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1 Introduction

In 2011, we started the e-PEV 1. project which aimed
to design and develop a vaccination decision support
system. The matter is to realize a complete system
implementing the mechanisms of integrating hetero-
geneous semi-structured data such as XML or natural
language in a medical data warehouse and extracting
knowledge on which simulations guided by outcomes
can be launched to generate and validate the expected
assessments. One of the most important applications of
XML is data integration from multiple sources which
contain diverse information and their presentation to the
outside world a schema of the available data.

Tree automata are widely used in applications such
as XML document manipulation which consists in a
process including incremental validation following doc-

1This work is part of the national research project entitled "Service
Oriented Architecture for the widdened vaccination program".

ument updates, information extraction, wrappers con-
ception, etc. Also, they have been used in pattern recog-
nition tasks to outline some of the item features to be
classified. In the e-PEV project, my colleagues con-
tributed to match XML documents and data warehouse
[1].

Tree automata are fairly simple computational mod-
els. They are common in almost every area of com-
puter science. There are a considerable number of ap-
plications in which finite automata are incorporated.
One of these applications is natural language processing
in which finite automata are used to describe different
phases of lexical analysis. Another related application
is text processing where automata are used in text com-
pression and file manipulation. Automata are also use-
ful in the area of formal verification and model checking
where they can be used to model the systems behavior
and to ensure that they work correctly. Recently, we
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have witnessed the introduction of the XML document
processing field. The issue approached by [1] concerns
dynamic integration of complex data using cellular au-
tomata [4]. The successful use of tree automata in the
XML field or in the tree structured data in general spurs
us to attempt to make use of their properties, formality
and expressive power in the task of XML documents
classification [1].

In this paper, we propose a formal framework for
decision tree methods [36] and induction graphs [35].
This framework is represented by tree automata which
are computational models in finite states that generalize
the traditional automata through term or tree recogni-
tion. The purpose of this work is to contribute to the
use of tree automata simplifying algorithms or prop-
erties to post-prune the generated models. The use of
automata for decision trees generation [36][35] enables
us to propose two simplification algorithms: (1) the
first one is based on the cleaning property. This algo-
rithm allows excluding the null rules encountered with
the greedy methods by eliminating the non accessible
states, which simplifies the rules base by reducing the
error rate in some cases. (2) The second algorithm is
based on the determinization property in order to re-
duce the states and transition rules numbers with the
aim of reducing the storage complexity. The proposed
determinization algorithm is computed in a polynomial
time without the use of the subset construction which
may cause an exponential blowup of the state number.
We show the steps of non-deterministic tree automata
generation from a diabetic monitoring decision tree and
the classification task carried out through rewriting.

From now on, the paper is organized as follows. In
section 2 we give some preliminaries where a review
of the relevant research streams is provided: this sec-
tion is devoted to a presentation of tree automata, ma-
chine learning and decision trees. Some related works
are outlined in section 3. In section 4, we present our
proposal of a tree automaton model for classification.
We also present some implementation issues and report
some empirical experiments on real-world datasets in
section 5. Finally in section 6, the conclusion summa-
rizes the contributions of this work and outlines poten-
tial research opportunities in the realm of tree automata
and decision trees.

2 Preliminaries

2.1 Tree Automata

Tree automata are computational models which appear
in many areas of computer science and engineering
[18][17]. They were first used in circuits checking and

then in the abstracted interpretation starting from con-
straints in the context of rewriting problems, automatic
theorems evidence or programs checking, etc. They are
used in various application fields such as grammatical
inference which is a subfield of machine learning [27].

2.1.1 Definitions

"According to [17], A is a finite tree automaton, then A
is quadruplet A = (Q,V,∆, Qf )where:

• V : Alphabet which elements are functional sym-
bols, a symbol f of arity 1 is noted f(), and if it is
of arity 2 it is noted f(,), etc,

• Q : Finite set of states,

• ∆ : Set of transition rules, the function δ associates
a state with a functional symbol,

• Qf ⊆ Q : Set of final or acceptance states".

