for elements classification and search, to be
added to the modeling environment.

References
[1]Bononi, L. et al. Concurrent Replication of Parallel

and Distributed Simulations. In Proceedings of the
PADS’05,Monterey,CA,USA, June 2005.

[2]Bononi, L., Bracuto, M., D'Angelo, G. AND
Donatiello, L. ARTIS: a Parallel and Distributed
Simulation Middleware for Performance Evaluation.
In Proceedings of ISCIS’2004, Antalya, Turkey,
October 2004.

[3]CADENCE. 2008. Incisive™ unified Simulator.
Available at <http://www.cadence.com>.

[4]COWARE. 2008. Available at
<http://www.coware.com>.

[5]Dahmann, J. S. High Level Architecture for
Simulation. In Proceedings of International Workshop
On Distributed Interactive Simulation And Real-Time
Applications-Dis-Rt, Eilat, Israel, 1997.

[6]Dalpasso, M., Bogliolo, A. AND BENINI, L. Virtual
simulation of distributed IP-based designs. In
Proceedings of 1999 Conference On Design
Automation Conference, New Orleans, USA, p.50-55,
1999.

[7]Elnozahy, M. et al. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. Technical
Report CMUCS99148, Department of Computer
Science, Carnegie Mellon University, 1999.

[8]Girod, L. et al. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In
Proceedings of 2004 Embedded Networked Sensor
Systems Conference, Baltimore, USA, p.201-213,
2004.

[9]Granowetter, L. RTI Interoperability Issues – API
Standards, Wire Standards, and RTI Bridges. In
Proceedings of 2003 European Simulation
Interoperability Workshop, Stockholm, Sweden, 2003.

[10]Hessel, F. et al. MCI: Multilanguage Distributed
Cosimulation Tool. In F.J.Rammig (ed.), Distributed
and Parallel Embedded Systems, Kluwer Academic
Publishers, 1999.

[11]IEEE 1516. IEEE Standard for Modeling and
Simulation High-Level Architecture (HLA), 2001.

[12]Ito, S., Carro, L. and Jacobi, R. Making Java Work
for Microcontroller Applications. In IEEE Design &
Test of Computers, Sept/Oct, 2001.

[13]Lee, E. A. Computing for Embedded Systems. In
Proceedings of IEEE Instrumentation And
Measurement Tecnhology Conference, Budapest,
Hungary, 2001.

[14]McBratney, A. et al. Future Directions of Precision
Agriculture. In Precision Agriculture, Springer
Netherlands Publisher, vl. 6, n. 1, February, 2005.

[15]Rao, D. M., Chernyakhovsky, V. AND Wilsey, P. A.
WESE: A Web-based Environment for Systems
Engineering. In Proceedings of International
Conference On Web-Based Modelling & Simulation,
Orlando, Florida, 2000.

[16]Reynolds, P. F. Jr. Heterogeneous Distributed
Simulation. In Proceedings of 1998 Winter Simulation
Conference, p.206-209, 1998.

[17]Schubert, K. Improvements in functional simulation
addressing challenges in large, distributed industry
projects. In Proceedings of 2003 Conference On
Design Automation, Anaheim, p.11-14, 2003.

[18]SEAMLESS CVT. 2008. Mentor Graphics.
Available at <http://www.mentor.com >.

[19]Seepold, R. Reuse of IP and virtual components. In
Proceedings of 1999 Design, Automation, And Test In
Europe, Munich, Germany, 1999.

[20]SYNOPSYS. 2008. Available at
<http://www.synopsys.com>.

[21]Teo, Y. M.; Ng, Y. K.; Onggo, B. S. S.
Conservative Simulation using Distributed-Shared
Memory. In Proceedings of Workshop On Parallel
And Distributed Simulation, Washington-D.C, USA,
2002.

[22]Tolk, A. Avoiding another Green Elephant – A
Proposal for the Next Generation HLA based on the
Model Driven Architecture. In Proceedings of
Simulation Interoperability Workshop, Orlando,
Florida, USA, 2002.

[23]Yoo, S., Choi, K. AND Ha, D. S. Performance
Improvement of Geographically Distributed Co-
simulação by Hierarchically Grouped Messages. IEEE
Transactions on VLSI Systems, New York, v.8, n.5,
p.100-104, 2000.

