
AN ENERGY AWARE SENSOR NETWORK QUERY
PROCESSING SYSTEM

MOHAMED WATFA1

WILLIAM DAHER2

HISHAM AL AZAR2

1University of Wollongong
mwatfa@uow.edu

2American University of Beirut
(wsd03,hga08)@aub.edu.lb

Abstract. Recent developments in hardware have enabled the widespread deployment of sensor net-
works consisting of small sensor nodes with sensing, computation, and communication capabilities.
Sensor data are subject to several sources of errors resulting from power limitations, wireless commu-
nication, latency, throughput, and various environmental effects. Such errors may seriously impact the
answer to any query posed in the network. An energy efficient approach to query processing is intro-
duced in this paper by implementing new optimization techniques applied to in-network aggregation. We
first discuss earlier approaches in sensors data management and highlight their disadvantages. We then
present our approach and evaluate it through several simulations to prove its efficiency, competence and
effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Energy Efficiency

(Received October 02, 2008 / Accepted January 19, 2009)

1 Introduction

Recently IC and MEMS have matured to the point where
they enable the integration of communications, sensors
and signal processing all together in one low-cost pack-
age. It is now feasible to fabricate ultra-small sensor
nodes that can be scattered to gather useful informa-
tion. The events detected by these nodes need to com-
municated to gateways or users who tap into the net-
work. This communication occurs via multi-hop routes
through other sensor nodes. Since the nodes need to be
unobtrusive, they have a small form-factor and there-
fore can carry only a small battery. As a result, they
have a limited energy supply and low-power operation
is a must. Sensor networks have become an impor-
tant source of data acquisition with numerous applica-
tions being developed in monitoring various real-life
phenomena. Unfortunately, sensor data is subject to
several sources of errors resulting from power limita-

tions, wireless communication, latency, throughput, and
various environmental effects. In-network aggregation
is a well known technique to achieve energy efficiency
when propagating data from information sources to mul-
tiple sinks. The main idea behind in-network aggrega-
tion is that, rather than sending individual data items
from sensors to sinks, multiple data items are aggre-
gated as they are forwarded by the sensor network. Data
aggregation is application dependent, i.e., depending
on the target application, the appropriate data aggrega-
tion operator (or aggregator) will be employed. From
the information sink’s point of view, the benefits of in-
network aggregation are that in

general it yields more manageable data streams avoid-
ing overwhelming sources with massive amounts of in-
formation, and performs some filtering and preprocess-
ing on the data, making the task of further process-
ing the data less time and resource consuming. Be-

mwatfa@uow.edu
(wsd03,hga08)@aub.edu.lb


cause of its well-known power efficiency properties, in-
network aggregation has been the focus of several re-
cent research efforts [3][6][9]. In contrast, our approach
is a general one unrelated to any application. Although
all researches and approaches that were done earlier
in this field provide some advantages over traditional
centralized approaches, they still face some pitfalls and
disadvantages. Studying the disadvantages of previ-
ous work, we concluded that we need to work on sev-
eral major areas such as: power consumption, reliabil-
ity, less aggregation overhead, less contention, fault-
tolerance, and concurrency. The queries should also
consider data integrity, security and efficiency. Algo-
rithms should take into consideration that nodes might
have unequal battery levels opposed to unrealistic as-
sumptions made in previous work. Taking into consid-
eration these facts, our algorithm should evaluate the
remaining power on each node and the varying power
consumption that might differ from node to node to
be able to maintain longer network lifetime to trans-
mit useful data. We propose a new combinational im-
provement of all the available solutions taking into con-
sideration the above constraints to develop the sensor
node’s ability to handle data locally in a very efficient
way. The rest of the paper is organized as follows: Sec-
tion 2 presents previous approaches focusing on their
disadvantages. Section 3 presents the query processing
approach. In Section 4, we evaluate and simulate and
analyze our proposed algorithms using our own simula-
tor. We conclude this paper in Section 6 with possible
future improvements.