- For ascending automata, the transition rules are of
the form: δ(f, q1, ..., qs) = q for a symbol f ∈ V with
(arity = s > 0). These rules can also be written :
f(q1, q2, ..., qs) → q. Graphically, a transition rule is
represented in by the diagram as depicted in Figure 1:

Figure 1: Graphical representation of a transition

- A tree t is accepted by the ascending tree automa-
ton A if ∃q ∈ Qf , δ′(t)→ q, δ′ corresponds to succes-
sive applications of δ.

- An ε − rule is a special kind of rules connecting
two state, it is of the form : qi → qj , qi, qj ∈ Q.

2.1.2 Deterministic Tree Automata

A tree automaton A= (Q,V ,∆, Qf ) is deterministic, if
the relation δ admits at most one image for each state,
i.e. if for any sate qi ∈ Q and for any symbol f ∈
V such as arity(f) = n, the set {q|(f, q1, ..., qn) = q}
is either empty or reduced to a singleton [17].

2.1.3 Cleaning a Tree Automaton

If a state is not accessible, that means that it does not
take part in the recognition of any term (tree), it is thus
useless. Moreover, any transition driving to it can there
be removed.
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The automaton size can be significantly reduced by
removing from Q any inaccessible state and recursively
removing from ∆ each transition f(q1, ..., qn) → q
such as q is not accessible [19].

2.2 Machine Learning

Machine learning is based on concepts from the fields
of artificial intelligence, statistics, information theory,
etc. Information extraction addresses the problem of
extracting specific information from a collection of doc-
uments. Most works achieving extraction on structured
documents use string based matching techniques. The
most common type of machine learning is inductive
machine learning, where experience is given in the form
of learning examples.

We call Ω the training set which allows generating
a model ϕ used to study new examples (prediction) in
the same area. Each instance ω of this set is represented
by a vector of attributes and each attribute takes a set of
values. If the class of each vector is given, it is within
the framework of supervised learning whose methods
are decision trees [30][31], Bayesian networks, etc.

The generated model, called prediction model or
classifier, allows predicting a variable Y, called endoge-
nous variable, class or variable to be explained from a
certain number of explanatory predictive variables de-
noted X. The quality of the prediction model or the clas-
sification function ϕ depends on the discrimination ca-
pacity which it acquired during the training.

The profile of any instance ω in Ω is described by k
explicative or exogenous features X1, ...,Xk. Those fea-
tures may be qualitative or quantitative. The variable Y
to predict associates, to each individual ω, a class be-
longing to a set of classes C = c1, ..., cm. The values
taken by the variable Y within the population are dis-
crete − we notice that we deal with symbolic classifi-
cation. Among the supervised learning methods, we are
concerned more particularly in decision trees methods.

2.3 Decision Tree Methods

Data mining has emerged as an important research area
of practical interest. It is applied in various fields such
as data streams, data-warehouses, and bioinformatics.
Decision trees are data mining techniques. They are
more attractive than statistical approaches or neural net-
works, thanks to the interpretability of the provided re-
sults. This property is much appreciated because it is
absolutely necessary in some real-life applications and
pertains to qualified intelligent behavior patterns simi-
lar to those in a human being. However, the explanatory

power of these methods decreases considerably once
the generated trees become big-sized.

Consequently, tree size reduction, also called prun-
ing, becomes indispensable for good interpretability.
"In [14], decision trees simplifying methods are cate-
gorized across five classes". We are more concerned in
the first one and especially in the post-pruning methods
which consists in modifying the tree once it has reached
complete development [13].

Decision trees are structures used to solve a problem
by performing successive tests. Each node corresponds
to a test on a discriminating variable of the problem.
In general, there is a test in each internal node of the
tree which corresponds to an attribute in the training
set, and a branch for each of its possible values. At
each leaf node, there is a class value. A root to node
path is a set of attributes with their values. The tar-
get part contains a single attribute, the class. If the lat-
ter is nominal, a classification task is required, else if
it is numerical, a regression task is considered. These
methods generate decision rules in the form of If condi-
tion then Conclusion. Splitting criteria are often based
on entropies. Among the well-known methods, we cite
ID3 [30], C4.5 [31][32], CART [13], etc.

