
Toward automatic generation of mvc2 web applications

 Samir MBARKI1, Mohammed ERRAMDANI2

 1Department of Mathematics and Computer Science, Faculty of science

Ibn Tofail University, Kenitra, BP 133, Morocco
mbarkisamir@hotmail.com

2Department of Management, EST
Mohammed1 University, Oujda, Morocco

mramdani69@yahoo.co.uk

Abstract. Most of server-side development technologies have emerged, since the invention of CGI in 1993. Facing
this diversity and incessant improvement of Web technology, we have the feeling that we are in need of developing a
tool which is able to produce the code from UML conception model. This paper examines the application of MDA
approach in the engineering of web applications. Two meta-models were designed: The first one for managing UML

source models, the seco2 web application models. The transformation rules and mapping algorithm were developed to

 generate an xml file containing all actions, forms, and forward JSP pages from class diagram that can be used to

generate the required code of web application.

Keywords: Software Engineering, Model Driven Architecture, Model Driven Engineering, Meta-models, rules
transformation, Web Application development

1. Introduction

The quality of web applications depends on the content,
the graphical interface and the different entity structure
wealth. Problems of this quality can be technical:
navigability, visual presentation,…etc. In [15], we have
specified that frameworks can attenuate the technical
problems. Among these frameworks we find: Struts [4]
[11], Cocoon [3], Turbine [2]. Other Frameworks can
help in the achievement of the graphical user interface
[13].
In the majority of web applications, we note that
operations recur, namely create, remove, update and
display of the different objects. We are especially
interested in the display of objects of a given class,
basing on information of another object of another class
provided that the two classes are connected via
associations on the class diagram.
Our work is very useful for users called to manipulate
some information linked to each other in an arborescent
structure where the display of information depends on
another (display, as part of a web application, employees
of a service, of a division, of a direction, etc.).
In this sense, we present in this paper a tool that
transforms a class diagram to a MVC2 web application
(particularly Struts). The result of this transformation is
an XML file that can be used to generate the required

code for Web application fulfilling the needs cited
above.
This paper is organized as follow: we begin in the first
section with an introduction. The second section permits
to develop MDA as architecture. The point is
particularly focused on the different models CIM, PIM
and PSM (In the setting of our work, the model PIM is
represented by the source classes diagram, and the PSM
model is represented by the model MVC target. The
third section presents the MVC paradigm and the setting
up of MVC under the shape of a framework, such as:
struts. In the fourth section, we elaborate the UML and
MVC meta-models. The transformation rules of UML
source model to the MVC target model, the
transformation algorithm and the results of this
transformation are presented in the fifth section. The
final section concludes this paper.

2. Model Driven Architecture (MDA)

In November 2000, the OMG (consortium of more than
1000 enterprises), has introduced the MDA approach. Its
aim was to provide a new unified vision to conceive
applications by separating the business logic of the
enterprise from all technical platforms. Indeed, the
business logic is stable and is subject to a few changes
over time, in opposition to the technical architecture. It
is therefore obvious to separate the two in order to face

the complexity of information systems and excessive
costs of migration technology. The MDA standard
should provide an opportunity to stop the stacking of
technology that requires special skills to keep varied and
diverse systems cohabit.
The MDA architecture is divided into four layers. In the
first layer, we find the standard UML (Unified
Modelling Language), MOF (Meta-Object Facility) and
CWM (Common Warehouse Meta-model). In the
second layer, we find a standard XMI (XML Metadata
Interchange), which enables the dialogue between
middlewares (Java, CORBA, .NET and web services).
The third layer contains the services that manage events,
security, directories and transactions. The last layer
provides frameworks which are adaptable to different
types of applications namely Finance,
Telecommunications, Transport, medicine, E-commerce
and Manufacture, etc.) [7].
The principle key of MDA consists in the use of models
in different phases of the development cycle of an
application. Specifically, MDA recommends the
development of the CIM (Computation Independent
Model), PIM (Platform Independent Model) and the
PSM (Platform Specific Model). The main objective of
MDA is to develop perennial models independent of
technical details of execution platforms (J2EE, .NET,
PHP or otherwise) in order to enable the automatic
generation of all application code and to obtain a
significant gain in productivity [6] [9] [10].