2 Related Work

Many researchers such as Yao et al., Bonnet et al., Gray
et al., and Madden et al. [1][10][8][5] tackled the data
management topic in wireless sensor networks includ-
ing query processing and data handling but none generic
useful results and findings were originated for imple-
mentation. There has been a lot of work and approaches
on query processing in distributed database systems [10][8],
but most related work on distributed aggregation did not
consider the physical limitations of sensor networks. In
addition, the TinyDB Project at Berkeley [7] conducted
by Madden et al. also investigates query processing
techniques for sensor networks including an implemen-
tation of the system on the Berkeley motes and aggrega-
tion queries. The basic approach used in both TinyDB
[7] and TAG [4] is to compute a partial state record at
each intermediate node in the routing topology. During
the epoch after query propagation, each mote listens for
messages from its children during the interval it spec-
ified when forwarding the query. It then computes a

partial state record consisting of the combination of any
child values it heard with its own local sensor readings.
Finally, during the transmission interval requested by
its parent, the mote transmits this partial state record up
the network. Previous studies [7][4] have shown that
aggregation dramatically reduces the amount of data
routed through the network, increasing throughput and
extending the lifetime of battery powered sensor net-
works as less load is placed on power-hungry radios.
Previous simulation studies have shown that aggrega-
tion can reduce energy consumption by a factor of 5 in a
large network (150-250 nodes) with five active sources
and five sinks. Previous networking research [2] ap-
proached aggregation as an application specific tech-
nique that can be used to reduce the amount of data that
must be sent over a network. In a previously proposed
data dissemination scheme (directed diffusion with op-
portunistic aggregation), data is opportunistically ag-
gregated at intermediate nodes on a low latency tree.
In [3], the authors explore and evaluate greedy aggre-
gation, an approach that adjusts aggregation points to
increase the amount of path sharing. The greedy ag-
gregation approach was implemented. Greedy aggrega-
tion differs from opportunistic aggregation in path es-
tablishment and maintenance. To construct a greedy in-
cremental tree, a shortest path is established for only
the first source to the sink whereas each of the other
sources is incrementally connected at the closest point
on the existing tree. In [6], they didn’t explore all their
techniques relative to mobility, and multiple queries.
Thus, we can’t be sure if their techniques are more ef-
ficient and reliable than the old techniques. In addi-
tion, they mentioned that in some cases that in-network
aggregation performs worst than even the simplest ap-
proach "the naïve approach" [10][6]. Most of the con-
clusions that the above researchers are credited for can
be described as: "We described a vision of processing
queries over sensor networks" [9]. Some presented a
prototype or some techniques they used without any
actual implementation and simulation results. For ex-
ample, the Cornell COUGAR system prototype [9] is a
first effort towards sensor database system. Thus, a lot
of improvements are still needed in this field to achieve
better generic approaches for implementation in wire-
less sensor networks plus taking into consideration all
the drawbacks and pitfalls of earlier techniques. Unlike
other networks, wireless sensor network still need an in-
ternational standard ISO to be build upon and all these
future researches are directed towards this goal. One
part is related to finding a general applicable approach
for data management in sensor networks which will be-
come a self-aware, self-configuring and reliable system



with respect to all nodes’ resource constraints. As var-
ious groups around the country have begun to deploy
large networks of sensors, a need has arisen for tools
to collect and query data from these networks. Of par-
ticular interest are aggregates, operations which sum-
marize current sensor values in some or all of a sen-
sor network. For example, given a dense network of
thousands of sensors querying temperature, users want
to know temperature patterns in relatively large regions
encompassing tens of sensors where individual sensor
readings are of little value. Sensor networks are limited
in external bandwidth, i.e. how much data they can de-
liver to an outside system. In many cases the externally
available bandwidth is a small fraction of the aggre-
gate internal bandwidth. Thus computing aggregates in-
network is also attractive from a network performance
and longevity standpoint: extracting all data over all
time from all sensors will consume large amounts of
time and power as each individual sensor’s data is in-
dependently routed through the network. As noted be-
fore, aggregation dramatically reduces the amount of
data routed through the network, increasing throughput
and extending the life of battery powered sensor net-
works as less load is placed on power-hungry radios.
Also, the fact that every message is effectively broad-
cast to all other sensors within range enables a number
of optimizations that can significantly reduce the num-
ber of messages transmitted and increase the accuracy
of aggregates in the face of transmission failures.