3 Related Work

In the context of the e-PEV project, many researchers
strive to develop a platform whose purpose is to bring
together various and complementary paradigms, rarely
shared by a same project team, such simulations by
EASYDEVS [39], NEURO-IG [5] for dimension re-
ductions, artificial learning using CASI [4], etc.

"In [20], the authors studied the training problem of
statistical data distribution in a relational database by
proposing a method considering the database structure
and not requiring any data transformation which may
cause a loss of essential information". "In [21], the im-
pact of noise on probabilistic models is examined but
the authors didn’t propose any functional method for
correcting erroneous data". The inference algorithms
are based on a merging states approach [15]. The learn-
ing process is then performed by merging the states con-
sidered statistically equivalent. Habrard and his col-
leagues [22] proposed a technique for data reduction
to eliminate irrelevant or noisy instances from a set of
trees. Thomo, and Venkatesh [37] tried to solve the
problem by first determining relevant sources and then
combining them to produce data which satisfy a given
target schema. They used Visibly Pushdown Automata
(VPAs) as schema representation for XML documents.

In the same context, many works attempt to use su-
pervised classification of XML documents. "In [25], the
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authors proposed a system called "WebClass" to clas-
sify web documents using a threefold modified deci-
sion tree splitting the root, the depth-one nodes, and the
depth-two nodes on keywords, descriptions, and hyper-
links". "In [7], a classification approach of XML docu-
ments uses instance-based learning idea". The approach
explores documents structure for classification and pro-
vides extensions dealing with documents content.

Tree automata have been successfully applied in the
context of DTDs (Document Type Definition), the sim-
plest standard for defining the validity of XML docu-
ments. The well-known system is XDuce [24], a typed
functional language with extended pattern matching op-
erators to manipulate XML documents. In XDuce tool,
XML documents types are modeled by regular tree au-
tomata while the expressions pattern matching typing is
based on closure operations on automata.

Kosala and his colleagues [26] explored methods
based on the tree structure of documents. In particu-
lar, the method infers a k-testable tree automaton from
a small set of annotated examples and proposed differ-
ent ways to generalize the inferred automaton. Dal Zilio
and Lugiez [40] proposed a new class of automata: the
sheaves automata and an associated logic dedicated to
the interrogation of XML documents. Tree automata
are also used in checking document keys constraints
following an update [9]. "In another work [8], Bouchou
and Alves used automata to perform incremental testing
by checking only the part of the document concerned
with updates, the validity of a document". Chidlovskii
[16] used regular tree automata to model XML docu-
ments and showed that tree automata are more pow-
erful than the XML DTDs. The wrapping is achieved
considering query-algebra-based tree automata models
and queries optimization techniques. The authors also
showed the conversion of tree automata schema into
XML DTDs. The wrapping is achieved considering
query-algebra-based tree automata models and queries
optimization techniques. The authors also showed the
conversion of tree automata schema into XML DTDs.

Automata minimization has been extensively stud-
ied and it has been found that minimal automaton con-
stitutes a fundamental principle of approaches using
and implementing finite automata tools in areas such
as word processing, image analysis, computational lin-
guistics, and many other applications [6]. There are two
main classes of minimization algorithms: The first per-
forms by successive refinements of a set of states, and
the second operates by states fusion [33][2]. Among
the first class, Brainerd [10] proposed an algorithm in
which the minimal tree automaton is computed by con-
structing congruencies of the input automaton until a

fixed point is reached. An effective algorithm (in terms
of time complexity) for the minimization of accessi-
ble and complete deterministic automata was proposed
by Hopcroft [23]. To minimize a non-deterministic fi-
nite automaton, a corresponding deterministic automa-
ton is computed using subsets construction, which may
lead to a combinatorial explosion of the automaton size.
Then, the resulting automaton is minimized. To avoid
the subset construction, the size of a non-deterministic
finite automaton is released using heuristic methods,
for example, by identifying and eliminating states that
are equivalent according to some equivalence relation
[29][28].

Finite tree automata are natural generalizations of
word automata. Whereas a word automaton accepts a
single word, a tree automaton accepts a tree (term). The
fact that both word and tree automata are used in so
many different areas of computer science has generated
a growing number of software systems designed where
automata are used as internal representations.