3. The MVC pattern

Formerly, web applications were very simple and a
technology was used so as to develop them: Common
Gateway Interface (CGI). As soon as the applications
become more complex, the defects and limits of this
technology have emerged: slowness and considerable
consumption of memory.
Besides, they are not correctly coded: The code used for
the presentation is always mixed with the code
representing the business logic. So as to face such
constraints, the editors have proposed solutions like
Application servers. This term gathers web servers and
enterprise application servers.
A servlet is a Java program that be activated at the
browser’s request, and interacts with the database or

other programs to provide an HTTP reply to the
browser. Contrary to the CGI, a servlet is loaded only
once in the memory [12]. The servlet receives an Http
request and handles it by interrogating the information
system and returning an HTML response, and that’s

where the problem resides. Therefore, the J2EE platform
applies the architecture Model, View, Control (MVC)

[1]. In this paradigm, the model represents the
information system consisting of java beans. The view
represents the HTML pages returned to the user. The
view consists of JavaServerPage (JSP). Control is the
glue between the two and it is composed of servlets. In
short, appearing from the early 80 with smalltalk, MVC
was widespread in the field of object development.
It was generalized to Web development. This model
provides the IHM Layer with all the guarantees of
maintainability and reusability of expected software [14]
[16] [17].

3.1. The struts framework

Is the framework for writing web applications that
supports the MVC architecture. Struts structures all the
components of the application into a unified whole.
These components are servlets, javaserver pages,
javabeans, business logic. To make the necessary
connections between the components, we need to
configure and set up the struts-config.xml and web.xml
files, the two principal configuration files for each struts
application [11]. The components of struts are:
 Business model: This model corresponds to the

application business logic. It is often described as
JavaBeans or EJB components. Struts doesn’t provide

any business classes [11].
 Controller: The control is implemented as a

component servlet via the org.apache.struts.action.
ActionServlet class which extends the
javax.http.HttpServlet class [5] [12]. The controller
performs the following tasks when receiving a
request:
- Matches URI of the request to the appropriate

ActionMapping class (an ActionMapping object
provides the “ActionServlet” servlet with a
description of a particular action instance).

- Maps the request towards the name of the Action
class owing to the “ActionMapping” information.

- Creates or finds an ActionForm instance and
decorates properties of this instance from requested
parameters.

- Calls the method execute() on the suitable class and
declared Action in the “ActionMapping” class and
transmitting to it the ActionForms, ActionMapping,
request and response objects (the latter two
parameters are respectively instances of
HtppServletRequest and HttpServletResponse).

- Transmits the returned value to the resource
specified in the “ActionForward”.

 View: The view component corresponds to the tier
presentation of a struts application.

4. Meta-models UML source and MVC2 target

To develop the transformation algorithm between source
and target model, we present in this section, the various
meta-classes forming the UML source meta-model and
the MVC meta-model. The source meta-model
structures a simplified UML model based on packages
containing data types and classes. Those classes contain
typed properties and they are characterized by
multiplicities (upper and lower). The classes are
composed of operations with typed parameters. Figure 1
illustrates the source meta-model:
 UmlPackage: is the concept of UML package. This

meta-class is connected to the meta-class Classifier.
 Classifier: This is an abstract meta-class representing

both the concept of UML class and the concept of data
type.

 Class: is the concept of UML class.
 DataType: represents UML data type.
 Operation: is used to express the concept of

operations of a UML class.
 Parameter: expresses the concept of parameters of an

operation. These are of two types, Class or DataType.
It explains the link between Parameter meta-class and
Classifier meta-class.

 Property: expresses the concept of properties of a
UML class. These properties are represented by the
multiplicity and meta-attributes upper and lower. A
UML class contains properties that may be of
primitive type (DataType) or references to other
classes. This explains the link between Property meta-
class and Classifier meta-class. The association
between Class meta-class and Property meta-class
expresses the fact that a class is composed of
properties.

Figure 1: Simplified UML meta-model

Figure 2 illustrates the first part of the target meta-
model. This meta-model represents a simplified version
of the schemas of relational databases. We present here
the different meta-classes to express the concept of
tables of a relational database:
 Schema: represents the concept of relational databases

schema.
 Table: is the concept of table in the relational

databases. It contains a meta-attribute name which
represents the table name in the database. The meta-
class is connected by a meta-association to the meta-
class Column.