3 The Query Processing System

Our approach consists of providing a new distributed
algorithm for query processing in wireless sensor net-
works which is an optimized energy efficient distributed
algorithm with respect to all the sensor’s resource con-
straints. Some similarities to recent approaches are also
used such as upgrading the TinyDB approach, an ACQP
engine that is a distributed query processor which runs
on each of the nodes in a sensor network, and the TAG
approach. Our goal is to provide significant reductions
in power consumption through reducing the number of
query related messages in the whole network. Low en-
ergy consumption, and limited storage and memory us-
age are the three main constraints which we focus on
in our approach. This section will provide a detailed
explanation of our approach by presenting the problem
and the corresponding solution. We evaluate the ap-
proach in the next section through simulation. Sensor
networks have very limited power, small memory com-
putational power and limited bandwidth so some pos-
sible problems including decreasing the overall power
consumption of the data management algorithm, mini-

mizing the number of collisions, and establishing a self
adaptive network. Our first aim is to decrease the packet
size and the second is to decrease the number of pack-
ets sent. To decrease the packet size each sensor should
have values in its buffer of all its children nodes to per-
form partial aggregation before sending this value to its
parent. In large sensor networks, aggregation of data
having small packets and small values decreases the
power consumption and the computation overhead. Our
second approach is to index the network so to be able to
query data with minimum number of exchanged pack-
ets. We will start by building an index tree (IST) that is
similar to the SRT of TinyDB but for not only fixed at-
tributes but also variable ones. The problem with build-
ing such a tree is the maintenance overhead, but we will
prove that our algorithm maintains the tree with little
or no maintenance overhead. Our algorithm starts by
building an index routing tree. Then, each child in the
tree sends its index to its parent. Since the parent knows
the number of children it has, it compares the indexes
received from each child, if they are equal, the parent
indexes itself with their index and sends the index to its
parent otherwise it does nothing. Upon a change in the
index of one node, this node sends the new index to its
parent, the parent checks again to see if the indexes are
equal; if not and this parent is indexed, it removes its
index and informs its parent, but if this parent is not in-
dexed, it doesn’t have to inform its parent. With our net-
work, indexing a query could take less time and compu-
tation power to return the result. For example if we have
a query that asks for the average temperature where the
temperature is above 36. When this query reaches a
node with index 1, the node doesn’t forward the query
to its children. Our third idea is to conserve energy as
much as possible using indexing with the power eval-
uation criteria available in TinyDB at each node. We
can use an index of 0 to note that a certain node is low
in power try eliminate it in the execution flow of the
query.

3.1 Building the Routing Tree

After the nodes are randomly deployed, an index rout-
ing tree is built. The routing tree is built as follows. The
closest node to the base station is chosen to be the root
of the tree (level = 0). Once chosen, the root broadcasts
requests containing its level to all its one hop neighbors
(within its transmission range). When receiving the re-
quest, a neighbor node assigns itself a level = level +
1 and chooses its parent to be the level up node from
which it received the request, then re-broadcasts new
requests containing its new level to all its neighbors and
so on until no neighbors are found; thus the last nodes



become leaf nodes. Whenever a node receives two re-
quests from two different nodes, if it has a level, it dis-
cards the second request; and if not, it selects the first
arrived request. Thus it chooses one parent and one new
level (level = level + 1). In our tree algorithm, we in-
tend to let every node have only a single parent. After
building the tree each node sends its reading value to its
parent starting from the leaf and up. Every node stores
its last sent value. Every parent node receiving values
from multiple children calculates the average of the val-
ues received and sends it to its parent and so on until the
value reaches the base station.