Sempere and Lopez [34] proposed a method which
combines decision trees and tree automata to solve a
pattern recognition problem simplified here to digits
recognition. Their resolution was carried out in two
stages: grammatical inference is used to construct a tree
automaton from every set of trees taken in a quad tree
representing the same digit. A learning stage allowed
obtaining a different representation of a digit based on
distances of every digit (every tree) to every concept
(every automaton). A decision tree is inferred by using
standard methods based on the entropy of the examples
and distances.

4 A Proposal of a Tree Automaton Model for
the Classification

4.1 Our Approach

The simplification of a decision tree generated by a tree
automaton (see Figure 2) is realized in different steps.
First, data is preprocessed by eliminating redundancy
and dealing with the missing values, then we proceed
to the tree automaton generation using decision tree
computing. The generated automaton can be visualized
graphically or in a text form, and the extraction of de-
cision rules is launched using a rewriting process [35].
Finally, the original automaton is simplified and a vali-
dation phase is carried out directly over the tree automa-
ton to ensure that the simplification operation don’t en-
tail performance degradation.
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Figure 2: Steps of generation and simplification of a decision tree by
a tree automaton

4.2 Illustration Through an Example

The example of table 1 consists of 20 instances or indi-
viduals described by 04 exogenous variables: Day, Sea-
son, Wind and Rain in order to determine if an individ-
ual comes On Time (T), Late (L), Very Late (VL), Do
not come or Cancelled (C). These indications represent
the modalities of the class or the endogenous variable.

Table 1: Training sample [11]

Day Season Wind Rain Class

Weekday Spring None None T
Weekday Winter None Slight T
Weekday Spring None Slight T
Weekday Winter High Heavy L
Saturday Summer Normal None T
Weekday Autumn Normal None VL
Holiday Summer High Slight T
Sunday Summer Normal None T

Weekday Winter High Heavy VL
Weekday Summer None Slight T
Weekday Summer High Slight T
Saturday Winter Normal None L
Weekday Summer High None T
Weekday Winter Normal Heavy VL
Saturday Autumn High Slight T
Weekday Autumn None Heavy T
Holiday Spring Normal Slight T
Weekday Spring Normal None T
Weekday Spring Normal Slight T
Saturday Spring High Heavy C

The decision tree generated in the Weka platform
[38] for the sample of table 1 is presented in Figure 3.

Figure 3: C4.5 decision tree of the sample presented in Table 1

From the generated decision tree, we obtain the fol-
lowing rules:

R1- If Rain = ’None’ And Season= ’Spring’ Then
Class= ’T’ (100%)

R2- If Rain = ’None’ And Season= ’Winter’ Then
Class= ’null’ (0%)

R3- If Rain = ’None’ And Season= ’Summer’ Then
Class= ’T’ (100%)

R4- If Rain = ’None’ And Season= ’Autumn’ Then
Class= ’VL’ (100%)

R5- If Rain = ’Slight’ Then Class= ’T’ (100%)
R6- If Rain = ’Heavy’ And Season= ’Spring’ Then

Class= ’C’ (100%)
R7- If Rain = ’Heavy’ And Season= ’Winter’ Then

Class= ’VL’ (75%)
R8- If Rain = ’Heavy’ And Season= ’Summer’ Then

Class= ’null’ (0%)
R9- If Rain = ’Heavy’ And Season= ’Autumn’ Then

Class= ’T’ (100%)
Among the nine extracted rules, the rules R2 and

R8 are null. These are rules for which the value of the
class is unknown owing to the fact that the associated
manpower of the leaf is null.

Considering the tree automata formalism presented
in [36], while basing on decision trees transformation
operations, the tree automaton represented on Figure 4
and corresponding to the decision tree of Figure 3 is
constituted of the following elements:

- Qf= {q0, q1, q2, q3}, each of these states is related
to a modality of the class,

- V= {Season (), Spring, Summer, Autumn, Winter,
Day (,), Weekday, Saturday, Sunday, Holiday, Wind (,),
High, Normal, None, Rain (,), Heavy, Slight, None},