 Column: is the concept of column in the database
tables. In order to express the fact that column can be
a primary key, or a foreign key, we decided to build a
meta-class by the type of column.

 PrimaryKey: expresses a column as a primary key.
 ForeignKey: expresses a column as a foreign key. The

meta-class is connected by a meta-association to the
meta-class Table to express the fact that the foreign
key references the corresponding table.

This meta-model structures models representing
relational databases. The latter consists of several tables,
themselves made up of typed columns.

Figure 2: A simplified meta-model of a relational

database

Figure 3 illustrates the second part of target meta-model.
The meta-model is the business model of the application
to be processed. In our case, we opted for components
such as Bean. We recall that struts doesn’t provide

specific business classes. We present here the different
meta-classes to express the concept of bean contained in
the PackageModel package.

 Bean: represents the concept of bean. The latter
extends the meta-class Class. The beans represent
objects in the area of application. These objects
communicate with the tables of relational database,
which explains the meta-association with meta-class
Table.

 Vector: Business class in the field of application has
an operation that returns a list of all items of this bean
stored in the database. We use the Vector meta-class
to represent the list.

 Action: is the concept of action (See section 3). Class
Action contains its own processing of the application,
hence it should be linked to the various beans.

 HttpRequest: is the concept of HttpServletRequest
classes (See section 3).

 HttpResponse represents the concept of
HttpServletResponse classes (See section 3).

This meta-model structures the models representing the
business logic of the target application. This logic is
essentially made up of Bean components.

Figure 3: A simplified meta-model of the model package

Figure 4 illustrates the third part of the target meta-
model. This meta-model represents the view package
(see section 3):
 JspPage: depicts a Jsp page (See section 3). An action

class may be called from a hyperlink in a Jsp. This
explains the link between the Jsp page and Action
class. The link between ActionForward and Jsp page
is trivial. ActionForm is linked to Jsp page because it
contains the information that would be transmitted in
the request and then filled in the actionForm (See
section 3). The link between Jsp page and
HttpRequest expresses the fact that the Jsp page can
use the information contained in an HttpRequest
object.

This meta-model structures the models representing the
view application. In this model, the Servlet invokes the

execute() method on the instance of the action class.
This method completes its processing and then calls the
mapping.findforward() method with a return to a
specified Jsp page.

Figure 4: A simplified meta-model of the view package

Figure 5: A simplified meta-model of the controller

package

Figure 5 illustrates the fourth part of target meta-model.
This package represents the controller meta-model (see
section 3):
 ActionMapping: Represents the concept of

ActionMapping classes (See section 3). An
ActionMapping class contains information to deploy
of a class Action. This explains the connection with
the meta-class Action.

 Action: (already seen at the ModelPackage meta-
model).

 ActionForm: represents the concept of ActionForm
classes (see section 3). An ActionForm represents a
form containing the parameters of the request from the
view (ViewPackage). This object is used by Action
Class (This is particularly one of the four parameters
of the operation execute()), which explains the link
with the metaclass Action.

This meta-model structures the models representing the
application’s controller. The controller is responsible for

the receipt of requests transmitted by the client, with the
invocation of the Action class, and therefore interacts
with business model and coordinates with a view by
returning it to the client.

5. The mapping rules

5.1. The context

The purpose of this formalism is to develop a
mathematical presentation of a class diagram with its
constituents: the classes, their members as well as
interactions between different classes. Such formalism
will be very useful for the development of an
incremental and easily scalable transformation
algorithm.
We rely on the fact that it is possible to know all the
attributes and all basic methods for a given problem.
This axiom is not always checked. We must remember
that most of the object design methods presuppose the
knowledge of the attributes to construct the initial class
diagram and the basic methods [8]. This situation
remains largely valid in the case of a problem of re-
engineering.
Consider all business classes and let us call them 𝐶𝑖 with
1 ≤ 𝑖 ≤ 𝑝. 𝑝 is the total number of such classes.
Each class has:
 Properties 𝑃𝑖 ,𝑗 with 1 ≤ 𝑗 ≤ 𝑛𝑖 . 𝑛𝑖 is the number of
𝐶𝑖’s properties.