3.2 Building the Index Table in the Routing Tree

When the base station receives the values, it sends a
packet containing the index table to all the nodes. The
first time the index table is sent, the value ranges of each
index will be large; the reason behind this approach is
not to send large packets in the network. If the index
table is large, it may lead to collisions. When a node
receives the index table, it compares its readings to the
index table and indexes itself accordingly. In the sec-
ond round the index table changes as value for index
ranges becomes smaller. After couple of rounds the in-
dex values will be more accurate. The number of rounds
depends on the size of the index table decided once the
network is deployed. The final index table will be de-
rived on each node. Deciding on the index ranges of
the system depends on the type of sensor node; sen-
sor nodes with readings that vary in large ranges should
have index ranges with large values. The child sends
its index to its parent. When a parent receives an index
from its children, the parent compares all its indexes
with its own, if they are all similar, the parent indexes
itself as such. However, if all indexes are not the same,
the node examines the percentage of the similarity, if
the similarity is larger or equal to 75÷ (based on the
simulation results in Section V), it indexes itself with
the dominant index and ignores the others. If the index
similarities are lower than 75÷ then the parent indexes
itself as between the smallest and largest index After all
the nodes are indexed in the network, the parents and
children agree on a common value.

3.3 Common Value Agreement (CV)

After a parent receives values from its children, it first
calculates the average of the values; it stores the cal-
culated average and sends it back to its children. We
call this value "common value" and we denoted it by
cv (Figure 8). Each node stores two values: the cv of
its parent and the cv of its children (except leaf nodes).

When a node needs to send a new reading to its par-
ent, it subtracts the cv from its reading and forwards the
value to its parent. The cv will be updated in case there
is a major change in the average of the children. When
a parent notices a large change between its children and
the cv, the parent resends the new average to its children
as the new cv. With our cv approach, sent packets are
smaller and therefore leading to less collisions, more
energy efficiency and less calculation overhead.

3.4 Aggregate Functions Evaluation

The calculation approach defers between different ag-
gregate functions. In our algorithm, we evaluate the 5
basic aggregate functions Sum, Average, Count, Min,
Max. We start with the Average function. To elabo-
rate more on this function let us examine the following
query:

SELECT Avg(temp)

FROM Sensors

Since this query asks for the average temperature
of the whole network, the query should reach all the
nodes where values will be extracted. In our algorithm
this is not the case; our algorithm offers the user two
approaches to calculate the average. In the first ap-
proach, when the query reaches the root node, the root
node doesn’t forward the query to its children but re-
turns his cv since the cv is the common average be-
tween it and its children. In the second approach the
query reaches all the nodes but not all the nodes return a
value. When a query reaches a node, the node examines
its current reading and index. If his current reading still
lies within the same index the node doesn’t forward any
value since his value will not have a noticeable change
to the final result. If the current reading doesn’t lie in
the same index the node changes its index, and sends the
cv subtracted from his reading to the parent node. Af-
ter receiving the new reading the parent notices a large
value from his child thus updates his index status and
cv if needed according to the previously discussed ap-
proaches. Then the parent node calculates the new aver-
age. Assume Avg is the old average value, Avgnew the
new average, nv the new value received from the child
and p the children count involved in the query. The par-
ent calculates the new average using the following for-
mula: Avgnew = (Avg×p)+nv

p
In the second approach, sending the value depend-

ing on the index change decreases the overhead of send-
ing packets where the change in reading will not cause
a notable change to the overall value; thus, using this
approach results in sending a small number of packets.