- Q = {q0, q1, ..., q25}, |Q|= 26,
INFOCOMP, v. 12, no. 2, p. 32-43, December 2013.
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- ∆= {T → q0, L→ q1, VL → q2, C → q3, None
→ q4, Heavy → q6, Slight → q5, Rain (q5) → q8,
Rain (q4) → q7, Rain (q6) → q9, Summer → q12,
Summer→ q20, Winter→ q13, Winter→ q21, Spring
→ q10, Spring→ q19, Autumn→ q11, Autumn→ q18,
Season (q7, q12) → q16, Season (q7, q13) → q17, Sea-
son (q7, q10) → q14, Season (q7, q11) → q15, Sea-
son (q9, q20) → q24, Season (q9, q21) → q25, Season
(q9, q18) → q22, Season (q9, q19) → q23,q8 → q0,
q16 → q0, q14 → q0, q22 → q0, q15 → q2, q25 → q2,
q23 → q3}. |∆| = 33.

Figure 4: The tree automaton corresponding to the decion tree of
Figure 3

The extraction of decision rules from the automaton
is done by rewriting as presented in [35], this allows
us to obtain the same rules extracted from the tree pre-
sented in Figure 3.

4.3 Cleaning a Tree Automaton

According to the definition of cleaning, a state is useless
if it does not participate to the recognition of any term
(tree). In the classification case, a term is a decision
rule.

A state is accessible if a final state is reached from
it (expressing a decision) either in a direct or indirect

way.
We present below the proposed automaton cleaning

algorithm:
ALGORITHM CLEANING,

Require: Automaton A = (Q,V,∆, Qf )
US = |Q−Qf |,
1:For i= 1 To US Do
2:While j 6 |∆| Do
3:If qi ∈ Source (rulej) Then
. US← US - qi,
4:End While,
5:End For,
6:While US 6= ∅ Do
7:While j 6 |∆| Do
8:If qi = Target (rulej) Then
. Delete rulej from ∆,
. US← US - qi,
. Q← Q− qi,
. V ← V - Symbol(rulej),
9:End While,
10:End For,
US = |Q−Qf |,
goto 1,
Return A Cleaned Automaton A = (Q,V,∆, Qf ).

The algorithm can be used for any automaton and
returns a cleaned one. The algorithm consists of two
main parts:

(1) It tries first to find the US, initially US contains
all states of Q except final states, set of states that ap-
pear in the source of at least one transition rule,

(2) In the second part (two last loops), the sets Q,
and US are updated by eliminating useless states. Con-
sequently symbols and rules containing these useless
states are eliminated V , ∆.

As illustration, the application of the cleaning al-
gorithm to the example presented in section 4.2 allows
modifying sets Q and ∆ as follow:

For the two first loops (corresponding the part one)
we build the set US, this set is only constituted of
states which are sources of at least one transition rule:
US={q17, q24}.

The two last loops (part two) allow updating the sets
US, ∆, and Q:

US={q17, q24, q13, q20},
∆ = ∆-{Season (q7, q13) → q17, Winter→ q13,

Season (q9, q20)→ q24, Summer→ q20},
The sets sizes are reduced from |Q|=26, |∆|=33 to

|Q|=24,|∆|=29 once the cleaning is achieved. Further-
more, the simplification of the automaton by eliminat-
ing the ε rules [35] allows reducing even more states
and transition rules numbers |Q|=17 and |∆|=22.

INFOCOMP, v. 12, no. 2, p. 32-43, December 2013.



Souad et al. On Generating and Simplifying Decision Trees Using Tree Automata Models 38

4.4 Elimination of Non-Determinism

An automaton is deterministic if there do not exist two
rules with identical sources (left sides). We notice that
the tree automaton of the example is nondeterministic,
the subset of rules which causes the non-determinism
is {Spring→ q10, Spring→ q19, Autumn→ q11,
Autumn→ q18, Summer→ q12, Summer→ q20,
Winter→ q13, Winter→ q21}.

Another algorithm presented "in [17] makes deter-
ministic an automaton which is not but contrary to our
determinization approach this algorithm increases con-
siderably the state number of the deterministic automa-
ton".