 Operations 𝑀𝑖 ,𝑗 with 1 ≤ 𝑗 ≤ 𝑚𝑖 . 𝑚𝑖 is the number of
𝐶𝑖’s operations.

Let 𝑀𝑖 ,𝑗 , 1 ≤ 𝑗 ≤ 𝑚𝑖 a 𝐶𝑖’s basic operation . We can

classify it in one of the following cases:
Case 1: ∃ 𝑃𝑘 ,𝑗 (k may be different from i) such that 𝑃𝑘 ,𝑗
is updated by 𝑀𝑖 ,𝑗 .
Case 2: ∃ 𝑃𝑘 ,𝑗 (k may be different from i) such that 𝑃𝑘 ,𝑗
is consulted by 𝑀𝑖 ,𝑗 .
Case 3: ∃ 𝑃𝑘 ,𝑗 (k may be different from i) such that 𝑃𝑘 ,𝑗
is updated and consulted by 𝑀𝑖 ,𝑗 .
In all three cases, the class 𝐶𝑖 is related to the class 𝐶𝑘
on the class diagram.
As for the database, we would like to clarify that for one
class, we can add other operations that have the
connection to the database. We also find that basic
CRUD (Create, Remove, Update, and Display)
operations, in the database necessarily to belong to some
category 1, 2 or 3.
In this work, we limit ourselves to the operations of
category 2. Formally, we can fill in the matrix of 𝑀𝑖 ,𝑗

consultation operations compared to the properties 𝑃𝑖 ,𝑗 ,
thereby putting the value 1 at the intersection of the
column 𝑗 + (𝑚𝑟)𝑖−1

𝑟=1 and the row 𝑙 + (𝑛𝑟)𝑘−1
𝑟=1 . Note

that at the same time the number of columns of the
matrix is (𝑚𝑟)

𝑝
𝑟=1 and the number of lines is

 (𝑛𝑟)
𝑝
𝑟=1 .

Example : Consider the following class diagram:

Figure 6: An example of class diagram

Compared to this example, each class has a single
operation of category 2 (list), i.e. a consultation
operation. The matrix on these operations is shown
below. In this matrix, in addition to the representation of
classes and its members (properties and operations),
there is also a representation of associations between
classes. The first rectangle in the matrix shows the link
between instances of classes 𝐶𝑖 and 𝐶𝑗 .

The matrix representation is established, and below we
present the model of view as well as the relationship
with the business model. Either Page 𝐿𝑖𝑠𝑡𝐶𝑖𝑃𝑎𝑔𝑒. 𝑗𝑠𝑝
displaying various objects of Class 𝐶𝑖 , stored in a
database. If 𝑘𝑖 represents the number of objects of class
𝐶𝑖 in the database then the page 𝐿𝑖𝑠𝑡𝐶𝑖𝑃𝑎𝑔𝑒. 𝑗𝑠𝑝 will be
displayed as follow:

 Using the button 𝐿𝑖𝑠𝑡𝐶𝑗 at the line 𝐿 (1 ≤ 𝐿 ≤ 𝑘𝑖)

causes the invocation of the URL represented by the
action attribute i.e. 𝐿𝑖𝑠𝑡𝐶𝑗 .

 The controller processes the request by accessing the
object 𝐿𝑖𝑠𝑡𝐶𝑗𝐹𝑜𝑟𝑚. It affects to its attributes members
the data present in the request and then place this
object 𝐿𝑖𝑠𝑡𝐶𝑗𝐹𝑜𝑟𝑚 in the session under the name

 𝑙𝑖𝑠𝑡_𝐶𝑖 𝑙𝑖𝑠𝑡_𝐶𝑗 𝑙𝑖𝑠𝑡_𝐶𝑘
𝑃𝑖 ,1 1 1 0
𝑃𝑖 ,2 1 0 0
𝑃𝑗 ,1 0 1 1
𝑃𝑗 ,2 0 1 0
𝑃𝑗 ,3 0 1 0
𝑃𝑘 ,1 0 0 1
𝑃𝑘 ,2 0 0 1

𝑃𝑖 ,11
 𝑃𝑖 ,21

 𝐿𝑖𝑠𝑡_𝐶𝑗
𝑃𝑖 ,12

 𝑃𝑖 ,22
 𝐿𝑖𝑠𝑡_𝐶𝑗

… … …
𝑃𝑖 ,1𝑘𝑖

 𝑃𝑖 ,2𝑘𝑖
 𝐿𝑖𝑠𝑡_𝐶𝑗

𝐿𝑖𝑠𝑡𝐶𝑗𝐹𝑜𝑟𝑚 (It is a single information to be sent in
the request namely 𝑃𝐿,1, which is unique because it is
associated with the primary key of the class 𝐶𝑖).