Deciding on what approach to use depends on how ac-
curate the data needs to be. The Count function is eval-
uated in a normal approach where the node, if meeting
the criteria, sends 1 to his parent where the parent adds
the count of his children and forwards them to his parent
and so on. The Sum function can also be evaluated us-
ing two approaches. The first approach is the usual one
where values are sent to the parent node that in his turn
sums them and sends them to his parent and so on. The
second approach of evaluating sum is to break the Sum
query into two queries, an average query and a count
query. In this approach the advantages of average eval-
uation discussed previously can be used. After a node
receives a sum function it sends it’s reading as if it is
calculating the average and then sends the count. The
base station calculates the Sum as Average × Count.
Deciding on the approach to use depends on the query
and the exactness of the result. Our engine on the base
station decides what approach to use. The Min and Max
function are evaluated in similar approach to the aver-
age where the node sends the cv subtracted from his
value. The parent node in its turn chooses the largest
or smallest (Min or Max) value received, adds to it the
children cv then subtracts from it its parent cv and sends
it to its parent.

3.5 Queries with conditions

For other types of queries that have a condition, our
approach should increase the throughput of the query
since indexing will help in the injection of the query.
Let us elaborate more by examining the following query:

SELECT Avg(temp)

FROM Sensors

WHERE temp>35

Our engine on the base station will parse this query
and translate the condition into index. The condition
"Where temp>35" will be translated into "Where tempIn-
dex > 5" assuming index 5 and its preceding indexes
are between 0 and 30. After this translation the query is
injected into the network. From the root and on, every
parent node checks if it has an index smaller or equal
to 5, if yes, it will not forward the query to its children.
Thus the query is filtered through the injection state.
The root broadcasts the query to its children. Once ar-
rived to each child, they check if they have an index
smaller or equal to 5. Thus, for node having the in-
dex 5, it ignores the query request, but in the case of
the other node, it re-broadcasts the request to all of its
children (index > 5) which in their turn, each of them

forwards the request if its index is greater than 5. This
approach removes the overhead of sending the query to
unneeded nodes. This approach increases the energy ef-
ficiency of the network where nodes that do not satisfy
the condition will not need to spend energy since filter-
ing is happening in the injection of the query rather than
the base station.

3.6 Power Management

Power consumption and network life time are major is-
sues in the wireless sensor network design. In our al-
gorithm, we try to increase the lifetime of the network
through two different approaches. In the first approach,
the node keeps track of the number of messages sent
and number of messages received. From these num-
bers the node can approximate the energy consumed
and therefore the amount of energy left. We can also
incorporate a battery model in our algorithm. When
the node reaches a state where its energy is close to
a predefined threshold, it informs its parent. The par-
ent will therefore decrease the number of packets sent
to this child thus will send packets to this child every
two rounds rather than every round hence decreasing
the transfer data rate to this child. If the child reaches
a very low state of energy, it informs its parent where
the parent stops sending any packets to this child. The
second approach is achieved by changing the root par-
ent every two rounds. If a child can have multiple par-
ents, the child, after couple of rounds, changes to an-
other parent if the other parent has more energy than
his current parent. When a parent is low on energy it
informs its children, the children in their turn will ask
another parent node if they could join it. If another par-
ent with more energy is found, the child switches to this
new parent. A child could know if the new parent has
more energy than his old one by knowing the amount of
energy consumed by both parents derived from the for-
mula discussed before. We will just incorporate the first
approach in our simulator leaving the second approach
for future work. The first approach should reduce the
energy consumption of every single node in the network
thus increasing the network lifetime.

3.7 Query Optimization

In this section, we will discuss our approach in optimiz-
ing a query. The base station keeps record of the last
queries with a time stamp. Upon issuing a new query,
the query optimizer checks for similar queries issued
before and their results. If the results are close, it con-
cludes that the network readings are not changing so
instead of sending the query to the whole network, the



query is sent to different parts of the network. To send
the query to different parts of the network, the query
optimizer sends the query to the level 1 parent nodes
which in turn will choose some of their children and
forward them the query. The number of children nodes
chosen depends on the query optimizer decision. With
this approach a smaller amount of nodes participate in
the query. This approach increases energy efficiency
and throughput of the network but gives an approxima-
tion of the result. This optimization technique doesn’t
apply on all kinds of queries.