It is noticed that non-determinisms are caused by
rules whose source are labeled by a symbol of arity 0.
The transcribing steps force the arity of any symbol to
be maximum equal to 2 and minimum to 0. The sym-
bols of arity 1 or 2 can’t cause non-determinism because
they differ by their arguments but the arity 0 symbols
have no arguments so when they reappear as source of
more than one rule they are always the same and conse-
quently cause non-determinism.

This makes the task of determinization simpler and
for which we can present the following generic algo-
rithm:

ALGORITHM DETR,
Require: Non deterministic Cleaned Automaton A =
(Q,V,∆, Qf ) ,
1: For i=1 To |∆| Do
2: For j=2 To |∆| Do
3: If Source (rulei)=Source (rulej) Then
. Q = Q−{Target(rulej)};
. Replace in ∆ target(rulej) by target(rulei);
. ∆=∆-{rulej};
4: End For;
5: End For;
Return Deterministic Automaton A = (Q,V,∆, Qf ).

The algorithm operates on any automaton and re-
turns a deterministic one, in this case we assume that
the automaton is cleaned because we apply the algo-
rithms in order: cleaning, and then determinization.

DETR is composed of two loops in which we try to
detect rules causing non-determinism, leaving just one
of them in the set ∆. The application of the algorithm to
the example allows obtaining a deterministic automaton
with reduced sets of transition rules and states.

∆={T → q0, L→ q1, VL → q2, C → q3, None
→ q4, Heavy → q6, Slight → q5, Rain (q5) → q0,
Rain (q4) → q7, Rain (q6) → q9, Summer → q12,
Winter → q21, Spring → q10, Autumn → q11, Sea-
son (q7, q12) → q0, Season (q7, q10) → q0, Sea-
son (q7, q11) → q2, Season (q9, q21) → q2, Season

(q9, q11)→ q0, Season (q9, q10)→ q3}.
With the non-determinism elimination, we obtain

the sets Q and ∆ for which respective cardinalities are
15 and 20. The non-determinism is due primarily to the
reappearance of the variables already used in the tree in
other positions.

5 Experimental Results

5.1 Presentation of the Application Domain

We are interested to the domain of diabetic patients
monitoring. The diabetes monitoring allows verifying
if a diabetic patient presents complications. The devel-
opment of the application MONITDIAB was accom-
plished based on several doctors’ interviews and con-
sultation of patients’ archives.

We aimed to collect all the data allowing to define
if a patient presents any complication, the doctors opin-
ion served us to reveal the symptoms leading to com-
plications, then the archives consultation allowed us to
gather the real cases already processed in the hospital.
Besides, we have attended many consultations.

To elaborate the classification model, as explained
in section 4, we need exogenous variables which we
extract from the patients checks up. The class corre-
sponding to complications can be: Unbalanced Dia-
betes Slightly Complicated (UDSC); Unbalanced Dia-
betes Moderately Complicated (UDMC); Unbalanced
Diabetes Very Complicated (UDVC); Unbalanced Di-
abetes Non Complicated (UDNC); Balanced Diabetes
Non Complicated (BDNC).

13 exogenous variables have been extracted:
1- Diabetes Type : (DT)
- Type I : Insulin-Dependent Diabetes (IDD) Is char-
acterized by sometimes a complete disappearance
of the secretion of insulin by the pancreas, having
for immediate consequence a hyperglycaemia, the
treatment by insulin allows the patient to live an almost
normal life.
- Type II : Non Insulin-Dependent Diabetes (NIDD)
The most frequent type of diabetes, it represents a
heterogeneous infection in the pathogenic, clinical and
biological triple plan.
2- Var : Determines cases where the patient is :
- A Pregnant Female (PF);
- An adult (age <= 70) (Adult);
- An old person (age > 70) (OP);
3- BMI : (Body Mass Index): BMI =
Weight/(Height)2