 The controller searches on the file 𝑠𝑡𝑟𝑢𝑡𝑠 −

𝑐𝑜𝑛𝑓𝑖𝑔. 𝑥𝑚𝑙 for an entry < 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 >
with an attribute 𝑝𝑎𝑡 = 𝐿𝑖𝑠𝑡𝐶𝑗 (𝐿𝑖𝑠𝑡𝐶𝑗 is the name of
the URL cited above)

 The controller creates an instance of 𝐿𝑖𝑠𝑡𝐶𝑗𝐴𝑐𝑡𝑖𝑜𝑛
class corresponding to the value of the attribute type
and an instance of the class 𝐴𝑐𝑖𝑜𝑛𝑀𝑎𝑝𝑝𝑖𝑛𝑔
containing <action> data.

 The controller invokes the method
𝐿𝑖𝑠𝑡𝐶𝑗𝐴𝑐𝑡𝑖𝑜𝑛. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒() with four arguments (see
section 3). This method completes its processing and
then calls the method 𝑚𝑎𝑝𝑝𝑖𝑛𝑔. 𝑓𝑖𝑛𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑().

 𝐿𝑖𝑠𝑡𝐶𝑗𝐴𝑐𝑡𝑖𝑜𝑛 returns the object 𝐴𝑐𝑡𝑖𝑜𝑛𝐹𝑜𝑟𝑤𝑎𝑟𝑑 to

the controller, which in turn transmits the request to

the view selected for the presentation, this is the

𝐿𝑖𝑠𝑡𝐶𝑗𝑃𝑎𝑔𝑒. 𝑗𝑠𝑝 page.

This process can be extended not only for two classes 𝐶𝑖
and 𝐶𝑗 , but also for a series of 𝑛 classes (𝐶𝑖)1

𝑛 . We
present this extension in the following algorithm:

5.2. Algorithm transformation

By source model, we mean model containing the various
classes of our business model. The elements of this
model are primarily classes. The following list describes
the various objects handled in the algorithm:
𝑉′ : Vector. We put in this vector, the operations
names of the current class.
𝑉": Vector. We put in this vector, the classes which are
transformed.
𝑀 : We put in the matrix, the action class and jsp page
mapping the success forward.
𝑒 : This variable is used to browse the different classes
of source model.
𝑚𝑖 : This variable is used to browse the different
operations of element e.
𝑎𝑐𝑚𝑝 : an object of type ActionMapping
𝑐𝑝 : an object of type ControllerPackage
𝑣𝑝 : an object of type ViewPackage

Algorithm
input up:UmlPackage

output sp StrutsProjectPackage

begin

 sp=transformationRuleOne(up)

 for each e source model

 if e is class

 put operations of e in V’

 if V’ list and e V”

 x=transformationRuleTwoList(e)

 link x to acmp

 end if

 for each property p in e

 if p is class

 empty V’

 put operations of p in V’

 if V’ list

 x=transformationRuleThreeList(e)

 link x to acmp

 end if

 end if

 end for

 end if

 end for

end

function

transformationRuleOne(up:UmlPackage):Struc

tsProjectPackage

begin

 create StrutsProjectPackage sp

 create ModelPackage mp

 create cp

 create vp

 link acmp to cp

 link cp to sp

 link vp to sp

 link mp to sp

 return sp

end

function

transformationRuleTwoList(e:Class):Action

begin

 create Action action

 put e in V”

 create ActionForward actionForward

 create PageJsp page

 put e and page in M

 link page to vp

 link page to actionForward

 link actionForward to action

 return action

end

function

transformationRuleThreeList(prop:Property)