4 Simulation Results

To test the efficiency of our algorithm, we decided to
model our own simulator to achieve our goals because
of the lack of database simulators. Our simulator is
written in VB. We randomly deploy a large number of
nodes, then a routing tree is build in which the query
is sent from the root to the leaf nodes to be evaluated,
processed. The leaf nodes will send the results back to
their parents where they are aggregated and sent over to
the parent’s parents until an aggregated value reaches
the root which in its turn, sends the aggregated value
back to the base station. In the tree, each node is ran-
domly colored to present its level (number of hops away
from the base station). An edge connects two neighbor
nodes if there are in the communication range of each
other i.e. they can communicate by sending and receiv-
ing messages. Every node contains a cache in which
it saves its level number, its index, its parent id and its
children’s ids. Our Algorithm will be evaluated based
on two basic metrics: power consumption and network
lifetime. The performance of the algorithm over time
will also be studied to determine the benefits of using
in-network aggregation. This is done by assuming that
each sensor node has a limited energy supply of and is
deactivated when the available energy is used up. In ad-
dition to that, we will incorporate the energy wastage
resulting from building the IRT (index routing tree).In
our simulation, we are going to randomly spread about
500 sensor nodes in a 10000 x 10000 region in VB to
investigate the change in temperature and humidity. We
are going to query these nodes to get Max, Min, and
Average values. We compare our approach (Energy Ef-
ficient Indexed Aggregation, EEIA) with the: 1- Naïve
algorithm where all the query results from each node
are sent to its parent until the results reach the root
where they are aggregated and sent to the base station.
2- Simple TinyDB where the results are aggregated at
each intermediate node until reaching the root. In our
simulation, we assumed the energy wasted is 1µJ for
sending a single bit and 0.5µJ for receiving a single bit.

Initially, each node has 1 J of available energy. In our
simulation, we also incorporated the energy consump-
tion of building an index tree. As you can see in Figure
1, as the number of nodes increases, the energy con-
sumption increases linearly since all nodes participate
in building the query with same amount of energy. We
concluded that the energy consumption of building the
index tree is equivalent to initiating one query in the
network. As for the maintenance of the index tree, we
see from Figure 2 that the average energy consumed in
the maintenance depends on the readings of the nodes
in the network. If the network readings change signifi-
cantly in a small amount of time, the energy consumed
in maintaining the tree increases. On the other hand,
if the network readings change slowly then the energy
consumption of the index maintenance decreases. The
energy consumption in the first 15 seconds is high since
the index tree was being built. We issued a number
of different queries on 500 nodes and compared the
energy consumption, delay and number of instructions
using our approach compared to the normal approach
of broadcasting the query to the network. To simulate
the same queries, we implemented in our simulator two
approaches, the first approach queries the network by
broadcasting the query to all the nodes and aggregating
the results back to the base station. As for the second
approach, we added our index querying approach. To
make our simulation more realistic, we maintained the
same condition on the network while using the differ-
ent querying approaches. In Figure 3, we compared the
energy consumed for the same queries using the 2 ap-
proaches. We issued 12 different queries and calculated
the energy consumed by these queries to return the re-
sult. As can be seen from the graph, all queries using
the indexed approach consume less energy than using
the other approach. You can also note from the graph
that some queries have energy consumption that is close
to the normal approach while others have larger energy
consumption. This difference depends on the condi-
tions of the issued query since more selective queries
tend to have a larger advantage using our approach (in-
dexing with more selectiveness decreases the number of
messages sent and received in the network). In Figure
4, we compare the number of packets sent for the same
query using the 2 approaches. As the figure shows, the
number of packets sent decreases with the indexing ap-
proach since some nodes will not forward the packets
to their children if their children don’t satisfy the query
conditions. As can be seen in Figure 5, the delay is de-
creased using our approach since as discussed before
the number of packets sent decrease hence collisions
decrease. In the delay simulation, we assumed a pack-



ets needs 0.01 sec to be resent. In the last simulation, we
added the cv (common value) approach to our simulator
and compared the lifetime of the network using index-
ing and cv querying to the normal approach. As can be
seen from Figure 6, the first node dies after 83 queries in
the normal approach while using our approach; the first
node dies after 130 queries. This increase in the lifetime
of the network is due to two factors. The first factor is
that nodes are sending fewer packets using the indexed
approach thus less energy consumption per node. The
second factor is the decrease in packet size with cv ap-
proach where less energy is consumed in sending the
packet.