- 18<BMI<20 => Meagre or Thin (M);
- 20<BMI<25 => Normal;
- 25<BMI<30 => Excess Weight (EW);
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- 30<BMI<35 => Obesity G1;
- 35<BMI<40 => Obesity G2;
- BMI>40 => Obesity G3;
4- The glycaemia:(Glyc) The glycaemia depends on
the sex and on the age of the patient and its value is in
balance if it is:
- Equal to 1 G (on an empty stomach) and 1.20 G (in
post prondial) for the pregnant woman,
- Equal to 1.60 G (on an empty stomach) and 2 G (in
post prondial) for an old person,
- Equal to 1 G (on an empty stomach) and 1.40 G (in
post prondial) for a young or an adult subject.
The values taken by this exogenous variable are:
- If 0.70 G<=Glyc< 1.80 G => Normal;
- If Glyc < 0.70 G =>Hypoglycaemia (HypoG);
- If 1.80 G<=Glyc<= 6 G => Hyperglycaemia (Hy-
perG);
5- The HBANC: (HBANC) reflects the glycaemic
balance from three months:
- 6.5 < HBANC < 7 Balanced for a Type I Diabetes
(B);
- 7 < HBANC < 7.5 Balanced for a Type II Diabetes
(B);
- 8 < HBANC < 10 Unbalanced (U);
- HBANC > 10 Very Unbalanced (VU);
6- Eye bottom examination: (EyeEx)
- No Retinopathy (NR),
- Retinopathy (R),
7- The creatinine: (Crea)
- 6G / L <= Crea <= 13 G/L it is Normal,
- Crea > 13 G/L it is Anormal,
8- Urea: (Urea)
- 0.30 G/L <= Urea <= 0.50 G/L => Normal,
- Urea > 0.50 G/L => Anormal (Renal Insufficiency),
9- Microalbuminuria: (McrAlb)
- McrAlb = 20mg /24h => Normal,
- 30 < McrAlb < 100=> Diabetic Nephropathy stage
3A (DNS3A),
- 100 < McrAlb < 300=> Diabetic Nephropathy stage
3B (DNS3B),
- McrAlb > 300=> Diabetic Nephropathy stage 4
(DNS4),
- McrAlb > 300 and high Urea and high crea => stage
5 (Renal Insufficiency) (RIS5),
10- Clearance of creatinine : (Cc)
The value of Cc is calculated using the formula Cc=
(140 - (age*weight))/creatinine and can take the
following values:
- Cc > 100 Normal;
- 70 < Cc < 100 Slight Renal Insufficiency (SRI);
- 40 < Cc < 70 Moderate Renal Insufficiency (MRI);
- 10 < Cc < 30 Severe Renal Insufficiency (SVRI);

- Cc < 10 Very Severe Renal Insufficiency (VSVRI);
11- Neuropathy : Can appear after five years of diabetes
discovery:
- Neuropathy existance (Neurpath);
- No Neuropathy (No_Neurpath);
12- ECG :
- Normal ;
- Coronary Insufficiency (CorInsuf);
- Cardiac Insufficiency (CarInsuf);
13- Arterial Doppler: (AD)
- Arteropathy Existance (Art);
- No Arteropathy (NoArt);
The MONITDIAB application processed 353 pa-
tients and 13 exogenous variables, an Excerpt of the
application is presented on Figure 5.

Figure 5: Excerpt of the MONITDIAB base

5.2 The Execution Process

The tree automaton carrying out the classification task,
on the MONITDIAB application by using the principles
of the C4.5 [32] method, is presented in two different
ways using a graphical representation in Figure 6 or by
the presentation of the sets ∆,Q and V in a textual form
as shown in Figure 7.

The respective cardinalities of the sets ∆ , Q, and V
are: 75, 63, and 21.

The number of decision rules extracted from the au-
tomaton is 19 among which 7 are null rules, the rules
are presented on Figure 8.

The validation is carried out using cross validation
10-folds available on the platform. The classification
performances of the rough automaton applied to the
MONITDIAB base are presented in Figure 9:

The application of the simplification algorithms,
previously presented allows us to obtain the simplified
automaton which the sets ∆ , Q, and V have respec-
tively the cardinalities 37, 37, and 17. The decision
rules number extracted from the simplified automaton
is 12.
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Figure 6: Tree automaton generated for the MONITDIAB applica-
tion

Figure 7: The sets ∆ , Q and V of the rough automaton for the
MONITDIAB base

Figure 8: Excerpt of the rules base generated from the rough automa-
ton

Figure 9: Classification results for the rough automaton

5.3 Comparative Study

The comparative study depicted in table 2 is carried out
between a rough automaton generated by using C4.5
[32] method, and the simplified automaton obtained
from the rough automaton by applying determinization
and cleaning algorithms. We use cross validation 10-
folds for the estimation of error rate and datasets from
[3] for the comparison purpose.