:Action

begin

 create Action action

 Ci,Cj:Class

 Cj is the prop type

 Ci is the prop class

 Create ActionForm actionForm

 There exists a unique k such as

M[k,1]=Ci

 page=M[k,2]

 actionForm.input=page

 actionForm.attribute=action

 create ActionForward actionFwd

 page2:PageJsp

 put Cj and page2 in M

 link page2 to vp

 link page2 to actionFwd

 link actionFwd to action

 put Cj in V”

 return action

end

5.3. Results

The implementation of mapping rules can be performed
in three manners: by programming, by template or by
modelling [6]. The programming approach is the most
widely used because it’s best supported by development
tools. In this present work, we opt for programming
approach using the Eclipse EMF framework. The
advantage of EMF is the ability to develop any model
transformation using Java as programming language and
interfaces manipulating models.
We first develop ECORE models matching our two
meta-models source and target. Then we implement the
transformation algorithm (see sub-section 5.2) using
interfaces manipulating models generated from ECORE
models.
To validate our transformation algorithm, we have
conducted several tests. For illustration, we consider the
class diagram in figure 6. After applying the
transformation on the UML model, composed by
Classes 𝐶𝑖 , 𝐶𝑗 and 𝐶𝑘 , we generate the target in figure 7
and presented by the XML file below:
<?xml version="1.0" encoding="ASCII"?>

<strutsMM:StrutsProjectPackage

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:strutsMM="http:///strutsMM.ecore"

name="Struts">

 <vPack name="viewPackage">

 <view name="ListCiPage.jsp"/>

 <view name="ListCjPage.jsp"/>

 <view name="ListCkPage.jsp"/>

 </vPack>

 <cPack name="controllerPackage">

 <actionmappings name="actionMappings">

 <actions name="ListCiAction">

 <forwards name="success"

forward="//@vPack/@view.0"/>

 </actions>

 <actions name="ListCjAction">

 <attribute name="ListCjForm"

input="//@vPack/@view.0"/>

 <forwards name="success"

forward="//@vPack/@view.1"/>

 </actions>

 <actions name="ListCkAction">

 <attribute name="ListCkForm"

input="//@vPack/@view.1"/>

 <forwards name="success"

forward="//@vPack/@view.2"/>

 </actions>

 </actionmappings>

 </cPack>

</strutsMM:StrutsProjectPackage>

Figure 7: Generated struts model

The first element in the XML file is: vPack which
includes the three jsp pages, namely ListCiPage.jsp,
ListCjPage.jsp and ListCkPage.jsp. Then comes the
element cPack which contains a single element
ActionMapping. It also contains three action elements
whose names are successively: ListCiAction,
ListCjAction and ListCkAction.
The element action: ListCiAction contains only one
element forward with the attribute forward = = / / @
vPack / @ view.0, i.e. jsp page: ListCiPage.jsp. This is
because in the element vPack, there are three elements:

<vPack name="viewPackage">

 <view name="ListCiPage.jsp"/>

 <view name="ListCjPage.jsp"/>

 <view name="ListCkPage.jsp"/>

</vPack>

Thus //@ vPack /@view.1 means ListCjPage.jsp and
//@vPack/@view.2 means ListCkPage.jsp.
The element action: ListCjAction contains two
elements: the element attribute to indicate the entry form
for this action, it is the form ListCjForm. This form is
topped by reports of page ListCiPage.jsp because the
attribute is set to input the value //@vPack/@view.0.
The sub element is put forward to the value //@vPack/@
view.1, ie jsp page: ListCjPage.
The element action: ListCkAction contains two
elements: the element attribute to indicate the entry form
for this action, it is the form ListCkForm. This form

encapsulates the ListCjPage informations because the
input attribute is set to the value //@vPack/@view.01.
The forward attribute is set to the value
//@vPack/@view.2, ie jsp page: ListCkPage.