Figure 1: Building the routing tree

Figure 2: Maintaining the routing tree

Figure 3: Energy consumption per query

Figure 4: Number of instructions per query

Figure 5: Time delay per query



Figure 6: Network lifetime

5 Conclusions

In summary, we have showed how aggregate queries are
efficiently executed over wireless sensor networks in a
distributed manner. We have proved that our in-network
distributed approach performed better in terms of en-
ergy reduction and network lifetime than the naïve and
simple TinyDB approaches. Furthermore as for future
work, our approach should confront with the difficulties
of topology construction, data routing, loss tolerance by
including several optimization techniques that further
decrease message costs and improve tolerance to failure
and loss. In addition to implementing these techniques,
we need to rethink some of these techniques to present
more efficiency to network changes and external factors
which could affect our approach such as node mobility,
obstacles and other issues. We could also extend our
simulator to incorporate a 3D tree construction tech-
nique plus other methodologies mentioned above.

6 Acknowledgment

The authors would like to gratefully thank Miss Farah
Abou Shahla for her help in submitting the final version
of this paper.

References

[1] Bonnet, P., Gehrke, J., and Seshadri, P. Towards
sensor database systems. In MDM ’01: Proceed-
ings of the Second International Conference on
Mobile Data Management, pages 3–14, London,
UK, 2001. Springer-Verlag.

[2] Heidemann, J., Silva, F., Intanagonwiwat, C.,
Govindan, R., Estrin, D., and Ganesan, D. Build-
ing efficient wireless sensor networks with low-
level naming. In SOSP ’01: Proceedings of the
eighteenth ACM symposium on Operating systems
principles, pages 146–159, New York, NY, USA,
2001. ACM.

[3] Intanagonwiwat, C., Estrin, D., Govindan, R., and
Heidemann, J. Impact of network density on
data aggregation in wireless sensor networks. In
ICDCS ’02: Proceedings of the 22 nd Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS’02), page 457, Washington, DC,
USA, 2002. IEEE Computer Society.

[4] Madden, S., Franklin, M. J., Hellerstein, J. M.,
and Hong, W. Tag: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[5] Madden, S., Franklin, M. J., Hellerstein, J. M.,
and Hong, W. The design of an acquisitional
query processor for sensor networks. In SIG-
MOD ’03: Proceedings of the 2003 ACM SIG-
MOD international conference on Management of
data, pages 491–502, New York, NY, USA, 2003.
ACM.

[6] Madden, S., Szewczyk, R., Franklin, M. J., and
Culler, D. Supporting aggregate queries over
ad-hoc wireless sensor networks. In WMCSA
’02: Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications,
page 49, Washington, DC, USA, 2002. IEEE
Computer Society.

[7] Madden, S. R., Franklin, M. J., Hellerstein, J. M.,
and Hong, W. Tinydb: an acquisitional query pro-
cessing system for sensor networks. ACM Trans.
Database Syst., 30(1):122–173, 2005.

[8] Report, N. W.-I.-P., Demers, A., Gehrke, J., Ra-
jaraman, R., Trigoni, N., and Yao, Y. Energy-
efficient data management for sensor. In 2nd IEEE
Upstate New York Workshop on Sensor Networks,
comlab.ecs.syr/edu/workshop, 2003.

[9] Yao, Y. and Gehrke, J. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9–18, 2002.

[10] Yao, Y. and Gehrke, J. Query processing for sen-
sor networks, 2003.


	Introduction
	Related Work
	The Query Processing System
	Building the Routing Tree
	Building the Index Table in the Routing Tree
	Common Value Agreement (CV)
	Aggregate Functions Evaluation
	Queries with conditions
	Power Management
	Query Optimization

	Simulation Results
	Conclusions
	Acknowledgment