The comparison is achieved between a rough and a
simplified automaton which are represented by the col-
umn AT (Automaton Type):
- The rough Automaton (R) : Indicates the initial
generated automaton, on which no simplification was
brought,
- The simplified Automaton (S) : Indicates the automa-
ton one applying the simplification properties.
For the two automata, we define: SN: States Number,
TRN: Transition Rules Number, DRN: Decision Rules
Number, and ER: Error Rate.

Table 2: Experimental results

Dataset AT SN TRN DRN ER

MONIT-DIAB R 63 75 19 02.55%
S 37 37 12 02.55%

Balance-Scale R 207 259 52 23.34%
S 110 110 49 23.34%

Breast-Cancer R 12 16 4 24.58%
S 12 12 4 24.58%

Car R 336 497 131 07.63%
S 196 196 131 07.63%

Credit R 32 42 11 21.73%
S 26 26 10 21.21%

Diabetes R 32 41 11 0.34%
S 24 24 09 0.34%

Flags R 144 176 50 40.68%
S 58 58 25 38.63%

Kr-Ks-Vp R 118 149 31 0.57%
S 65 65 31 0.57%

Moonks-
Problem1

R 36 47 12 17.88%
S 20 20 10 17.05%

Solar-flare R 70 92 23 27.88%
S 47 47 21 27.52%
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We also made a comparison with several bench-
marks between C4.5 trees [32] generated and simpli-
fied by tree automata and others simplified by a prun-
ing algorithm available on the Weka platform. Table
3 presents the Decision Rules Number (DRN) and the
Error Rate (ER) for five benchmarks for which the gen-
erated trees are simplified by tree automata called Tree
Automata Pruning (TAP) and by C4.5 Pruning algo-
rithm (C4.5 Pruning):

Table 3: Comparative study using TAP and C4.5 Pruning

TAP C4.5 Pruning
DRN ER% DRN ER%

Autos 30 18.04 49 18.11
Bridges-V1 08 36.36 09 44.00
Lymphography 18 21.71 21 23.04
Mfeat-pixel 296 16.39 708 21.34
Splice 124 05.61 184 05.92

6 Conclusion & Future Work

Finite tree automata are generalizations of words au-
tomata structured in trees and they keep their essen-
tial properties: they have good logical and ensembles’
properties, along with effective algorithmic. These
characteristics allow for a large number of implemen-
tations, especially as far as typing and programs anal-
ysis are concerned. Also, they allow defining regular
trees languages with an operational semantic, applying
a general frame for XML languages and supplying a
validation execution environment while serving as ba-
sic tool for the static analysis (proofs, decision-making
procedures in logic).

We use tree automata models for the generation of
classifiers based on decision trees and induction graphs.
Their utilization puts these methods, applied in various
and very sensitive fields, in a formal framework.

In addition to the formalization of these methods,
the bottom line is to exploit the properties of tree au-
tomata and their simplification algorithms in order to
simplify the classification models which require preci-
sion and are time and space constrained.

By applying determinization and ε-rules elimination
properties, we notice that states and transition rule num-
bers fall considerably without causing performances’
degradation. As for the cleaning property, it automat-
ically causes the reduction of the states and transition
rules numbers as well as the simplification of the deci-
sion tree by eliminating the null rules.

This may simplify the rules base by trimming their
number and, in some cases, by reducing the error rate in

generalization. The minimization of the generated au-
tomata models allows quick classifying and cuts down
the response time.

According to the experiments, the proposed ap-
proach significantly reduces the decision tree size with-
out hurting effectiveness. Also, it outperformed the
pruning algorithm provided by the Weka Project.

As we noted in the previous sections, further work
based on using conversion of tree structured data and
rewriting techniques to rules base generation for XML
documents classification [1] need to be done. The sec-
ond is to use simplification algorithms to simplify even
more the generated tree automaton. Finally, we propose
to use tree automata for the generation and the simpli-
fication of random forests [12] consisting of C4.5 [32]
decision trees.
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