6. Conclusion and perspectives

We applied the MDA approach in web applications
engineering. This particularly generates the makings of a
web application on the basis of a UML class diagram.
The latter is built on the basis of different attributes of
the information system. The generation process will
provide an opportunity for the user to add, edit, delete,
and especially display the various objects he needs. He
must be able to display objects of a given class, based on
information from another object of another class
provided the two classes are connected via associations
at the class diagram mentioned above.
To achieve this, we first develop the source metamodel
managing UML class diagrams. At the target
metamodel, we have developed all metaclasses needed
to be able to generate an application respecting a MVC2
architecture.
The mapping rules were developed and put together in a
transformation algorithm. This algorithm makes it
possible to browse the source class diagram and
generate through these rules, an XML file containing all
actions, forms, and then forwards jsp pages that can be
used to generate the necessary code of the target
application.
This is very useful when dealing with related
information between them in a tree structure and the
display of information depends on another. This work
can be extended to support advanced aspects of the
content of Web pages to produce a web application from
start to finish, i.e. providing the user’s interface part at a

will and appropriate treatment responding to requests.
In perspective, this work should be extended to allow
the generation, in addition to the configuration files, of
other components of the Web application: model, view,
controller and their constituents. Emphasis should be
placed on the support of other CRUD methods such as
create, remove and update. After we can consider
integrating other execution platforms like PHP and
.NET.

References

[1] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns:
Best Practices and Design Strategies, Prentice Hall,
2003

[2] Apache Jakarta Project: Jakarta Turbine Web
Application Framework
http://jakarta.apache.org/turbine

[3] Apache Jakarta Project: The Apache Cocoon

Project. http://cocoon.apache.org
[4] Apache Software Foundation: The Apache Struts

Web Application Software Framework.
http://struts.apache.org

[5] H. Bergsten, JavaServer Pages, 3rd edition,
O’Reilly, 2004

[6] X. Blanc, MDA en action : Ingénierie logicielle
guidée par les modèles. 1st edition, 270 pages, 2005

[7] P-A. Caron, Spécialisation d'un environnement de
conception de systèmes flexibles aux
Environnements Informatiques pour
l'Apprentissage Humain, Mémoire de DEA,
Université des Sciences et Technologies de LILLE,
2 july 2003, 53 p.
http://noce.univ-lille1.fr/cms/uploaddocs/
RapportdeStageDEAInformatiquever8.pdf

[8] J-L. Cavarero, R. Lecat. La conception orientée
objet, évidence ou fatalité, Ellipses, 2000

[9] S. Cook, Domain-Specific Modeling and Model
Driven Architecture. MDA Journal, pages 1-10,
January 2004.

[10] J. M. Favre. Towards a Basic Theory to Model
Driven Engineering. UML 2004 - Workshop in
Software Model Engineering (WISME 2004),
2004.

[11] J. Goodwill, Mastering Jakarta Struts, Wiley
edition, 2002

[12] J. Hunter, W. Crawford, Java Servlet Programming,
2nd edition, O’Reilly, 2001

[13] Java Server Faces Home Page. http://java.sun.com
/j2ee/javaserverfaces/index.jsp

[14] Y-P. Kontogiannis, K. Lau, Transforming legacy
Web applications to the MVC architecture,
Software Technology and Engineering Practice,
2003. Eleventh Annual International Workshop on
Volume Issue: 19-21 Sept. 2003 Page(s): 133 – 142

[15] A. J. Offutt, Quality Attributes of Web Software
Applications. IEEE Software, Special Issue on
Software Engineering of Internet Software, 19(2):
25-32, 2002

[16] Y. Ping et al., Migration of legacy web applications
to enterprise JavaTM environments net.data® to
JSPTM transformation, Proceedings of the 2003
conference of the Centre for Advanced Studies on
Collaborative Research, Toronto, Ontario, Canada,
Pages: 223 - 237

[17] Y. Ping et al., Refactoring Web sites to the
controller-centric architecture, Software
Maintenance and Reengineering, 2004. CSMR
2004. Proceedings. Eighth European Conference,
24-26 March 2004 Page(s): 204 - 213

http://www.amazon.co.uk/exec/obidos/search-handle-url/202-5160170-4309456?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=Deepak%20Alur
http://www.amazon.co.uk/exec/obidos/search-handle-url/202-5160170-4309456?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=John%20Crupi
http://www.amazon.co.uk/exec/obidos/search-handle-url/202-5160170-4309456?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=Dan%20Malks
http://jakarta.apache.org/turbine
http://cocoon.apache.org/
http://struts.apache.org/
http://noce.univ-lille1.fr/cms/uploaddocs/%20RapportdeStageDEAInformatiquever8.pdf
http://noce.univ-lille1.fr/cms/uploaddocs/%20RapportdeStageDEAInformatiquever8.pdf

